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Abstract 

In recent times, mathematical model of cardiac electrical activity has been 

recognized as one of the significant approaches capable of revealing diagnostic 

information about the heart. However, an efficient and accurate mathematical 

technique required for this modelling is one of the major problems in the field of 

biomedical research. This work presents mathematical modelling of cardiac 

electrical activity using bidomain approach. The cardiac electrical activity is best 

mathematically modelled coupled systems of ordinary differential equations and 

partial differential equations which are non-linear, stiff, and therefore difficult to 

solve numerically and implement. Hence, the bidomain model was adopted due to 
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its ability to reflect the actual cardiac wave propagation. Explicit forward Euler 

method and 2-D network modelling were respectively used for time- and 

space-discretisation of the derived bidomain equations coupled with 

FitzHugh-Nagumo’s ionic equations to obtain linearized equations for 

transmembrane potential Vm, extracellular potential   and gating variable w 

which are the main variables of interest. We implemented the linearized equations 

using code developed from Java 6.0 version to obtain the time characteristic of 

transmembrane potential Vm. The results of this work provide some insights into 

the nature of electrical wave propagation pattern in the normal cardiac tissue. 
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Keywords: Mathematical model, Cardiac electrical activity, Bidomain model, 

Transmembrane potential  

 

 

1  Introduction  

Globally, cardiovascular disease has been recognised as the major source of 

cardiac deaths. According to the global status report on non-communicable 

diseases by World Health Organisation (WHO) in 2008 [1], 80% of the 17 million 

deaths due to cardiovascular disease occurs in low and middle income countries 

like Nigeria. This therefore calls for immediate attention to address the problem. 

Cardiac electrophysiology is the science of the mechanisms, functions and 

performance of the electrical activities of specific regions of the heart [2]. The 

normal intrinsic electrical conduction of the cardiac tissue (heart) allows electrical 

propagation to be transmitted throughout the whole cardiovascular system. The 

main cause of sudden cardiac death has been attributed to cardiac electrical 

abnormalities, preventing blood circulation to various compartments of the body. 

In diagnosing these disastrous cardiac electrical abnormalities, mathematical 
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modelling of cardiac electrical activities plays a vital role, revealing baseline 

diagnostic information about the functional status of heart. 

The models of cardiac electrophysiology are usually governed by differential 

equations [3, 4] consisting of systems of partial differential equations (PDEs) 

coupled to ordinary differential equations (ODEs). The PDEs give the description 

of electrical wave propagation across the cardiac tissue whereas the ODEs give the 

description of electrochemical reaction of the cardiac cells. 

This work presents mathematical modelling of cardiac electrical activity 

using bidomain approach with the main focus on cardiac action potential, an 

important basic electrical property of the heart. 

 

 

1.1  Bidomain Model 

Bidomain model is one of the two differential equation based models for 

cardiac electrical activity. The model is considered as the mathematical equations 

that have been used for simulating cardiac electrophysiological waves for years 

taking into account the non-linear dynamic nature of the cardiac signal and giving 

realistic simulation. This model gives the representation of the cardiac tissue at a 

macroscopic scale by relating the transmembrane potential, the extracellular 

potential and the ionic currents [3, 5]. It consists of a system of two non-linear 

partial differential equations coupled to a system of ordinary differential equations. 

However, the major difficulties with this model are the computational grids size 

that must be very fine to get a realistic simulation of cardiac tissue. The action 

potential is a wave with sharp depolarization and repolarization fronts and this 

wave travels across the whole computational domain requiring a very fine uniform 

mesh. One of the remedies to these computational challenges is the use of the 

monodomain model. This model consists of a single non-linear partial differential 

equation coupled with the same system of ordinary differential equations for the 
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ionic currents. Although, it has been reported that the central processing unit 

requirements are reduced when simplifying the bidomain model to a monodomain 

model, but both models still encounter computational difficulties because of the 

need for fine meshes and small time-steps [5].  

 

 

2  Mathematical Equations Governing Cardiac Electrical  

   Activity 

For complete modelling of the cardiac electrical activity, it is essential to 

derive a system of governing equations, discretising them into appropriate forms 

and then solve the discretised equations using suitable techniques. 

The electrical wave propagation in the thoracic volume is governed by three 

fundamental electrical laws [3, 4, 6] which include: 

  The electrical charge conservation law 

  The electrical conduction law (Ohm’s law) 

  The consequence to the electromagnetic induction law 

The law of conservation of charge states that an outward flow of positive 

charges must be balanced by a decrease of positive charges within the close 

surface [7, 8]. Hence, this requires that: 

                            
dt

dQ
dsjI

S

                                  (1)  

where I  is the current in Ampere (A) 

   J is the current density in Ampere per square meter (A/m2) 

Q  is the charge in Coulomb (C) 

S  is the surface area in square meter (m2) 

   t  is the time in seconds (s) 

Application of divergence theorem, which relates surface integral to volume 

integral, to equation (1) gives equation (2) [7, 8]: 
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                                ( )
S vol

j ds j dv                               (2) 

Representing the enclosed charge Q by the volume integral of the charge density, 

equations (1) and (2) can be modified as: 

                               ( )
vol vol

d
j dv dv

dt


                             (3) 

where   is the volume charge density in coulomb per cubic meter (C/m3). 

Keeping the surface constant, the derivatives in equations (1), (2) and (3) becomes 

partial derivative and may appear within the integral as: 

                              ( )
vol vol

j dv dv
t


   

                            (4) 

Since equation (4) is true for any volume no matter how small [7, 8], then: 

                                  j
t


  


                                 (5)                

Equation (5) is generally called the continuity equation [7, 8]. 

For a good conductor, the volume charge density is zero, 0  , since the 

amount of positive and negative charges are equal [9]. Hence, if thoracic volume 

is assumed to be volume of conductor, equation (5) can be modified as: 

                                   0j                                     (6) 

Equation (6) is called the electrical charge conservation law. 

Relating the current density j with the electric field E in volt per metre (V/m), 

the electric field E with the electric potential   in volt (V) and current density j 

with the electric potential  , the following fundamental laws emerge [7, 8]: the 

electric conduction law (Ohm’s law), consequence to electromagnetic induction 

law and modified Ohm’s law represented by: 

                                      j = σE                                   (7)               

 E                                     (8) 

 j =                                    (9)                

where σ is the conductivity in siemen per metre (S/m). 
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Hence, equations (6), (7), (8) and (9) form the basis for the derivation of the 

bidomain equations. To fully adapt equations (6) to (9) to cardiac electrical 

activity, the bidomain model assumes the cardiac tissue as a homogenized 

two-phase Ohmic conducting medium with one phase representing the 

intracellular space and the other, extracellular space. The phases are linked by a 

network of resistors and capacitors representing the ion channels and the 

capacitive current driven across the cell membrane due to a difference in potential 

respectively as shown in Figure 1 [10]. 

 

 

Figure 1: Schematic model of the bidomain space; the intracellular and    

       extracellular domains are separated by cell membrane [10] 

 

Considering a post homogenization process, the intracellular and 

extracellular domains can be assumed to be superimposed to occupy the whole 

heart volume H  [3, 11, 12, 13] and this also applies to the cell membrane. 

Hence, the average intracellular and extracellular current densities, ij  and j , 

conductivity tensors i  and   and electric potentials i  and   are defined in 

H .  

Hence, application of equation (6) to the heart volume gives equation (10) 

leading to equation (11): 

                              i m mj j I                                (10) 
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where   m   is the surface – to – volume ratio of the cell membrane per meter  

               (m-1) 

  mI   is the cell membrane current in ampere (A)  

                                ( ) 0ij j                                   (11)    

Putting equation (9) in (10) yields: 

                          ( ) ( )i i                                   (12) 

The transmembrane potential, mV , defined as difference in potential between 

intracellular and extracellular spaces is represented by: 

                               
def

m iV                                       (13)                

where i    is the intracellular electric potential in volt (V) 

           is the extracellular electric potential in volt (V) 

Substitution of equation (13) in (12) yields equation (14): 

                      (( ) ) ( )i i mV           in H               (14) 

Extending the cell model formulated by Hodgkin and Huxley in 1952 as 

reported in Matthias [10] with its electric circuit equivalence diagram as shown in 

figure 2 to the bidomain model gives: 

                    ( , )m
m m ion m app

V
I C I V w I

t


  


                           (15) 

where   mC   is the membrane capacitance in per area unit 

Im is the membrane current in ampere (A)  

Iapp is the excitation current in ampere (A) 

Iion is the ionic current in ampere (A) 

The use of equations (13) and (15) in (10) yields: 

    ( ) ( ) ( ( , ) )m
i m i m m ion m app

V
V C I V w I

t    
      


  in H        (16) 

 The ionic variable w satisfies a system of ODE of the type given by equation 

(17): 
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                           ( , )m

dw
g V w

dt
     in H                          (17) 

where g is a vector-valued function. 

 

 

Figure 2: Cell model equivalent circuit diagram; ionic currents are 

parallel-connected to membrane capacitor [10] 

 

The bidomain model described by equations (14), (16) and (17) depicts a 

non-linear elliptic equation for the extracellular potential   coupled with the 

parabolic differential equation for the transmembrane potential Vm as well as an 

ordinary differential equation representing the ionic current w. 

Equations (14) and (16) give the description of the electrical propagation 

through the cardiac tissue while (17) describes the electrochemical reaction in the 

cell. 

For complete description of cardiac electrical activity, the bidomain model 

described by the equations (14), (16) and (17) has to be coupled to an ionic model 

and complemented with appropriate initial and boundary conditions. 
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2.1  Ionic Model 

Various cell models have been proposed to obtain expressions for Iion and g. 

The cell model considered in this work is FitzHugh-Nagumo’s (FHN) ionic model. 

It was considered basically because of its simplicity and wider theoretical and 

computational applications. It has just two variables and a cubic non-linearity. 

Different variants of FHN exist. However, the variant adopted in this work is 

represented by equations (18) and (19) [14].  

                           
3

1

1
( )

3
m

ion m

V
I V w


                                (18) 

                            2 ( )mg V w                                  (19) 

where 1 2, , ,     are the basic parameters of the adopted FHN model. They are 

typical assumed to be positive constant. 

 

 

2.2  Initial and Boundary Conditions 

The bidomain equations described (14), (16), and (17) are subjected to the 

initial conditions given by equation (20): 

                 0 0( ,0) ( ), ( ,0) ( )m mV x V x w x w x  ,    Hx           (20) 

The boundary conditions imposed on this system of equations (14), (16) and (17) 

is that of a sealed boundary, where no current flows across the boundary between 

the intracellular and extracellular domains, that is: 

                              i i n n         ,  on                     (21) 

where n is the normal vector to the domain boundary. 

Hence, the complete system of differential equations describing the cardiac 

electrical activity with ionic model and initial and boundary conditions fully 

defined is summarised in equation (22). 

 



118                       Mathematical Modelling of Cardiac Electrical Activity ... 
  

    
3

1

2

0

0

(( ) ) ( ) in

( ) ( ) ( ( , ) ) in

( , ) in

1
( )

3

( )

( ,0) ( ),

( ,0) ( ),

on

i i m H

m
i m i m m ion m app H

m H

m
ion m

m

m m H

H

i i

V

V
V C I V w I

t
dw

g V w
dt

V
I V w

g V w

V x V x x

w x w x x

n n

 



 

   

   


  

   

      
         
 


 


   

   
   


  
     



   (22)                

Bidomain equations (14), (16) and (17) are solved for  , Vm and w which are the 

variables of interest.  

 

 

2.3  Discretization 

Generally, the non-linear bidomain equations (14), (16) and (17) are both 

time and space dependent and the process of discretization (linearization) has to be 

dealt with separately. Various time discretization techniques have been explored 

for use in many modelling works involving differential equations but of interest in 

this work is the explicit forward Euler method given by equation (23) [15]: 

                                 1n n nU U hf                                 (23) 

where U represents the discretized version of the function to be evaluated, h, the 

step size, and f, real-valued function. One major advantage of using equation (23) 

is that it is most straightforward and easy to solve numerically. However, h, must 

not be taken too large so that the solution to equation (23) does not become 

numerically unstable.  

Modification and application of equation (23) to equations (16) and (17) 

which contain the time derivatives with Iion and g replaced by their 
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FitzHugh-Nagumo’s equivalent gives equations (24) and (25) respectively. 

             
3

1

1

( )1
[ ( ) ( ) ]

3

n
n n n n n nm

m m m i m app

V
V V t V w G V I

                  (24) 

with m  and mC  assumed unity; Gi, the intracellular admittance matrix 

equivalent to  i  , and t , time step size.                                  

                        1
2 ( )n n n n

mw w t V w                              (25) 

Also, owing to the fact the computation of equations (24) and (25) requires the 

value of n
 , hence, equation (14) becomes: 

                     1( ) [ ]n n
i i mG G G V                                     (26) 

where Ge, the intracellular admittance matrix equivalent to   . 

For the space discretization, 2-D network (discrete) modelling has been 

employed. Owing to this spatial specification, Gi and Ge were constructed by 

considering node arrays Nx-by-Ny defined in the 2-D network domain to be linked 

by network of resistors arranged along x- and y-direction with ηex, ηey, ηix, and ηiy 

representing the extracellular and intracellular resistance values along these 

directions. These resistors arrays were then transformed into matrices in the 

implementation code. 

 

 

2.4  Application of Computer 

Computer programming has become an important tool for the study and 

comprehension of many complex phenomena such as the cardiac 

electrophysiology involving the electrical wave propagation in the cardiac tissue 

(heart). Computer programming generally reduces the computational complexities 

and requirements of this type of problem using simple mathematical algorithms 

which take shorter time to implement by writing few lines of codes.  
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Figure 3: Flow chart for the bidomain implementation code 

 

Java programming language, specifically Java 6.0 version was adopted for 

the development of the implementation code for the bidomain equations in this 
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work. It is an object-oriented programming language. It is principally adopted 

because of its enriched mathematical library for easy implementation of 

mathematical algorithms and well-designed Graphical User Interface (GUI) to 

give graphical representation of results. Equally important is the fact it can run on 

most computer systems. Figure 3 is the flow chart for the developed bidomain 

implementation code. 

 

 

3  Numerical Simulation and Results 

The developed 2-D Java implementation programming code was used 

simulate the non-linear bidomain equations (14), (16) and (17) based on the 

discretised equations (24), (25) and (26) with the considered parameters given in 

table 1. The selected cells 4, 6, 8, 10, 15, 17, 19 and 21 of the 50-by-50 nodes 

(cells) specified in 2-D network domain produced the propagated electrical waves 

in the normal cardiac tissue as shown in figure 4a to h respectively. The first stage 

witnessed a sharp depolarization from negative resting potential to a positive peak 

within a millisecond. This was followed by a very short period of partial 

repolarization of less than 100ms. The wave later propagated to a plateau where 

the potential remains almost positively constant. The signals presented here 

showed varying plateau periods with the longest around 400ms. Finally, the wave 

returns to its negative resting potential, indicating the cell has repolarized. These 

stages are represented in Figure 4(d) for clarity by values 0, 1, 2, 3, and 4 

respectively. These processes summed-up to what is called the action potential, 

with the highest period observed in this work around 600ms. The variation in the 

plateau sizes in (a) to (h) was due to the fact that the considered cells were at 

different positions. Figure 4(a) to h are typically of the same wave pattern, 

consistent with the theoretical standard and the experimental findings from other 

researchers [3, 16, 17]. 
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Table 1: Values of Basic Parameters [14] 

Parameter Symbol Value 

Excitation rate constant  
1  0.2 

Recovery rate constant  
2  0.2 

Excitation decay constant  β 0.7 

Recovery decay constant  γ 0.8 

Time step size  t  0.01 

Extracellular resistance in x-direction  
e x  1.0 

Extracellular resistance in y-direction  
e y  3.0 

Intracellular resistance in x-direction  
i x  1.0 

Intracellular resistance in y-direction  
i y  3.0 

Resting transmembrane potential  0
mV  -1.2 

Initial value of ionic variable  0w  -0.62 

 

                    

           (a)                                  (b) 
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              (c)                                  (d) 

                                                                              

                    

              (e)                                   (f)                          
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(g)                   (h) 

                                                                              

Figure 4: Electrical wave propagation in the normal cardiac tissue: (a) at cell 4, (b)  

        at cell 6, (c) at cell 8, (d) at cell 10, (e) at cell 15, (f) at cell 17, (g) at cell  

        19 and (h) at cell 21 

 

 

4  Conclusion 

 In this work, a bidomain approach based mathematical model of cardiac 

electrical activity was presented. This work has been able to create some insights 

about the electrical behaviour of human heart, revealing the nature of the electrical 

wave propagation pattern in the normal cardiac tissue. The electrical activity of 

the cardiac tissue presented in this work was based on coupling the bidomain 

model with the FitzHugh–Nagumo’s ionic model with consideration of sealed 

boundary conditions between the intracellular and extracellular domains to give a 

complete description of the cardiac electrical wave propagation. The simulation 

results showed the excitation pattern in 2-D. The simulation from selected cells 4, 

6, 8, 10, 15, 17, 19 and 21 as presented in this work produced wave patterns which 

were consistent with the theoretical standard and experimental findings of other 
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researchers. The obtained results in this work are very useful in studying the 

characteristic properties of action potential as it propagates through the cardiac 

tissue and in effect detect any electrical wave abnormalities in the cardiac tissue. 

However, the 2-D network (discrete) modelling approach adopted for spatial 

discretization still leaves this work for further research based on continuum 

modelling with particular interest on finite element analysis.    
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