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Abstract 

We develop some analytic queueing models based on traffic and we model the 

behavior of traffic flows as a function of some of the most relevant determinants. 

These analytic models allow  for  parameterized  experiments,  which  pave 

the  way  towards  our  research  objectives: assessing what-if sensitivity 

analysis for traffic management, congestion control, traffic design and the 

environmental impact of road traffic. We illustrate our results for a highway. 
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1  Introduction  

When modeling the environmental impact of road traffic, we can 

distinguish between both a static and dynamic impact of infrastructures and 

vehicles on emissions and waste.  

On the one hand, roads can be considered as a visual intrusion. In addition, 

they may cause damage to natural watercourses or threaten the natural habitat of 

wildlife. Vehicles in turn consume natural resources and impose a strain on the 

environment at the end of their life cycle.  

On the other hand, as they form part of traffic flows, infrastructures and 

vehicles also have a dynamic impact on the environment. Vehicles in use produce 

emissions and noise. Toxic fumes escape in the atmosphere when fuel tanks are 

filled, while driving leads to further emissions (CO2, NO2 and  SO2) and dust. 

Furthermore, an increase in garbage, accidents (physical and material damage) 

and, occasionally, distortion of infrastructures and nature elements (trees, 

animals,..,etc.) can be observed. Because traffic flows are a function of both the 

number of vehicles on the roads and the vehicle speed, as traffic flows occupy a 

central position in the assessment of road traffic.  

The objective of this approach is mainly explorative and explanatory. These 

descriptive models give an empirical justification of the well-known speed-flow 

and speed-density diagrams, but are limited in terms of predictive power and the 

possibility of sensitivity analysis [5,7,8]. An alternative approach is to use 

speed-flow, speed-density and flow-density diagrams, in which data on traffic 

flows are collected and are fit into curves [4,6].  

Compared to these descriptive models, this paper presents a more 

operational approach using queueing theory. Queueing theory is almost 

exclusively used to describe traffic behavior at signalized and unsignalized 

intersections [1,2,3,4,7,9]. 
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2  Decryption of Queueing Model with traffic flow theory 

On of the most important equations in traffic flow theory incorporates the 

interdependence of traffic flow q, traffic density E and speed s: 

                            q E s= ⋅                            (1) 

When two of the three variables are known, the third variable can easily be 

obtained. If traffic count data are available, traffic flows can be assumed as given, 

which leaves us to calculate either traffic density or speed to complete the formula 

and use either as input for the appropriate queueing model.   

Table 1: Overview of used parameters 

Parameter Description 

E Traffic density (vehicle/km) 

C Maximum traffic density (vehicle/km) 

s Effective speed (km/h) 

r Relative speed 

SN Nominal Speed (km/h) 

q Traffic flow (vehicle/h) 

λ Arrival rate (vehicle/h) 

μ Service rate (vehicle/h) 

ρ Traffic intensity=λ/μ 

W Time in the system (h) 
 

In our model we define C as the maximum traffic density. Roads are divided into 

segments of equal length 1/ C , which matches the minimal length needed by 

one vehicle on that particular road. Each road segment is considered as a service 

station, in which vehicles arrive at rate λ and get served at rate μ  (Figure1). 
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Figure 1: Queuing Representation of traffic flows 

 

We define W as the total time a vehicle spends in the system, which equals the 

sum of waiting time and service time. The higher the traffic intensity, the higher 

the time in the system becomes (the exact relation between W and ρ  depends 

upon the queueing model. When W is known, the effective speed can easily be 

calculated as: 

                          W
C

1
s =

                               (2) 

The relative speed r, by definition: 

                         SNW
C

1

SN
sr

⋅
==

                        (3) 

Queueing models are often referred to using the Kendall notation, consisting of 

several symbols - e.g. M/G/1.  The first symbol is shorthand for the distribution 

of inter-arrival times, the second for the distribution of service times and the last 

one indicates the number of servers in the system. 

     

3  Analysis of  M/M/1 MODEL 

The inter-arrival times are exponentially distributed (the arrival rate follows 

a Poisson distribution) with expected inter-arrival time equal to1/λ  (with λ 

equal to the product of the traffic density E and the nominal speed SN).  The 

service time delineates the time needed for a vehicle to pass one road segment 

and is exponentially distributed with expected service time μ  (the service rate 
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follows a Poisson distribution). When a vehicle drives at nominal speed SN, 

service time can be written as: 1/( )SN C⋅  and μ  equals the product of nominal 

speed SN with the maximum traffic density C. Using these formulas for λ  and 

μ , we obtain W  as:  

                        1 1W
( )SN C E

= =
μ −λ ⋅ −

                   (4) 

Using this expression for W, the effective speed and relative speed are obtained: 

          ( ) (1 ) 1SN C E ss SN r
C SN

⋅ −
= = ⋅ −ρ = = −ρ             (5) 

with ρ  the traffic intensity:    

      E
C

λ
ρ = =

μ
                            (6) 

Substituting for E (= q/s) in (5) the following expression is obtained: 

                2( , )   0 f s q s C s C SN SN q= ⋅ − ⋅ ⋅ + ⋅ =                 (7)             

Maximizing ( , )f s q  for s and substituting this value into (7), maxq  can be 

written 

                         max 4
SN Cq ⋅

=                               (8)            

Traffic density is low; vehicles do not obstruct one another, which lead to 

higher effective speeds.  When more vehicles arrive on the road, the effective 

speed s decreases.  

Using equation (1): q E s= ⋅  and the above formula for s, we can construct the 

speed-flow and the flow-density diagrams for the M/M/1 model. The speed-flow 

diagram is the envelope of all possible combinations of the effective speed and 

traffic flow. There are two speeds for every traffic flow: an upper branch (s2) 

where speed decreases with flow and a lower branch (s1) with an increasing speed 

in terms of flow. An intuitive explanation can be as follows: as the flow moves 

from SN to maxq , congestion increases but the flow rises because the decline 
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in speed is offset by the higher. If traffic continues to enter the flow past maxq , 

flow falls because the decline in speed more than offsets the additional vehicle 

numbers further increasing congestion, [1].  

The M/M/1 model is interesting as a base case, but is inadequate to represent 

real-life traffic flows. In the next two sections we will relax the M/M/1model:  

•  first, the service times follow a general distribution (M/G/1) and, 

•  secondly, both arrival and service times follow a general distribution 

(G/G/1).  

As in the M/M/1 model inter-arrival times follow an exponential distribution 

with expected inter-arrival time 1/λ , λ  being the product of traffic density and 

nominal speed. The service time however is generally distributed with an 

expected service time of 1/μ  and a standard deviation of σ. Expected service 

rate is μ , which equals the product of nominal speed SN with maximum traffic 

density C. Combining L i t t l e ’ s  t h e o r e m  a n d  t h e  P o l l a c z e k -Khintchine 

f o r m u l a  f o r  L (defined as the average number of cars in the system) [5,8,7,9] 

and substituting for λ  and μ , we obtain the following formula for the total 

time in the system W: 

                   
2 2 2 21W

2 (1 )
SN E

SN C SN E
ρ + ⋅ ⋅σ

= +
⋅ ⋅ ⋅ ⋅ −ρ

                   (9) 

Using the above expression for W, effective and relative speed can be calculated 

in an analog way as in the M/M/1 model: 

       2 2 2

2 ( ) 2 (1 ) 2 (1 )
2 ( 1) 2 ( 1) 2 ( 1)

SN C E SNs r
C E
⋅ ⋅ − ⋅ ⋅ −ρ ⋅ −ρ

= = =
⋅ + ⋅ β − +ρ⋅ β − +ρ⋅ β −

   (10) 

with β delineating the coefficient of variation of service time (or SN Cβ = σ⋅ ⋅ ).  

 

Using these formulas we can construct the speed-flow, speed-density and 

flow-density diagrams for the M/G/1 model. The exact shape of these curves 

depends upon the variation coefficient of the service time, β. 
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Substituting E (= q/s) in above formula (8) and rewriting, the following expression 

for the speed-flow diagram is obtained: 

    2 2( , ) 2 ( 1) 2 2 0f s q C s q C SN s q SN⎢ ⎥= ⋅ ⋅ + ⋅ β − − ⋅ ⋅ ⋅ + ⋅ ⋅ =⎣ ⎦            (11) 

Maximizing this equation for s, we can calculate the maximum traffic flow ( maxq ): 

                

2
2

max

max

1 22 0
1

1
4

q SN C

SN Cq

⎡ ⎤β + −
= ⋅ ⋅ ⋅ β ≥⎢ ⎥

β −⎢ ⎥⎣ ⎦
⋅

= β =

         (12) 

The value of maxq  is a function of the variation parameter β .  

 

Using the above expression for W, effective and relative speed can be 

calculated in an analog way as in the M/M/1 model. With the G/G/1 model both 

arrival times and service times follow a general distribution with expected 

arrival time 1/λ  and standard deviation aσ , expected service times 1/μ  

and standard deviation of bσ ,  respectively.  

Consequently, the shape of the speed-flow-density diagrams will depend not 

only on the variance of the service times but also on the variance of the 

inter-arrival times. Combining Little’s theorem and [2, 3, 5, 6, 7] formula for L 

and substituting for λ  and μ , we obtain the following formulas for the total 

time in the system W : 

              

2 2

2 2

2 2

2 2

2 (1 ) (1 )2 2 2
3 ( ) 2

(1 ) ( 1)2 2 2
(1 ) ( 10 ) 2

( )1W , 1
2 (1 )

( )1W , 1
2 (1 )

s

s

c
c cs

c
c cs

c c e c
SN C SN E

c c e c
SN C SN E

α

α

α

α

− ⋅ −ρ ⋅ −

⋅ρ⋅ +α
α

−⋅ −ρ ⋅ −

+ρ ⋅ +α
α

ρ ⋅ +
= + ⋅ ≤

⋅ ⋅ ⋅ ⋅ −ρ

ρ ⋅ +
= + ⋅ >

⋅ ⋅ ⋅ ⋅ −ρ

                     

with 2cα  representing the squared coefficient of variation of inter-arrival times 

and 2
sc  the squared coefficient of variation of service time.  
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Using (5) and the above expressions for W, the effective speed formulas become: 

2 2

2 2

2 2

2 2

2
2 (1 ) (1 )

3 ( )2 2

2
(1 ) ( 1)

(1 ) ( 10 )2 2

2 (1 ) , 1

2 (1 ) ( )

2 (1 ) , 1

2 (1 ) ( )

s

s

c
c c

s

c
c c

s

SNs c

c c e

SNs c

c c e

α

α

α

α

α− ⋅ −ρ ⋅ −

⋅ρ⋅ +
α

α−⋅ −ρ ⋅ −

+ρ ⋅ +
α

⋅ ⋅ −ρ
= ≤

⋅ −ρ +ρ⋅ + ⋅

⋅ ⋅ −ρ
= >

⋅ −ρ +ρ⋅ + ⋅

 

The exact shape of the diagrams depends not only on the variation coefficient of 

service times but also on the variation coefficient of inter-arrival times. 

 

4  Main Results 

We see that the variance on the arrival rate ( 1ac =  and 0sc = ) has a 

larger impact than the variance on the service rate ( 0ac =  and 1sc = ).  

Actions to increase traffic flow should primarily be focused on the arrival rate 

variance. A similar conclusion can be obtained using the flow- density diagram. 

Finally, the speed-density diagram is constructed for a given density of 40 vehicles 

per km: we see that the effective speed ranges from approximately 50 (high 

variance) to approximately 110 (low variance) km/h.           

The results can easily be compared with the constructed speed-flow-density 

diagrams.  

 

For the case with high variances ( ac  and sc  both equal to one), at hour 

8.00, 9.00 and 10.00 a.m., the observed traffic flow becomes larger than the 

maximum possible traffic flow on the highway given these variance parameters.  

Consequently there are no speeds that can be calculated for these instances. 
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Table 2: Upper and lower speeds for highway 

4350 3551 2983 2165 maxq  

0.5a sc c= = 0, 1a sc c= = 1, 0a sc c= = 1a sc c= =  

Hou
r 

Q 

(vech/h) 
S1 S2 S1 S2 S1 S2 S1 S2 

1 340 5 120 5 120 5 119 5 117 

2 225 3 120 3 120 3 120 3 118 

3 178 2 120 2 120 2 120 2 119 

4 180 2 120 2 120 2 120 3 119 

5 303 4 120 4 120 4 119 4 117 

6 787 11 120 11 120 11 116 12 110 

7 1826 26 120 28 109 29 106 36 88 

8 3180 50 117 60 116 - - - - 

9 2612 39 119 45 119 47 95 - - 

10 2235 33 120 36 119 37 100 - - 

11 2109 31 120 34 120 35 102 50 77 

12 2016 29 120 32 120 33 103 44 81 

13 1978 29 120 31 120 32 104 42 83 

14 2095 31 120 33 119 34 102 49 78 

15 1911 28 120 30 120 31 105 39 85 

16 1892 27 120 30 120 30 105 38 86 

17 1987 2 9 120 31 120 32 104 42 82 

18 1877 29 120 31 120 32 104 42 83 

19 1964 29 120 31 120 32 104 41 83 

20 1755 25 120 27 120 27 106 33 90 

21 1243 18 120 18 120 18 112 21 102 

22 1008 14 120 15 120 15 114 16 106 

23 762 11 120 11 120 11 116 12 110 

24 562 8 120 8 120 8 117 8 113 
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5  Conclusion  

Using several queueing models, speed is determined, based on different 

arrival and service processes. The exact shape of the different speed-flow-density 

diagrams is largely determined by the model parameters. Therefore we believe 

that a good choice of parameters can help to adequately describe reality. We 

illustrated this with an example, using the most general models for a highway. Our 

models can be effectively used to assess the environmental impact of road traffic. 
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