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Abstract

The unit commitment problem is a typical scheduling problem in

an electric power system. The problem is determining the schedules

for power generating units and the generating level of each unit. The

decisions concern which units to commit during each time period and at

what level to generate power to meet the electricity demand. In this pa-

per we develop a stochastic programming model which incorporates the

uncertainties of electric power demand. It is assumed that demand un-

certainty can be represented by a scenario tree. We propose a stochastic

integer programming model in which the objective is to minimize ex-

pected cost. In this model, on/off decisions for each generator are made

at the first stage. The approach to solving the problem is based on

Lagrangian relaxation and dynamic programming.
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1 Introduction

Electric power utilities have to maintain sufficient capacity to meet electric-

ity demand during peak load periods. The economic operation and planning

of electric power generation occupy an important position in the electric power

industry. Wood and Wollenberg [11] offered a brief overview and applied many

operations research methods to real electric power problems. The unit com-

mitment problem is determining the schedules for power generating units and

the generating level of each unit. The decisions concern which units to com-

mit during each time period, and at what level to generate power to meet the

electricity demand. The objective is to minimize the operational cost. This is

the sum of the fuel and the start-up costs. The problem is a typical scheduling

problem in an electric power system.

Many types of optimization technique have been applied to the unit com-

mitment problem. Among many approaches, the Lagrangian relaxation tech-

nique seems to be the most promising because it decomposes the original prob-

lem into smaller subproblems. Muckstadt and Koenig [6] used this approach by

relaxing the demand constraints. Bard [1] used the Lagrangian relaxation to

disaggregate the problem into subproblems that were then solved by dynamic

programming.

In these studies, the electricity demand at any period is known in advance.

For many actual problems, however, such an assumption is often unjustified.

These data contain uncertainty and are represented as random variables since

the data represent information about the future. Stochastic programming

(Birge [3], Birge and Louveaux [4], Shiina [8]) is a method for an optimization

problem under uncertainty. Takriti, Birge and Long [10] is the first paper that

deals with the stochastic programming approach. They extended a technique

used in the traditional deterministic unit commitment problem. The uncer-

tainty in demand is modeled by introducing a set of scenarios. The problem

is decomposed and solved using a Lagrangian relaxation type method, called

a progressive hedging algorithm (Rockafellar and Wets [7]). Shiina and Birge

[9] proposed another algorithm, based on the Dantzig-Wolfe decomposition

(Dantzig-Wolfe [5]) and the column generation approach (Barnhart et al. [2]),

to solve the stochastic unit commitment problem.

In this paper we develop a new stochastic programming model in which
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demand uncertainty is incorporated. In our model, switching decisions for

generators are made at the first stage since some types of generators such as

coal fired units involve time delay before the generators become available. It is

assumed that demand uncertainty can be represented by a scenario tree. We

propose a stochastic integer programming model in which the objective is to

minimize expected cost. This problem is formulated as a multi-stage stochas-

tic quadratic integer programming problem because the fuel cost function is

assumed to be a convex quadratic function. The solution approach is based on

Lagrangian relaxation method and dynamic programming. The problem is de-

composed into subproblems of single units. The feasible schedule is obtained

by solving dynamic programming on a scenario tree. To refine the solution

obtained by dynamic programming, we solve an economic dispatch problem in

which the equality demand constraint is relaxed to the inequality constraint

with upper and lower limit. To solve this problem we develop an algorithm

which combines the lambda iteration method and golden section.

2 Uncertainty in Electricity Demand

We assume the duration of the planning horizon in T periods. Since the

electricity demand at any point in a period may be uncertain, we have to model

the unit commitment problem as a stochastic programming problem.

To model uncertainty, we define the total demand for electricity during

period t as a random variable d̃t(≥ 0). It is assumed that d̃t is defined on

a known probability space and has a finite discrete distribution. Let dt be

realization of random variable d̃t. A sequence of the realization of electricity

demand (d1, . . . , dT ) is called scenario. It is assumed that we have a set of

S scenarios. We use a superscript s to denote an index of scenario s. We

associate a probability ps with each scenario ds = (ds1, . . . , d
s
T ), s = 1, . . . , S.

The scenarios are described using a scenario tree as shown in Figure 1. Four

scenarios are represented by the scenario tree in Figure 1. The scenario tree

divides into branches corresponding to different realizations of random vari-

ables d̃t. Scenario 1 and 2 have the same total demand for t = 1. They follow

the same first branch. Then they divide separately for t = 2, since d12 is not

equal to d22.
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Figure 1: Scenario tree

If two scenarios ds1 , ds2 , (s1 6= s2) satisfy the following conditions (d
s1
1 , . . . , ds1t ) =

(ds21 , . . . , ds2t ), for a period t, they are indistinguishable up to period t. The

decisions made for scenario ds1 up to period t must be the same as those made

for ds2 up to period t. These two scenarios are said to be included in the same

bundle at period t. The set of indices for the scenarios {1, . . . , S} at each pe-

riod can be partitioned into disjoint subsets which represent scenario bundles.

We define B(s, t) to be the bundle in which scenario s is a member at period

t.

If B(s′, t) = B(s, t) and B(s′, t+1) 6= B(s, t+1), s′ < s, the period t+1 is a

point when scenario s splits from the other scenario s′. The scenario s′ is called

a predecessor of scenario s. If there are multiple predecessors for s, we define

the scenario with the lowest index as the predecessor of s. The predecessor of

scenario s is denoted by Pred(s). The period τ(s) is defined as the first period

in which a scenario s does not share a bundle with another scenario s′ < s.

For scenario 1, we define τ(1) = 1 and Pred(1) = 1.

3 Stochastic Unit Commitment Problem

We assume that there are I generating units. In determining an optimal
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unit commitment schedule, there are two types of decision variables, denoted

by uit and xs
it. The status of unit i at period t is represented by the 0-1

variable uit. Unit i is on at time period t, if uit = 1, and off if uit = 0. The

power generating level of the unit i at period t under scenario s is represented

by xs
it(≥ 0). The sum of the levels of generation must be greater than the

demand.

I
∑

i=1

xs
it ≥ dst , t = 1, . . . , T, s = 1, . . . , S (1)

Rapid changes of temperature are not allowed for thermal units. When unit i

is switched on, it must continue to run for at least a certain period Li. These

minimum up-time constraints are described in (2).

uit − ui,t−1 ≤ uiv, v = t+ 1, . . . ,min{t+ Li − 1, T}, t = 2, . . . , T (2)

Similarly, when unit i is switched off, it must continue to be off at least li

periods. These constraints are called minimum down-time constraints (3).

ui,t−1 − uit ≤ 1− uiv, v = t+ 1, . . . ,min{t+ li − 1, T}, t = 2, . . . , T (3)

Let [qi, Qi] be an operating range of the generating unit i. That is, xs
it has

to satisfy the following constraints (4).

qiuit ≤ xs
it ≤ Qiuit, i = 1, . . . , I, t = 1, . . . , T, s = 1, . . . , S (4)

For two scenarios which are members of the same bundle, the decision

variables must be the same.

xs1
it = xs2

it , i = 1, . . . , I, t = 1, . . . , T,

∀s1, s2 ∈ {1, . . . , S}, s1 6= s2, B(s1, t) = B(s2, t) (5)

This type of constraint is called a nonanticipativity constraint, or a bundle

constraint.

The fuel cost function fi(x
s
it) is given by a convex quadratic function of

xs
it. This function relates to the output of power generated by unit i and

depends on the consumption of fuel. The fuel cost function is regarded as

convex quadratic, since the incremental fuel cost is a linear increasing function

of xs
it. The start up cost function gi(ui,t−1, uit) satisfies the condition gi(0, 1) >
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0, gi(0, 0) = 0, gi(1, 0) = 0, gi(1, 1) = 0. The mathematical formulation of the

stochastic unit commitment problem is described as follows.

(Stochastic Unit Commitment Problem)

min
S
∑

s=1

ps

T
∑

t=1

I
∑

i=1

{fi(x
s
it)uit + gi(ui,t−1, uit)}

subject to constraints (1), (2), (3), (4), (5)

uit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T

xs
it ≥ 0, i = 1, . . . , I, t = 1, . . . , T, s = 1, . . . , S

The problem results in a large scale stochastic mixed integer nonlinear pro-

gramming problem that combines S deterministic unit commitment problems.

The objective is to minimize the expected cost which is given as the sum of

the fuel cost and the start up cost.

4 Solution Algorithm

4.1 Lagrangian Relaxation

First, we consider solving the stochastic unit commitment problem using

a Lagrangian relaxation approach. Instead of solving the problem directly,

we solve the Lagrangian relaxation which results from relaxing the demand

constraints. Let λs
t(≥ 0) be Lagrange multipliers associated with constraints

(1). The Lagrangian relaxation problem is shown as follows.

(Lagrangian Relaxation Problem)

L(λ) = min
S
∑

s=1

ps

T
∑

t=1

I
∑

i=1

{fi(x
s
it)uit + gi(ui,t−1, uit)} −

S
∑

s=1

T
∑

t=1

λs
t (

I
∑

i=1

xs
it − dst )

subject to constraints(2), (3), (4), (5)

uit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T

xs
it ≥ 0, i = 1, . . . , I, t = 1, . . . , T, s = 1, . . . , S
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This relaxation decomposes the problem into smaller single-generator sub-

problems. The objective function of Lagrangian relaxation problem L(λ) can

be rewritten as follows.

L(λ) = min
I

∑

i=1

T
∑

t=1

S
∑

s=1

[ps{fi(x
s
it)u

s
it} − λs

tx
s
it]

+
I

∑

i=1

T
∑

t=1

gi(ui,t−1, ui,t) +
S
∑

s=1

T
∑

t=1

λs
td

s
t (6)

The last term of objective function (6) is a constant. So the function (6) is

separable in each unit.

The Lagrangian relaxation problem can be solved by calculating dynamic

programming on the scenario tree. First, we solve the following generation

level decision problem to obtain optimal x̂s
it, t = τ(s), . . . , T, s = 1, . . . , S. The

problem is a convex quadratic programming problem which can be solved eas-

ily.

(Generation Level Decision Problem for Unit i at Period t under Scenario s)

min
∑

s
′′∈B(s,t)

ps′′{fi(x
s
it)} − λs

tx
s
it

subject to qi ≤ xs
it ≤ Qi

Let x̂s
it, t = τ(s), . . . , T, s = 1, . . . , S be solutions of the generation level

decision problem. By setting xs
′′

it = x̂s
it, t = 1, . . . , T, ∀s

′′
∈ B(s, t), the scenario

bundle constraints (5) can be satisfied. Then the binary variables uit, t =

1, . . . , T are determined. The calculation of dynamic programming is done by

the following recursive equations. A unit i must be in one of Li + li states.

The first Li states mean that the unit i is on, and the last li states mean that

the unit i is off. Let Ci(t, k) be the optimal cost of unit i under the scenario

s from stage t to the end of the horizon, if unit i is in state k at stage t. The
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recursive equations are defined as shown in (7).

Ci(t, k) =

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
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Ci(t+ 1, k + 1) +
∑

s∈{s′ :τ(s′ )≤t}

(
∑

s
′′∈B(s,t)

ps′′ ){fi(x̂
s
it)} − λs

t x̂
s
it if 1 ≤ k < Li

min



Ci(t+ 1, k) +
∑

s∈{s′ :τ(s′ )≤t}

(
∑

s
′′∈B(s,t)

ps′′ ){fi(x̂
s
it)} − λs

t x̂
s
it,

Ci(t+ 1, k + 1) +
∑

s∈{s′ :τ(s′ )≤t}

(
∑

s
′′∈B(s,t)

ps′′ ){fi(x̂
s
it)} − λs

t x̂
s
it



 if k = Li

Ci(t+ 1, k + 1) if Li < k < Li + li

min{Ci(t+ 1, k), Ci(t+ 1, 1) + gi(0, 1)} if k = Li + li

(7)

These relations are illustrated in Fig. 2. If a generator i has been on for

less than Li at period t, it must be on at period t+ 1. If a generator has been

on for Li or over, there are two possible choices, keeping it on, or switching

it off. In the same way, if a generator has been off for less than li, the only

decision is to remain it off. If a generator has been off for li or more, it is

allowed to keep it off or to switch it on.
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∑
s∈{s

′
:τ(s

′
)≤t}

(
∑

s
′′
∈B(s,t)

p
s
′′ ){fi(x̂s

it)} − λs
t x̂

s
it

Ci(t, 1)

Ci(t, Li)

Ci(t, Li + 1)

Ci(t, Li + li)

Ci(t+ 1, 1)

Ci(t+ 1, Li)

Ci(t+ 1, Li + 1)

Ci(t+ 1, Li + li)

Figure 2: Recursive equation of dynamic programming(Li = li = 2)

In the recursive equation of dynamic programming (7) at period t, the prob-

ability of scenario s (τ(s) ≤ t) is replaced by
∑

s
′′∈B(s,t)ps′′ . This procedure

makes possible an exact calculation of dynamic programming. We define the

optimal uit, i = 1, . . . , I, t = 1, . . . , T obtained from (7) by ûit, i = 1, . . . , I, t =

1, . . . , T . Then we maximize the Lagrangian dual function because the func-

tion is concave.
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(Lagrangian Dual Problem)

max L(λ) =
S
∑

s=1

ps

T
∑

t=1

I
∑

i=1

{fi(x̂
s
it)ûit + gi(ûi,t−1, ûit)} −

S
∑

s=1

T
∑

t=1

λs
t(

I
∑

i=1

x̂s
it − dst)

subject to λ ≥ 0

The optimal objective value of the Lagrangian relaxation problem pro-

vides the lower bound of the original objective value if the solution satisfies

the constraints (1). Then we wish to obtain the largest possible lower bound.

However, the function is not differentiable, so we use the subgradient optimiza-

tion technique. Let λ0 be any initial multiplier. The Lagrangian multipliers

are refined for l = 0, 1, 2, . . . , as shown in (8), where αl denotes a step size at

iteration l.

λl+1 = λl + αlξ
l (8)

A vector ξl is called subgradient of L(λ) at (λl) if inequality (9) holds.

L(λ) ≤ L(λl) + (λ− λl)>ξl (9)

In the Lagrangian dual problem, ξl is given as follows.

ξl = −(
I

∑

i=1

x̂s
it − dst) (10)

The nessesary and sufficient condition for the convergence of the sequence (λl)

to obtain the optimal solution is shown as follows.

αl‖ξ
l‖ → 0 and

∑

l

αl‖ξ
l‖ → 0 (11)

A geometric convergence rate can be achieved if we set αl as (12), where L∗

denotes an optimal value of L(λ).

αl =
L∗ − L(λl)

‖ξl‖2
(12)

But we cannot know the value of L∗ in advance. Instead, we adopt a heuristic

for selecting the step length.

αl =
θl(UB − L(λl))

‖ξl‖2
(13)
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In this expression, UB denotes an upper bound of L(λ) and θl is chosen be-

tween 0 and 2.

4.2 Economic dispatch problem

The optimal solution obtained from solving the Lagrangian relaxation prob-

lem may not give a primal feasible solution. After solving the Lagrangian

relaxation problem by dynamic programming, the set of solutions x̂s
it, ûit, i =

1, . . . , I, s = 1, . . . , S, t = τ(s), . . . , T is obtained. These solutions may vio-

late constraints (1). To modify the level of power generation x̂s
it, we solve the

following economic dispatch problem for s = 1, . . . , S, t = τ(s), . . . , T .

(Economic Dispatch Problem at Period t under Scenario s)

min
I

∑

i=1

fi(x
s
it)ûit

subject to
I

∑

i=1

xs
it ≥ dst

qiûit ≤ xs
it ≤ Qiûit, i = 1, . . . , I

If the constraints qiûit ≤ xs
it ≤ Qiûit, i = 1, . . . , I do not exist, the problem

can be solved by the lambda iteration method (Wood and Wollenberg [11]).

The lambda iteration method, which is based on the method of indeterminate

coefficients, seeks the optimal value of undetermined multipliers using binary

search. We develop a solution method which combines the lambda iteration

method and the golden section. In our approach, the economic power dispatch

problem is reformulated as a parametric optimization problem.

(Parametric Optimization Problem at Period t under Scenario s: P(α))

z(α) = min
I

∑

i=1

fi(x
s
it)ûit

subject to
I

∑

i=1

xs
it = α

qiûit ≤ xs
it ≤ Qiûit, i = 1, . . . , I
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We solve the parametric optimization problem in the following range of pa-

rameter α.

max{
I

∑

i=1

qiûit, d
s
t} ≤ α ≤ min{

I
∑

i=1

Qiûit, d
s
t} (14)

It follows that solving economic dispatch problem is equivalent to find optimal

parameter α in the range of (14). It is necessary to examine in more detail the

property of z(α). For two parameters α1, α2 which satisfies (14), we define x̂s1
it ,

x̂s2
it be the optimal solution of the problem P(α1), P(α2), respectively. It can

be shown that function z(α) is a convex function of α. Since x̂s1
it and x̂s2

it satisfy

the constraints of problem P(α1) and P(α2), the following relations hold for

0 ≤ γ ≤ 1.
I

∑

i=1

{γx̂s1
it + (1− γ)x̂s2

it } = γα1 + (1− γ)α2 (15)

qiûit ≤ γx̂s1
it + (1− γ)x̂s2

it ≤ Qiûit, i = 1, . . . , I (16)

Since the convex combination of x̂s1
it and x̂s2

it , that is γx̂s1
it + (1 − γ)x̂s2

it , is

a feasible solution for problem P(γα1 + (1 − γ)α2), we have the following

inequality which proves the convexity of z(α).

z(γα1 + (1− γ)α2)

≤
I

∑

i=1

fi(γx̂
s1
it + (1− γ)x̂s2

it )ûit − est{
I

∑

i=1

(γx̂s1
it + (1− γ)x̂s2

it )− dst} (17)

≤ γ{

I
∑

i=1

fi(x̂
s1
it )ûit − est (

I
∑

i=1

x̂s1
it − dst)}

+(1− γ){
I

∑

i=1

fi(x̂
s2
it )ûit − est(

I
∑

i=1

x̂s2
it − dst)} (18)

= γz(α1) + (1− γ)z(α2) (19)

The second inequality (18) uses the convexity of fuel cost function f . Therefore,

an optimal parameter α can be obtained using the golden section.

The algorithm to solve economic dispatch problem is shown in Figure 3.

Figure 4 illustrates how the golden section works.

In step 3 of the algorithm shown in Figure 3, parametric optimization

problem P(α) for fixed α is solved. The lambda iteration method is well-

known for solving the economic dispatch problem when the problem has no
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Algorithm to solve Economic Dispatch Problem by Golden Section

• Step 0. Set α = max{
∑I

i=1 qiûit, d
s
t}, α = min{

∑I

i=1 Qiûit, d
s
t}, ε > 0.

• Step 1. Set α1 = α + F1 · (α − α), α2 = α + F2 · (α − α), where

F1 =
3−

√
5

2
, F2 =

√
5−1
2

.

• Step 2. If α− α < ε, then stop.

• Step 3. If z(α1) < z(α2), then set α = α2, α2 = α1 and α1 = α+F1 ·(α−

α). If z(α1) ≥ z(α2), then set α = α1, α1 = α2 and α2 = α+F2 · (α−α).

Go to step 2.

Figure 3: Algorithm to solve economic dispatch problem

6

-

z(α)

-�
-�

α α αα2α1

iteration 1
iteration 2

Figure 4: Economic dispatch problem by golden section

minimum and maximum power constraints qiûit ≤ xs
it ≤ Qiûit, i = 1, . . . , I.

Traditional lambda iteration method cannot be applied to solve problem P(α)

due to the minimum and maximum power constraints. Thus, it is required to

modify the lambda iteration method. We briefly summarize the outline of our

method. First, we consider the following economic dispatch problem in which

the constraints qiûit ≤ xs
it ≤ Qiûit, i = 1, . . . , I are relaxed.
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(Relaxed Economic Dispatch Problem)

min
I

∑

i=1

fi(x
s
it)ûit

subject to φ =
I

∑

i=1

xs
it − α = 0

To solve the relaxed economic dispatch problem, the indeterminate co-

efficients method is applied. The constraint function φ is multiplied by an

undetermined multiplier π and added to the objective function. This function

is known as the Lagrange function denoted by L.

L =
I

∑

i=1

fi(x
s
it)ûit − π(

I
∑

i=1

xs
it − α) (20)

The nessesary condition for an extreme value of the objective function is shown

as follows.

∂L

∂xs
it

=
dfi(x

s
it)

dxs
it

ûit − π = 0, i = 1, . . . , I (21)

∂L

∂π
= φ =

I
∑

i=1

xs
it − α = 0 (22)

Equation (21) means that the incremental fuel cost, the derivative of fuel cost

function fi(x
s
it) with respect to xs

it, is equal for all committed generators with

ûit = 1. The lambda iteration method seeks an optimal power output level

xs
it by obtaining the optimal π using the binary search. In our algorithm, the

lambda iteration method is modified so as to satisfy the constraints qiûit ≤

xs
it ≤ Qiûit, i = 1, . . . , I. The algorithm of modified lambda iteration is shown

in Figure 5.

If the solution xs
it of the equation f

′

i (x
s
it)ûit −

π+π

2
= 0 does not satisfy the

minimum and maximum power constraints qiûit ≤ xs
it ≤ Qiûit, i = 1, . . . , I in

step 2, the power output level xs
it is set to mimimum or maximum value so as

to satisfy the minimum and maximum power constraints. Figure 6 illustrates

how the algorithm works.

The whole algorithm of Lagrangian relaxation method is shown in Figure 7.

It should be noted that the golden section and the modified lambda iteration

are applied in step 4.
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Modified Algorithm of Lambda Iteration

• Step 0. Suppose
∑I

i=1 qiûit − α < 0 and
∑I

i=1 Qiûit − α > 0. Set

π = f
′

i (qi)ûit and π = f
′

i (Qi)ûit.

• Step 1. Let x̂s
it be the solution of the equation f

′

i (x
s
it)ûit −

π+π

2
= 0. If

x̂s
it < qi, then x̂s

it = qi. Else if x̂s
it > Qi, then x̂s

it = Qi.

• Step 2. If
∑I

i=1 x̂
s
it −α < 0, then π = π+ π+π

2
. Otherwise, if

∑I

i=1 x̂
s
it −

α > 0, then π = π + π+π

2
. Go to step 1.

Figure 5: Modified algorithm of lambda iteration

6

-

�
�
�
�

�
�
�

�
�
�
�

�
�
�
��

∑I

i=1 x
s
itûit − α

-�

-�

-�
-�π π π
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Figure 6: Binary search in lambda iteration

5 Numerical Experiments

This section demonstrates how our algorithm works. The Lagrangian relax-

ation method for the stochastic unit commitment problem was implemented

using C language. The whole framework of the algorithm was coded in C.

The test problems considered in this section consist of I = 10 units, T = 168

periods and S = 16 scenarios.

The base demand dbaset , t = 1, . . . , 24 were already given as shown in Table

1.
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Lagrangian relaxation

• Step 0. Given Lagrangian multipliers λ0(> 0). Set iteration number

l = 0.

• Step 1. If the difference between the upper bound and lower bound is

relatively small, then stop.

• Step 2. Decompose Lagrangian dual into smaller single-generator sub-

problems by relaxing constraints (1).

• Step 3. Solve generation level decision problem to obtain x̂s
it, s =

1, . . . , S, t = τ(s), . . . , T . Then solve dynamic programming problem

by recursive equations (7) to obtain ûit, i = 1, . . . , I, t = τ(s), . . . , T .

• Step 4. Solve economic dispatcing problem using the golden section

algorithm and the modified lambda iteration as shown in Figure 3 and

Figure 5.

• Step 5. Update Lagrange multiplier by subgradient optimization (8).

Go to step 1. Set l = l + 1.

Figure 7: Algorithm of Lagrangian relaxation method

Table 1: Base power demand
t 1 2 3 4 5 6 7 8 9 10 11 12

dbase
t

850 1025 1400 1970 2400 2850 3150 3300 3400 3275 2950 2700

13 14 15 16 17 18 19 20 21 22 23 24

2550 2725 3200 3300 2900 2125 1650 1300 1150 1025 1000 900

The predicted demand dpredictedt for t = 1, . . . , T were caluculated from dbaset
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as shown in (23).

dpredictedt =



















































1.00dbaset if 1 ≤ t ≤ 24

1.05dbaset−24 if 25 ≤ t ≤ 48

1.10dbaset−48 if 49 ≤ t ≤ 72

1.10dbaset−72 if 73 ≤ t ≤ 96

1.05dbaset−96 if 97 ≤ t ≤ 120

1.00dbaset−120 if 121 ≤ t ≤ 144

0.95dbaset−144 if 145 ≤ t ≤ 168

(23)

The scenarios are generated from the predicted power demand by increasing

predicted demand dpredictedt , as shown in Table 2.

Table 2: Demand increases and decreases for different scenarios

Scenario Probability Period t

Mon. Tue. Wed. Thu.

s ps 25-48 49-72 73-96 97-120

1 0.0625 0 0 0 0

2 0.0625 0 0 0 +10%

3 0.0625 0 0 +20% 0

4 0.0625 0 0 +20% +10%

5 0.0625 0 +20% 0 0

6 0.0625 0 +20% 0 +10%

7 0.0625 0 +20% +20% 0

8 0.0625 0 +20% +20% +10%

9 0.0625 +10% 0 0 0

10 0.0625 +10% 0 0 +10%

11 0.0625 +10% 0 +20% 0

12 0.0625 +10% 0 +20% +10%

13 0.0625 +10% +20% 0 0

14 0.0625 +10% +20% 0 +10%

15 0.0625 +10% +20% +20% 0

16 0.0625 +10% +20% +20% +10%

We applied our solution approach to the following generating system. The

data on the units are shown in Table 3.

The number of iteration of Lagrangian relaxation is set to 1000, and the

number of iteration of golden section (Figure 4) and lambda iteration (Figure

5) is limited to 20 and 30, respectively.

We compare the conventional deterministic unit commitment model, with

our model which we developed by incorporating demand uncertainty. In the
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Table 3: Unit characteristics

Unit Max Min Fuel Cost Function Minimum Times Start Up Cost

Up(h) Down(h)

1 1000 300 0.00113x2 + 9.023x+ 820 5 4 2875

2 400 130 0.00160x2 + 7.654x+ 400 3 2 2110

3 600 165 0.00147x2 + 8.752x+ 600 2 4 3050

4 420 130 0.00150x2 + 8.431x+ 420 1 3 2130

5 700 225 0.00234x2 + 9.223x+ 540 4 5 3000

6 200 50 0.00515x2 + 7.054x+ 175 2 2 2110

7 750 250 0.00131x2 + 9.121x+ 600 3 4 3250

8 375 110 0.00171x2 + 7.762x+ 400 1 3 1920

9 850 275 0.00128x2 + 8.162x+ 725 4 3 3150

10 250 75 0.00452x2 + 8.149x+ 200 2 1 1805

conventional model, the supply reserve rate rt is set to the demand constraints

on Monday, Tuesday, Wednesday, and Thursday.

Then, we consider the value of the stochastic solution. Let xs
it, uit be the

solution of the deterministic unit commitment problem which is obtained by

replacing all random demands d̃t, t = 1, . . . , T with their base values plus

reserved margin as dbaset (1 + rt). This solution is referred to deterministic

solution. We apply this deterministic solution to all available scenarios and

the exact value of the expected objective function at (u) can be computed as

the optimal objective value of the following expected supply cost problem.

(Expected supply cost problem):

min
S
∑

s=1

ps

I
∑

i=1

T
∑

t=1

fi(x
s
it)ūit +

I
∑

i=1

T
∑

t=1

gi(ūi,t−1, ūi,t)

subject to
I

∑

i=1

xs
it ≥ dst , t = 1, . . . , T, s = 1, . . . , S

qiūit ≤ xs
it ≤ Qiūit, i = 1, . . . , I, t = 1, . . . , T, s = 1, . . . , S

xs1
it = xs2

it , i = 1, . . . , I, t = 1, . . . , T,

∀s1, s2 ∈ {1, . . . , S}, s1 6= s2, B(s1, t) = B(s2, t)

The difference between the expected objective value of the deterministic

solution and the optimal objective value of the original stochastic programming
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problem is called the value of the stochastic solution, and is denoted as VSS.

VSS is calculated as 188594 = 3858235 − 3669641 in Table 4. The results

indicate that using the stochastic programming model can reduce the expected

cost by 4.89% = 100× (1− 3669641/3858235).

Table 4: Results of experiments

Model Objective Lower Bound GAP Expected Cost

(%)

Stochastic Programming 3669641 3574354 2.60 3669641

Deterministic

supply reserve rate rt

(Monday, Tuesday, Wednesday, Thursday)

(5%,10%,10%,5%) 3661903 3565734 2.63 infeasible

(6%,12%,12%,6%) 3690471 3599839 2.46 infeasible

(7%,14%,14%,7%) 3723632 3634030 2.40 infeasible

(8%,16%,16%,8%) 3752530 3668190 2.25 infeasible

(9%,18%,18%,9%) 3788842 3702357 2.28 3858235

(10%,20%,20%,10%) 3829294 3735353 2.45 3858235

6 Concluding Remarks

We have considered a stochastic integer programming model for the unit

commitment in which the objective is to minimize expected cost. This prob-

lem is formulated as a multi-stage stochastic quadratic integer programming

problem because the fuel cost function is defined to be a convex quadratic func-

tion. The approach to solving the problem is based on Lagrangian relaxation

method and dynamic programming. The feasible schedule is obtained by solv-

ing dynamic programming on a scenario tree. To refine the solution obtained

by dynamic programming, we solve an economic dispatch problem in which

the equality demand constraint is relaxed to the inequality constraint with

upper and lower limit. To solve this problem we develop an algorithm which

combines the lambda iteration method and golden section. More research is

necessary to make a scenario set which reflects real demand.
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