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Abstract

A new distribution called the gamma-generalized inverse Weibull dis-
tribution which includes inverse exponential, inverse Rayleigh, inverse
Weibull, Fréchet, generalized inverse Weibull, gamma-exponentiated
inverse exponential, exponentiated inverse exponential, Zografos and
Balakrishnan-generalized inverse Weibull, Zografos and Balakrishnan-
inverse Weibull, Zografos and Balakrishnan-generalized inverse expo-
nential, Zografos and Balakrishnan-inverse exponential, Zografos and
Balakrishnan-generalized inverse Rayleigh, Zografos and Balakrishnan-
inverse Rayleigh, and Zografos and Balakrishnan-Fréchet distributions
as special cases is proposed and studied in detail. Some structural prop-
erties of this new distribution including density expansion, moments,
Rényi entropy, distribution of the order statistics, moments of order
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statistics and L-moments are presented. Maximum likelihood estima-
tion technique is used to estimate the model parameters and applications
to a real datasets to illustrate its usefulness are presented.
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1 Introduction

The relevance and usefulness of the inverse Weibull (IW) distribution in var-

ious areas including reliability, and branching processes can be seen in Oluyede

and Yang (2014), Kersey and Oluyede (2012), Calabria and Pulcini (1989,

1990, 1994) and in references therein. The IW model also provides a very

good fit to data on times to breakdown of an insulating fluid, subject to con-

stant tension (Badar and Priest (1982)), and references therein for additional

results.

There are several new and important generalizations of distributions in the

literature including those of Eugene et al. (2002) dealing with the beta-normal

distribution and results on weighted inverse Weibull distribution by Sherina

and Oluyede (2014). Pararai et al. (2014) developed a new class of generalized

inverse Weibull distribution obtained via the use of Ristić and Balakrishnan

(2012) alternative-gamma-generator given by equation (6) when λ = 1. Famoye

et al. (2005) discussed and presented results on the beta-Weibull distribution.

Nadarajah (2005) presented results on the exponentiated beta distribution.

Kong and Sepanski (2007) presented the beta-gamma distribution.

In this note, we present, study and analyze the gamma-exponentiated

or generalized inverse Weibull (GEIW or GGIW) distribution. The inverse

Weibull (IW) cumulative distribution function (cdf) is given by

F (x;α, β) = exp{−(α(x− x0))
−β}, x ≥ 0, α > 0, β > 0, (1)

where α, x0 and β are the scale, location and shape parameters respectively.

The parameter x0 is called the minimum life or guarantee time. When α =
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β = 1 and x = x0 + α, then F (α + x0; 1, β) = F (α + x0; 1, 1) = e−1 = 0.3679.

This value is in fact the characteristic life of the distribution. We assume that

x0 = 0. The quantile function is QF (y) = {− log(y)
α

}−1/β. Note that when α = 1,

we have the Fréchet distribution function. Also, the IW probability density

function (pdf) f(x;α, β), satisfies:

xf(x;α, β) = βF (x;α, β)(− ln(F (x;α, β)), x ≥ 0, α > 0, β > 0. (2)

In a recent note, Zografos and Balakrishnan (2009) defined the gamma-

generator (when λ = 1) with pdf g(x) and cdf G(x) (for δ > 0) given by

g(x) =
1

Γ(δ)λδ
[− log(F (x))]δ−1(1− F (x))(1/λ)−1f(x), (3)

and

G(x) =
1

Γ(δ)λδ

∫ − log(F (x))

0

tδ−1e−t/λdt =
γ(δ,−λ−1 log(F (x)))

Γ(δ)
, (4)

respectively, where F (x) is a baseline cdf, g(x) = dG(x)/dx, Γ(δ) =
∫∞

0
tδ−1e−tdt

is the gamma function, and γ(z, δ) =
∫ z

0
tδ−1e−tdt is the incomplete gamma

function. The corresponding hazard rate function (hrf) is given by

hG(x) =
[− log(1− F (x))]δ−1f(x)(1− F (x))(1/λ)−1

λδ(Γ(δ)− γ(−λ−1 log(1− F (x)), δ))
. (5)

When λ = 1, the distribution which of a special case of the family of distribu-

tions given in equation (3) is referred to as the ZB-G family of distributions.

Also, when λ = 1, Ristić and Balakrishnan (2012) proposed an alternative

gamma-generator defined by the cdf and pdf

G2(x) = 1− 1

Γ(δ)λδ

∫ − logF (x)

0

tδ−1e−t/λdt, x ∈ R, δ > 0, (6)

and

g2(x) =
1

Γ(δ)λδ
[− log(F (x))]δ−1(F (x))(1/λ)−1f(x), (7)

respectively.

In this paper, we develop and present a generalization of the IW distribu-

tion via the family given in equation (3). Zografos and Balakrishnan (2009)

motivated the ZB-G model as follows. Let X(1), X(2), ......, X(n) be lower record
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values from a sequence of independent and identically distributed (i.i.d.) ran-

dom variables from a population with pdf f(x). Then, the pdf of the nth upper

record value is given by equation (3), when λ = 1. A logarithmic transfor-

mation of the parent distribution F transforms the random variable X with

density (3) to a gamma distribution. That is, if X has the density (3), then the

random variable Y = − log[1 − F (X)] has a gamma distribution GAM(δ; 1)

with density k(y; δ) = 1
Γ(δ)

yδ−1e−y, y > 0. The opposite is also true, if Y has a

gamma GAM(δ; 1) distribution, then the random variable X = G−1(1− e−Y )

has a ZB-G distribution (Zografos and Balakrishnan (2009)).

Ristić and Balakrishnan (2011) gave motivations for the new family of

distributions given in equation (7) when λ = 1, that is, for n ∈ N, equation

(7) is the pdf of the nth lower record value of a sequence of independent and

identically distributed (i.i.d.) variables. Ristić and Balakrishnan (2011) used

the exponentiated exponential (EE) distribution with cdf F (x) = (1− e−βx)α,
where α > 0 and β > 0, and λ = 1 in equation (7) to obtained and study

the gamma-exponentiated exponential (GEE) model. See references therein

for additional results on the GEE model. Pinho et al. (2012) presented results

on the gamma-exponentiated Weibull distribution. In this note, we obtain a

useful and natural extension of the IW distribution, which we refer to as the

gamma-generalized inverse Weibull (GGIW) distribution. Note that if λ = 1

and δ = n+ 1, in equation (4), we obtain the cdf and pdf of the upper record

values U given by

GU(u) =
1

n!

∫ − log(1−F (u))

0

yne−ydy, and gU(u) = f(u)[− log(1−F (u))]n/n!,

respectively. Similarly, from equation (7), the pdf of the lower record values is

given by

gL(t) = f(t)[− log(F (t))]n/n!.

In addition to the motivations provided by Zografos and Balakrishnan

(2009), we are also interested in the generalization of the inverse Weibull distri-

bution via the gamma-generator and establishing the relationship between the

distributions in equations (3) and (7), and weighted distributions in general.

Weighted distribution provides a very useful approach to dealing with

model specification and data interpretation problems. Fisher (1934) intro-

duced the concept of weighted distribution, in order to study the effect of
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ascertainment upon estimation of frequencies. Rao (1965) unified concept of

weighted distribution and use it to identify various sampling situations. Cox

(1962) and Zelen (1974) introduced weighted distribution to present length bi-

ased sampling. Patil and Rao (1978) used weighted distribution as stochastic

models in the study of harvesting and predation. The use of weighted distri-

bution to model biased samples in various areas including medicine, ecology,

reliability, and branching processes can be seen in Nanda and Jain (1999),

Gupta and Keating (1985), Oluyede (1999) and in references therein.

Suppose Y is a non-negative random variable with its natural pdf f(y; θ),

where θ is a vector of parameters, then the pdf of the weighted random variable

Y w is given by

fw(y; θ, β) =
w(y, β)f(y; θ)

ω
, (10)

where the weight function w(y, β) is a non-negative function, that may depend

on the vector of parameters β, and 0 < ω = E(w(Y, β)) <∞ is a normalizing

constant. A general class of weight function w(y) is defined as follows

w(y) = ykelyF i(y)F
j
(y). (11)

Setting k = 0; k = j = i = 0; l = i = j = 0; k = l = 0; i → j − 1; j = n − i;

k = l = i = 0 and k = l = j = 0 in this weight function, one at a time, im-

plies probability weighted moments, moment-generating functions, moments,

order statistics, proportional hazards and proportional reversed hazards, re-

spectively, where F (y) = P (Y ≤ y) and F (y) = 1 − F (y). If w(y) = y, then

Y ∗ = Y w is called the size-biased version of Y .

This paper is organized as follows. In section 2, some basic results, the

model, series expansion, sub-models, hazard and reverse hazard functions are

presented. Moments and moment generating function are given in section 3.

Section 4 contains some additional and useful results on Rényi entropy, the dis-

tribution of order statistics, moments of the order statistics and L-moments.

In section 5, results on the estimation of the parameters of the GGIW distri-

bution via the method of maximum likelihood are presented. Applications are

given in section 6, followed by concluding remarks.
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2 GGIW Distribution, Series Expansion and

Sub-models

In this section, the GGIW distribution, density expansion and some of the

sub-models are presented. First, we consider the generalized or exponentiated

inverse Weibull (GIW or EIW) distribution given by

F
GIW

(x; η, β) = (exp[−(αx)−β])θ = exp[−ηx−β], x ≥ 0, α > 0, β > 0, θ > 0,

(12)

where η = θα−β. By inserting the GIW distribution in equation (3), we obtain

the cdf of the GGIW distribution as follows

GGGIW (x) =
1

Γ(δ)λδ

∫ − log[1−e−ηx−β
]

0

tδ−1e−t/λdt =
γ(−λ−1 log(1− e−ηx

−β
), δ)

Γ(δ)
,

(13)

where x > 0, η > 0, β > 0, λ > 0, δ > 0, and γ(x, δ) =
∫ x

0
tδ−1e−tdt is the

lower incomplete gamma function. The GGIW quantile function is obtained

by solving the equation

G(QG(y)) = y, 0 < y < 1. (14)

The quantile function is

QG(y) = η−1/β

[
− log

(
1− exp(−λγ−1(Γ(δ)y, δ))

)]1/β

. (15)

The GGIW pdf is given by

g
GGIW

(x) =
ηβx−β−1e−ηx

−β

Γ(δ)λδ

× [− log(1− e−ηx
−β

)]δ−1[1− e−ηx
−β

](1/λ)−1. (16)

If a random variableX has the GGIW density, we writeX ∼ GGIW (η, β, λ, δ).

2.1 Expansion of GGIW Density Function

In this subsection, a series expansion of the GGIW density function is pre-

sented. Let y = exp[−ηx−β], and ψ = 1/λ, then using the series representation
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− log(1− y) =
∑∞

i=0
yi+1

i+1
, we have[

− log(1− y)

]δ−1

= yδ−1

[ ∞∑
m=1

(
δ − 1

m

)
ym

( ∞∑
s=0

ys

s+ 2

)m]
,

and applying the result on power series raised to a positive integer, with as =

(s+ 2)−1, that is, ( ∞∑
s=0

asy
s

)m

=
∞∑
s=0

bs,my
s, (18)

where bs,m = (sa0)
−1

∑s
l=1[m(l + 1) − s]albs−l,m, and b0,m = am0 , (Gradshteyn

and Ryzhik (2000)), the GGIW pdf can be written as

g
GGIW

(x) =
ηβx−β−1

Γ(δ)λδ
yδ

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,my

m+s

∞∑
k=0

(
ψ − 1

k

)
(−1)kyk

=
ηβx−β−1

Γ(δ)λδ

∞∑
m=0

∞∑
s,k=0

(
δ − 1

m

)(
ψ − 1

k

)
(−1)kbs,my

δ+m+s+k

=
1

Γ(δ)λδ

∞∑
m=0

∞∑
s,k=0

(
δ − 1

m

)(
ψ − 1

k

)
(−1)kbs,m

× ηβx−β−1e−η(δ+m+s+k)x−β

=
1

Γ(δ)λδ

∞∑
m=0

∞∑
s,k=0

(
δ − 1

m

)(
ψ − 1

k

)
(−1)k

bs,m
δ +m+ s+ k

× η(δ +m+ s+ k)βx−β−1e−η(δ+m+s+k)x−β

,

where f(x; β, η(δ + m + s + k)) is the generalized inverse Weibull pdf with

parameters η(δ + m + s + k), and β. Let C = {(m, s, k) ∈ Z3
+}, then the

weights in the GGIW pdf above are

wν =
ψδ

Γ(δ)
(−1)k

(
δ − 1

m

)(
ψ − 1

k

)
bm,s

δ +m+ s+ k
,

and the GGIW pdf can be written as

g
GGIW

(x) =
∑
ν∈C

wνf(x; β, η(δ +m+ s+ k)). (19)

It follows therefore that the GGIW density is a linear combination of the

generalized or exponentiated inverse Weibull densities. The statistical and

mathematical properties can be readily obtained from those of the generalized
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inverse Weibull distribution. For the convergence of equation (19), as well

elsewhere in this paper including moments and Rényi entropy, note that for

δ > 0,

[− log(1− y)]δ−1 =

[
y

(
1 + y

∞∑
s=0

ys

s+ 2

)]δ−1

= yδ−1

∞∑
k=0

(
δ − 1

k

)
yk

( ∞∑
s=0

ys

s+ 2

)k

,

so that [
1 + y

∞∑
k=0

yk

k + 2

]δ−1

=
∞∑
k=0

(
δ − 1

k

)
yk

( ∞∑
s=0

ys

s+ 2

)k

is convergent if and only if 0 <

(
y

∑∞
k=0

yk

k+2

)k

< 1 ∀y ∈ (0, 1), since 0 < y =

e−ηx
−β
< 1, x > 0, η, β > 0. Now, y

∑∞
k=0

yk

k+2
= − log(1−y)

y
− 1, so we must have

0 < − log(1−y)
y

− 1 < 1. This leads to 1− y > exp(−2y), and on the other hand

exp(−y) =
∑∞

k=0
(−1)kyk

k!
> 1 − y. Thus, we have the system of inequalities

1− y > exp(−2y) and exp(−y) > 1− y, which is satisfied ∀y ∈ (0, 0.7968).

Note that g
GGIW

(x) is a weighted pdf with weight function

w(x) = [− log(1− F
GIW

(x))]δ−1[1− F
GIW

(x)]
1
λ
−1,

that is,

g
GGIW

(x) =
[− log(1− F

GIW
(x))]δ−1[1− F

GIW
(x)]

1
λ
−1

λδΓ(δ)
f

GIW
(x)

=
w(x)f

GIW
(x)

EF
GIW

(w(X))
,

where 0 < EF
GIW

{[− log(1− F
GIW

(x))]δ−1[1− F
GIW

(x)]
1
λ
−1} = λδΓ(δ) <∞, is

the normalizing constant. Similarly,

g2(x) =
[− log(F

GIW
(X))]δ−1[F

GIW
(X)]

1
λ
−1

λδΓ(δ)
f

GIW
(x) =

w(x)f
GIW

(x)

EF
GIW

(w(X))
,

where 0 < EF
GIW

(w(X)) = EF
GIW

([− log(F
GIW

(X))]δ−1[F
GIW

(X)]
1
λ
−1) = λδΓ(δ) <

∞.

The graphs in Figure 1 are asymmetric and right skewed. For some com-

binations of the GGIW model parameter values the graph of the pdf can be

L-shaped.
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Figure 1: Plots of GGIW pdf for selected values of the parameters

2.2 Some Sub-models of the GGIW Distribution

Some of the sub-models of the GGIW distribution are listed below.

• If λ = 1, we obtain the gamma-generalized inverse Weibull distribution

via the ZB-G (ZBIW) distribution. Also, with λ = β = 1, we have

the ZB-inverse exponential (ZBIE) distribution. Similarly, if λ = 1, and

β = 2, we obtain the ZB-inverse Rayleigh (ZBIR) distribution.

• If η = 1, we get the gamma-generalized Fréchet (GGF) distribution.

• When β = 1, we have the gamma-generalized inverse exponential (GGIE)

distribution.

• If β = 2, we obtain the gamma-generalized inverse Rayleigh (GGIR)

distribution.

• When δ = λ = 1, we have the inverse Weibull (IW) distribution.

• If β = 2, and δ = λ = 1, we obtain the inverse Rayleigh (IR) distribution.

• When δ = β = λ = 1, we get the Inverse exponential (IE) distribution.

• When η = δ = λ = 1, we obtain Fréchet (F) distribution.
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2.3 Hazard and Reverse Hazard Functions

Let X be a continuous random variable with cdf F, and pdf f, then the haz-

ard function, reverse hazard function and mean residual life functions are given

by hF (x) = f(x)/F (x), τF (x) = f(x)/F (x), and δF (x) =
∫∞
x
F (u)du/F (x),

respectively. The functions hF (x), δF (x), and F (x) are equivalent (Shaked and

Shanthikumar (1994)). The hazard and reverse hazard functions of the GGIW

distribution are given by

hG(x) =
ηβx−β−1e−ηx

−β
(− log(1− e−ηx

−β
))δ−1[1− e−ηx

−β
]λ
−1−1

λδ(Γ(δ)− γ(−λ−1 log(1− e−ηx−β), δ))
,

and

τG(x) =
ηβx−β−1e−ηx

−β
(− log(1− e−ηx

−β
))δ−1[1− e−ηx

−β
]λ
−1−1

λδ(γ(−λ−1 log(1− e−ηx−β), δ))
,

for x ≥ 0, η > 0, β > 0, λ > 0, δ > 0, respectively. Plots of the GGIW hazard

rate function for selected values of the parameters are give in Figure 2.

Figure 2: Plots of GGIW hazard function for selected values of the parameters

The graphs of the hazard rate function given in Figure 2 for five combina-

tions of the parameter values are unimodal and upside down bathtub shaped.
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3 Moments and Moment Generating Function

In this section, we obtain moments and moment generating function of the

GGIW distribution. Let η∗ = η(δ + m + s + k), and Y ∼ GIW (β, η∗). Note

that from Y ∼ GIW (β, η∗), the jth moment of the random variable Y is

E(Y j) = (η∗)j/βΓ(1− jβ−1), (23)

so that the jth raw moment of GGIW distribution is given by

E(Xj) =
∑
ν∈C

wνE(Y j).

The moment generating function (MGF), for |t| < 1, is given by

MX(t) =
∑
ν∈C

wνMY (t) =
∑
ν∈C

∞∑
i=0

wν
ti

i!
(η∗)i/βΓ(1− iβ−1).

Theorem 3.1.

E{[− log(1− F
GIW

(X))]r[(1− F
GIW

(X))s]} =
λrΓ(r + δ)

(sλ+ 1)δΓ(δ)
.

If s = 0,

E[− log(1− F
GIW

(X))r] =
λrΓ(r + δ)

Γ(δ)
,

and similarly, if r = 0,

E[(1− F
GIW

(X))s] = [sλ+ 1]−δ.

Proof:

E{[− log(1− F
GIW

(X))]r[(1− F
GIW

(X))s]} =

∫ ∞

0

[− log(1− F
GIW

(x))]r+δ−1

λδΓ(δ)

× [1− F
GIW

(x)]s+(1/λ)−1f
GIW

(x)dx

=
λrΓ(r + δ)

(sλ+ 1)δΓ(δ)
.

If s = 0, we have

E[− log(1− F
GIW

(X))r] =

∫ ∞

0

1

λδΓ(δ)
[− log(1− F

GIW
(x))]r+δ−1

× [1− F
GIW

(x)](1/λ)−1f
GIW

(x)dx

=
λr+δΓ(r + δ)

λδΓ(δ)

∫ ∞

0

f
GIW

(x)

λr+δΓ(r + δ)

× [− log(1− F
GIW

(x))]r+δ−1[1− F
GIW

(x)](1/λ)−1dx

=
λr+δΓ(r + δ)

λδΓ(δ)
.
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Let λ∗ = s+ 1
λ
, then with r = 0, we obtain

E[(1− F
GIW

(X))s] =

∫ ∞

0

1

λδΓ(δ)
[− log(1− F

GIW
(x))]δ−1

× [1− F
GIW

(x)]s+(1/λ)−1f
GIW

(x)dx

=

∫ ∞

0

(λ∗)δ

Γ(δ)
[− log(1− F

GIW
(x))]δ−1

×
(

1

λλ∗

)δ

[1− F
GIW

(x)]λ
∗−1f

GIW
(x)dx

= [sλ+ 1]−δ.

4 Rényi Entropy and Order Statistics

Order Statistics play an important role in probability and statistics. The

concept of entropy plays a vital role in information theory. Entropy of a

random variable is defined in terms of its probability distribution and is a

good measure of randomness or uncertainty. In this section, we present Rényi

entropy, the distribution of the order statistics and L-moments for the GGIW

distribution.

4.1 Rényi Entropy

Rényi entropy is an extension of Shannon entropy. Rényi entropy of the

GGIW distribution is defined to be

IR(v) =
1

1− v
log

(∫ ∞

0

[g
GGIW

(x; η, β, λ, δ)]vdx

)
, v 6= 1, v > 0.

Rényi entropy tends to Shannon entropy as v → 1. Note that∫ ∞

0

gv
GGIW

(x)dx =

(
ηβ

λδΓ(δ)

)v ∫ ∞

0

x−vβ−ve−vηx
−β

[1− e−ηx
−β

]
v
λ
−1

× [− log(1− e−ηx
−β

)]vδ−vdx.
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Let y = e−ηx
−β
, then using the same results as in section 2, we have for δ > 1,

and v/λ a natural number,∫ ∞

0

gv
GGIW

(x)dx =

(
ηβ

λδΓ(δ)

)v ∞∑
m=1

∞∑
s,k=0

(−1)k
(
vδ − v

m

)(
(v/λ)− 1

k

)
bs,m

×
∫ ∞

0

x−vβ−ve−η(vδ+m+s+k)x−β

dx

=
ηvβv−1Γ(v + 1

β
(v − 1))

(λδΓ(δ))v
·
∞∑
m=0

∞∑
s,k=0

(−1)k
(
vδ − v

m

)(
( v
λ
)− 1

k

)
× bs,m[η(vδ +m+ s+ k)]

1
β

(1−v)−v.

Consequently, Rényi entropy of the GGIW distribution is given by

IR(v) =

(
1

1− v

)
log

[
ηvβv−1Γ(v + 1

β
(v − 1))

(λδΓ(δ))v

×
∞∑
m=0

∞∑
s,k=0

(−1)k
(
vδ − v

m

)(
( v
λ
)− 1

k

)
× bs,m[η(vδ +m+ s+ k)]

1
β

(1−v)−v
]
,

for v > 0, v 6= 1.

4.2 Order Statistics

The distribution of the ith order statistic and the jth moment of the dis-

tribution of the ith order statistic from the GGIW distribution are presented

in this subsection. Moments of order statistics are often used in several areas

including reliability, engineering, biometry, insurance and quality control for

the prediction of future failures times from a set of past or previous failures.

L−moments (Hoskings (1990)) are expectations of some linear combinations

of order statistics and they exist whenever the mean of the distribution exits,

even when some higher moments may not exist are particularly important in

probability and statistics.

Let X1, X2, ...., Xn be independent and identically distributed GGIW ran-

dom variables. We apply the general binomial series expansion, that is,

[1−G(x)]n−i =
n−i∑
j=0

(−1)j
(
n− i

j

)
[G(x)]i+j−1
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and the result on power series raised to a positive inter used in section 2 to

obtain the pdf of the ith order statistic from the GGIW distribution. The pdf

of the ith order statistic from the GGIW pdf g
GGIW

(x) = g(x) is given by

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!
[G(x)]i−1[1−G(x)]n−i

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)
[G(x)]i+j−1

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)

×
[
γ(−λ−1 log(1− F (x), δ))

Γ(δ)

]i+j−1

.

Using the fact that γ(x, δ) =
∑∞

m=0
(−1)mxm+δ

(m+δ)m!
, and setting cm = (−1)m/((m+

δ)m!), the pdf of the ith order statistic from the GGIW distribution can be

written as follows

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)
(−1)j

[Γ(δ)]i+j−1

× [−λ−1 log(F (x))]δ(i+j−1)

×
[ ∞∑
m=0

(−1)m(−λ−1 log(F (x)))m

(m+ δ)m!

]i+j−1

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
× (−1)j

[Γ(δ)]i+j−1
[−λ−1 log(F (x))]δ(i+j−1)

×
∞∑
m=0

dm,i+j−1(−λ−1 log(F (x)))m,

where d0 = c
(i+j−1)
0 , dm,i+j−1 = (mc0)

−1
∑m

l=1[(i+ j − 1)l −m+ l]cldm−l,i+j−1.
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It follows therefore that

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1

[Γ(δ)]i+j−1

× [−λ−1 log(F (x))]δ(i+j−1)+m

=
n![− log(F (x))]δ−1[F (x)]ψ−1f(x)

(i− 1)!(n− i)!Γ(δ)λδ

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1

[Γ(δ)]i+j−1

× [−λ−1 log(F (x))]δ(i+j−1)+m

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1

[Γ(δ)]i+j

× [− log(F (x))]δ(i+j−1)+m+δ−1[F (x)]ψ−1f(x)

λi+j
.

=
n!

(i− 1)!(n− 1)!Γ(δ)λ

i−1∑
j=0

∞∑
m=0

(
i− 1

j

)
(−1)jdm,n−i+j
[Γ(δ)]n−i+j+1

× Γ(δ(n− i+ j) +m+ δ)

Γ(δ(n− i+ j) +m+ δ)
[−λ−1 log(F (x))]δ(n−i+j)+m+δ−1[F (x)]ψ−1f(x).

That is, the pdf of the ith order statistic from the GGIW distribution is given

by

gi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,n−i+j

[Γ(δ)]i+j
1

λδ(i+j)+m

× [− log(F (x))]δ(i+j)+m−1[F (x)]ψ−1f(x)

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1Γ(δ(i+ j) +m)

[Γ(δ)]i+j

× [− log(F (x))]δ(i+j)+m−1[F (x)]ψ−1f(x)

Γ(δ(i+ j) +m)λδ(i+j)+m

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1Γ(δ(i+ j) +m)

[Γ(δ)]i+j

× g(x; η, β, λ, δ∗),

where g(x; η, β, λ, δ∗) is the GGIW pdf with parameters η, β, λ, and shape

parameter δ∗ = δ(i + j) + m. It follows therefore that the jth moment of the
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distribution of the ith order statistic from the GGIW distribution is given by

E(Xj
i:n) =

n!

(i− 1)!(n− i)!Γ(δ)

∑
ν∈C

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jwνdm,i+j−1

[Γ(δ)]i+j

× Γ(δ(i+ j) +m)(η∗)j/βΓ(1− jβ−1), (29)

for j < β. These moments are often used in several areas including reliability,

engineering, biometry, insurance and quality control for the prediction of future

failures times from a set of past or previous failures.

4.3 L-moments

L−moments (Hoskings (1990)) are relatively robust to the effects of outliers

and are given by

λk+1 =
1

k + 1

k∑
j=0

(−1)j
(
k

j

)
E(Xk+1−j:k+1), k = 0, 1, 2, ....... (30)

The L−moments of the GGIW distribution can be readily obtained from

equation (29). The first four L−moments are given by λ1 = E(X1:1), λ2 =
1
2
E(X2:2 − X1:2), λ3 = 1

3
E(X3:3 − 2X2:3 + X1:3) and λ4 = 1

4
E(X4:4 − 3X3:4 +

3X2:4 −X1:4), respectively.

5 Maximum Likelihood Estimation

Let x1, x2, ......, xn be a random sample from the GGIW distribution and

Θ = (η, β, λ, δ) the vector of model parameters. The likelihood function is

given by

L(η, β, λ, δ) =
(ηβ)n

[λδΓ(δ)]n
e−η

∑n
i=1 x

−β
i

n∏
i=1

{
x−β−1
i

×
[
− log

(
1− e−ηx

−β
i

)]δ−1[
1− e−ηx

−β
i

](1/λ)−1}
. (31)
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Now, the log-likelihood function denoted by ` is given by

` = log[L(η, β, λ, δ)]

= n log(η) + n log(β)− n log(Γ(δ))− nδ log(λ) + (−β − 1)
n∑
i=1

log(xi)

− η

n∑
i=1

x−βi + (δ − 1)
n∑
i=1

log

[
− log

(
1− e−ηx

−β
i

)]
+

(
1

λ
− 1

) n∑
i=1

log

(
1− e−ηx

−β
i

)
. (32)

The entries of the score function are given by

∂`

∂β
=

n

β
−

n∑
i=1

log(xi) + η
n∑
i=1

x−βi log(xi)

− (δ − 1)
n∑
i=1

ηx−βi e−ηx
−β
i log(xi)

(1− e−ηx
−β
i ) log(1− e−ηx

−β
i )

−
(

1

λ
− 1

) n∑
i=1

ηx−βi e−ηx
−β
i log(xi)

(1− e−ηx
−β
i )

,

∂`

∂η
=

n

η
−

n∑
i=1

x−βi + (δ − 1)
n∑
i=1

x−βi e−ηx
−β
i

(1− e−ηx
−β
i ) log(1− e−ηx

−β
i )

+

(
1

λ
− 1

) n∑
i=1

x−βi e−ηx
−β
i

(1− e−ηx
−β
i )

,

∂`

∂δ
= −nΓ′(δ)

Γ(δ)
− n log(λ) +

n∑
i=1

log

(
− log

(
1− e−ηx

−β
i

))
,

and
∂`

∂λ
= −nδ

λ
− 1

λ2

n∑
i=1

log

(
1− e−ηx

−β
i

)
,

respectively. The equations obtained by setting the above partial derivatives

to zero are not in closed form and the values of the parameters η, β, λ and δ

must be found by using iterative methods. The maximum likelihood estimates

of the parameters, denoted by Θ̂ is obtained by solving the nonlinear equa-

tion ( ∂`
∂η
, ∂`
∂β
, ∂`
∂λ
, ∂`
∂δ

)T = 0, using a numerical method such as Newton-Raphson

procedure. The Fisher information matrix (FIM) given by I(Θ) = [Iθi,θj
]4X4 =
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E(− ∂2`
∂θi∂θj

), i, j = 1, 2, 3, 4, can be numerically obtained by MATHLAB or R

software. The total Fisher information matrix nI(Θ) can be approximated by

Jn(Θ̂) ≈
[
− ∂2`

∂θi∂θj

∣∣∣∣
Θ=Θ̂

]
4X4

, i, j = 1, 2, 3, 4. (35)

For a given set of observations, the matrix given in equation (35) is obtained

after the convergence of the Newton-Raphson procedure in MATLAB or R

software. Elements of the observed information matrix are given in the Ap-

pendix.

The expectations in the Fisher Information Matrix (FIM) can be obtained

numerically. Let Θ̂ = (η̂, β̂, λ̂, δ̂) be the maximum likelihood estimate of

Θ = (η, β, λ, δ). Under the usual regularity conditions and that the param-

eters are in the interior of the parameter space, but not on the boundary, we

have:
√
n(Θ̂−Θ)

d−→ N4(0, I
−1(Θ)), where I(Θ) is the expected Fisher infor-

mation matrix. The asymptotic behavior is still valid if I(Θ) is replaced by the

observed information matrix evaluated at Θ̂, that is J(Θ̂). The multivariate

normal distribution N4(0, J(Θ̂)−1), where the mean vector 0 = (0, 0, 0, 0)T ,

can be used to construct confidence intervals and confidence regions for the

individual model parameters and for the survival and hazard rate functions.

A large sample 100(1− α)% confidence intervals for η, β, λ, and δ are:

η̂ ± Zα
2

√
I−1
ηη (Θ̂), β̂ ± Zα

2

√
I−1
ββ (Θ̂), λ̂± Zα

2

√
I−1
λλ (Θ̂), δ̂ ± Zα

2

√
I−1
δδ (Θ̂),

respectively, where I−1
ηη (Θ̂), I−1

ββ (Θ̂), I−1
λλ (Θ̂), and I−1

δδ (Θ̂) are the diagonal el-

ements of I−1
n (Θ̂), and Zα

2
is the upper η

2
th percentile of a standard normal

distribution.

The maximum likelihood estimates (MLEs) of the GGIW parameters η,

β, λ, and δ are computed by maximizing the objective function via the sub-

routine NLMIXED in SAS. The estimated values of the parameters (standard

error in parenthesis), -2log-likelihood statistic, Akaike Information Criterion,

AIC = 2p− 2 ln(L), Bayesian Information Criterion, BIC = p ln(n)− 2 ln(L),

and Consistent Akaike Information Criterion, AICC = AIC + 2 p(p+1)
n−p−1

, where

L = L(Θ̂) is the value of the likelihood function evaluated at the parameter

estimates, n is the number of observations, and p is the number of estimated

parameters are presented in Tables 1, 2, and 3. The values of the Kolmogorov-

Smirnov statistic, KS = max1≤i≤n{G(xi)− i−1
n
, i
n
−G(xi)} are also presented
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in Tables 1, 2, and 3. The GGIW distribution is fitted to the datasets and

compared to the fits for the GGIE, GIW, IW and ZBIE distributions.

We can use the likelihood ratio (LR) test to compare the fit of the GGIW

distribution with its sub-models for a given dataset. For example, to test

λ = δ = 1, the LR statistic is ω = 2[ln(L(η̂, β̂, λ̂, δ̂))− ln(L(η̃, β̃, 1, 1))], where

η̂, β̂, λ̂, and δ̂, are the unrestricted estimates, and η̃, and β̃ are the restricted

estimates. The LR test rejects the null hypothesis if ω > χ2
ε
, where χ2

ε
denote

the upper 100ε% point of the χ2 distribution with 2 degrees of freedom.

6 Applications

In this section, we present examples to illustrate the flexibility of the GGIW

distribution and its sub-models for data modeling. Estimates of the parameters

of GGIW distribution (standard error in parentheses), Akaike Information

Criterion (AIC), Consistent Akaike Information Criterion (AICC), Bayesian

Information Criterion (BIC), and Kolmogorov-Smirnov statistic (KS) are given

in Tables 1, 2, and 3. Plots of the fitted densities and the histogram of the data

are given in Figures 3, 4 and 5. Probability plots (Chambers et al. (1983))

are also presented in Figures 3, 4 and 5. For the probability plot, we plotted

G
GGIW

(x(j); η̂, β̂, λ̂, δ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the

ordered values of the observed data. We also computed a measure of closeness

of each plot to the diagonal line. This measure of closeness is given by the sum

of squares

SS =
n∑
j=1

[
G

GGIW
(x(j); η̂, β̂, λ̂, δ̂)−

(
j − 0.375

n+ 0.25

)]2

.

6.1 Guinea Pig Survival Times Data

The first dataset from Bjerkedal (1960) represents the survival time, in

days, of guinea pigs injected with different doses of tubercle bacilli. It is

known that guinea pigs have high susceptibility of human tuberculosis. The

dataset consists of 72 observations.
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Table 1: Estimates of Models for Bjerkedal Data

Estimates Statistics

Model η β λ δ −2 log L AIC AICC BIC KS SS

GGIW(η, β, λ, δ) 6.7266 0.3096 0.03433 5.8272 780.5 788.5 789.1 797.6 0.1944 0.7453

(32.6026) (0.7888) (0.1637) (41.1586)

GGIE(η, 1, λ, δ) 0.05157 1 0.06965 104.94 780.6 786.6 787.0 793.5 0.0972 0.1771

(0.3388) (0.06418) (190.19)

GIW(η, β, 1, 1) 283.84 1.4148 1 1 791.3 795.3 795.5 799.9 0.3333 3.0557

(125.63) (0.1173)

IE(η, 1, 1, 1) 60.0975 1 1 1 805.3 807.3 807.4 809.6 0.4444 6.2891

(7.0826)

ZBIE(η, 1, 1, δ) 230.68 1 1 0.279 797 801 801.2 805.6 0.625 13.0313

(130.53) (0.1622)

Figure 3: Fitted Densities and Probability Plots for Bjerkedal (pigs) Data

For the Bjerkedal data, the likelihood ratio (LR) test statistic indicates that

there is no significant difference between the GGIE and GGIW distributions.

There are significant differences between the GGIW and the sub-models GIW,

IE, and ZBIE, respectively, based on the LR tests. The value of the statistics

AIC, AICC, BIC and KS are smaller for GGIE model. The value of SS is

also smaller for this model, so we conclude that the GGIE distribution is a

“superior”fit for this data.
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6.2 Price of Cars Data

This example consists of price of 428 new vehicles for the 2004 year. The

data was published in the Kiplinger’s Personal Finance magazine, December

2003. See Huang and Oluyede (2016) for additional details.

Table 2: Estimates of Models for Car Prices Data

Estimates Statistics

Model η β λ δ −2 log L AIC AICC BIC KS SS

GGIW(η, β, λ, δ) 0.001651 6.7706 0.8001 16.9713 1488 1496 1496.1 1512.3 0.0701 0.7962

(0.1277) (1.0087) (0.6555) (22.3023)

GGIE(η, 1, λ, δ) 1.5848 1 0.1511 5.8679 1488 1494.9 1494.9 1507 0.1215 2.6045

(2.0889) (0.5504) (8.4821)

GIW(η, β, 1, 1) 6.7735 2.3166 1 1 1506.5 1510.5 1510.5 1518.6 0.2477 14.2982

(0.4850) (0.08417)

IE(η, 1, 1, 1) 2.5838 1 1 1 1856.8 1858.8 1858.9 1862.9 0.5584 55.7895

(0.1249)

ZBIE(η, 1, 1, δ) 8.6363 1 1 0.3176 1789.1 1793.1 1793.2 1801.3 0.715 96.3835

(1.419) (0.05316)

Figure 4: Fitted Densities and Probability Plots for Car Prices Data

The LR test of H0 : GGIE against Ha : GGIW shows that there is no

significant difference between these two models. However, there are significant

differences between the GGIW and the sub-models GIW, IE, and ZBIE,



22 Gamma-Generalized Inverse Weibull Distribution

respectively, based on the LR tests. However, the values of KS statistic and

SS from Table 2 supports the GGIW distribution as a “better”or “superior”fit

for the car prices data when compared to the nested models.

6.3 Fatigue Failure Times of Ball Bearing Data

In this example, we consider a real life dataset given by Lawless (1982).

The data represents the fatigue failure times of ball bearings: 17.88, 28.92,

33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64,

68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

Table 3: Estimates of Models for Lawless (1982) Ball Bearing Data

Estimates Statistics

Model η β λ δ −2 log L AIC AICC BIC KS SS

GGIW(η, β, λ, δ) 49.0531 7.8745 0.6250 46.0324 227.1 235.1 237.3 239.6 0.1304 0.0261

(140.28) (0.8175) (0.1723) (12.6340)

GGIE(η, 1, λ, δ) 0.2745 1 0.05187 104.98 226.8 232.8 234.0 236.2 0.087 0.0247

(1.6121) (0.05727) (226.71)

GIW(η, β, 1, 1) 1240.49 1.8344 1 1 231.6 235.6 236.2 237.8 0.3478 0.8565

(1231.6) (0.2692)

IE(η, 1, 1, 1) 55.0595 1 1 1 243.5 245.5 245.6 246.6 0.5652 2.7320

(11.4807)

ZBIE(η, 1, 1, δ) 194.37 1 1 0.3013 239.9 243.9 244.5 246.2 0.7391 5.0725

(144.05) (0.2288)

The LR test statistic for the hypothesis H0: GGIE against Ha: GGIW ,

shows that we do not have enough evidence to reject H0 in favor of Ha. There

are significant differences between the GGIW and the sub-models GIW, IE,

and ZBIE, respectively, based on the LR tests. The values of the SS and of the

KS statistic also support the GGIE distribution as a “better”or “superior”fit

for this data.
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Figure 5: Fitted Density and Probability Plots for Lawless Ball Bearing Data

7 Concluding Remarks

A new class of generalized inverse Weibull distribution called the gamma-

generalized inverse Weibull distribution is proposed and studied in details.

The GGIW distribution has the GGIE, GIR, IW, IE, IR, ZBGIW, ZBGIE,

ZBGIR and Fréchet distributions as special cases. The density of this new

class of distributions can be expressed as a linear combination of GIW density

functions. The GGIW distribution possesses hazard function with flexible be-

havior. We also obtain closed form expressions for the moments, distribution of

order statistics and Rényi entropy. Maximum likelihood estimation technique

was used to estimate the model parameters. Finally, the GGIW distribution

and some of its sub-models are fitted to real datasets in order to illustrate the

applicability and usefulness of this new distribution.
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Appendix

Elements of the observed information matrix of the GGIW distribution can be

readily obtained from the second and mixed partial derivatives of ln g
GGIW

(x; η, β, λ, δ)

given by:

∂2 ln g
GGIW

(x; η, β, λ, δ)

∂η2
= −

e−2ηx−β (
1
λ
− 1

)
x−2β(

1− e−ηx−β
)2 −

e−ηx
−β (

1
λ
− 1

)
x−2β

1− e−ηx−β

− 1

η2
− (δ − 1)e−2ηx−β

x−2β(
1− e−ηx−β

)2
ln2

(
1− e−ηx−β

)
− (δ − 1)e−2ηx−β

x−2β(
1− e−ηx−β

)2
ln

(
1− e−ηx−β

)
− (δ − 1)e−ηx

−β
x−2β(

1− e−ηx−β
)
ln

(
1− e−ηx−β

) ,
∂2 ln g

GGIW
(x; η, β, λ, δ)

∂η∂β
= x−β ln(x)−

η
(

1
λ
− 1

)
e−2ηx−β

x−2β ln(x)(
1− e−ηx−β

)2

+
η

(
1
λ
− 1

)
e−ηx

−β
x−2β ln(x)

1− e−ηx−β

−
(

1
λ
− 1

)
e−ηx

−β
x−β ln(x)

1− e−ηx−β

+
η(δ − 1)e−2ηx−β

x−2β ln(x)(
1− e−ηx−β

)2
ln2

(
1− e−ηx−β

)
− η(δ − 1)e−2ηx−β

x−2β ln(x)(
1− e−ηx−β

)2
ln

(
1− e−ηx−β

)
+

η(δ − 1)e−ηx
−β
x−2β ln(x)(

1− e−ηx−β
)
ln

(
1− e−ηx−β

)
− (δ − 1)e−ηx

−β
x−β ln(x)(

1− e−ηx−β
)
ln

(
1− e−ηx−β

) ,
∂2 ln g

GGIW
(x; η, β, λ, δ)

∂η∂λ
=

e−ηx
−β
x−β

λ2
(
1− e−ηx−β

) ,
∂2 ln g

GGIW
(x; η, β, λ, δ)

∂η∂δ
=

e−ηx
−β
x−β(

1− e−ηx−β
)
ln

(
1− e−ηx−β

) ,
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∂2 ln g
GGIW

(x; η, β, λ, δ)

∂β2
= − 1

β2
−
η2

(
1
λ
− 1

)
e−2ηx−β

x−2β ln2(x)(
1− e−ηx−β

)2

−
η2

(
1
λ
− 1

)
e−ηx

−β
x−2β ln2(x)

1− e−ηx−β

−ηx−β ln2(x) +

(
1
λ
− 1

)
e−ηx

−β
x−β ln2(x)

1− e−ηx−β

− η2(δ − 1)e−2ηx−β
x−2β ln2(x)(

1− e−ηx−β
)2

ln2
(
1− e−ηx−β

)
− η2(δ − 1)e−2ηx−β

x−2β ln2(x)(
1− e−ηx−β

)2
ln

(
1− e−ηx−β

)
− η2(δ − 1)e−ηx

−β
x−2β ln2(x)(

1− e−ηx−β
)
ln

(
1− e−ηx−β

)
+

(δ − 1)e−ηx
−β
x−β ln2(x)(

1− e−ηx−β
)
ln

(
1− e−ηx−β

) ,
∂2 ln g

GGIW
(x; η, β, λ, δ)

∂β∂λ
=

ηe−ηx
−β
x−β ln(x)

λ2
(
1− e−ηx−β

) ,
∂2 ln g

GGIW
(x; η, β, λ, δ)

∂β∂δ
= − ηe−ηx

−β
x−β ln(x)(

1− e−ηx−β
)
ln

(
1− e−ηx−β

) ,

∂2 ln g
GGIW

(x; η, β, λ, δ)

∂λ2
=

δ

λ2
+

2 ln
(
1− e−ηx

−β
)

λ3
,

∂2 ln g
GGIW

(x; η, β, λ, δ)

∂λ∂δ
= −1

λ
,

and

∂2 ln g
GGIW

(x; η, β, λ, δ)

∂δ2
= −Ψ′(δ).
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