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Abstract 

There has been a large number of studies in which the scientists have built models 
for income distributions. As an alternative, some have built models for Lorenz 
curves. The step from Lorenz curve to distribution function is more difficult than 
the step from distribution function to Lorenz curve. There is a difference between 
advanced and simple Lorenz models. Advanced models with several parameters 
yield a better fit to data, but are difficult to connect to exact income distributions. 
Simple one-parameter models can more easily be associated with the 
corresponding income distribution, but when statistical analyses are performed the 
goodness of fit is often poor. In this study, simple models are considered and the 
results compared with results obtained by numerical methods without any 
assumptions concerning the Lorenz model. 
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1  Introduction  
There has been a large number of studies in which the scientists have built 

models for income distributions. As an alternative, some have built models for the 
Lorenz curve. Among these we may list the following studies: Kakwani and 
Podder ([1], [2]), Kakwani [3], Rasche et al. [4], Gupta [5], Rao and Tam [6], 
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Chotikabanich [7], Ogwang and Rao [8], Cheong [9] and Rohde [10]. The step 
from Lorenz curve to distribution function is more difficult than that from 
distribution function to Lorenz curve. There is a difference between advanced and 
simple Lorenz models. Advanced models yield a better fit to data, but are difficult 
to connect to exact income distributions. Simple one-parameter models can more 
easily be associated with the corresponding income distribution, but when 
statistical analyses are performed the goodness of fit is often poor.  

 
 

2  Methods 

In this study, we use the standard notation )( pL  for the Lorenz curve. Rao 
and Tam [6] compared five different models. The first was the Kakwani and 
Podder (KP) model [1],  
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The second is the generalised Pareto model (GP) analysed by Rasche et al. [4] 
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and the third is the Gupta (G) model [5]  

 1p
GL p  .     (3) 

In addition, Rao and Tam constructed a generalized Gupta model (RT) 

 1 1a p
RTL p a   .     (4) 

Finally, Rao and Tam introduced a simplified version (S) of the RT model ( 1  ) 

 a
S pL   1a  .     (5) 

Chotikabanich [7] defined an alternative Lorenz curve (C):  
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 The Gupta model and models S and C contain only one parameter. They are 
so simple that it is impossible to distinguish between the length of the range for 
the income distribution function and the Gini coefficient. Since with only one 
parameter to estimate, these distribution properties cannot be independently 
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estimated, we pay these models special attention and analyse them in more detail. 
In general, the step from the Lorenz curve to the income distribution starts 

from the formula 


px

pL  )( ,     (7) 

where px  is the p-percentile and µ is the mean of the corresponding distribution 

)(xF . We define )(M  as the inverse function of  L . From (7) we obtain  












px

Mp .      (8) 

Equation (8) indicates that )(M  is the income distribution function 

corresponding to the given Lorenz curve, that is, 



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between the Lorenz curve and the distribution function is easily defined, but for 
most of the exact Lorenz curves it is difficult or even impossible to obtain the 
income distribution mathematically. 

The Gupta model. Examples of Lorenz curves for the Gupta model (3) are given 
in Figure 1.  
Following Gupta, we observe that 
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From this it follows that Gupta´s model corresponds to distributions defined 

on a finite interval  1, (1 log )    . In spite of the fact that the Gupta model 

is relatively simple, the corresponding income distribution is not attainable. The 
equation (9) cannot be solved exactly with respect to variable p. In the formula, 
variable p can be found both as a factor and in the exponent.  
For the Gupta model, the Gini coefficient is  
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Figure 1 shows that the Gini coefficient tends towards 1, when  .  

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Lorenz curves for the Gupta model

β=1.5

β=10

β=100

β=1000

β=10000

 

Figure 1: The Lorenz curves for the Gupta model for various β values 

 
 

Figure 1 shows that the Gini coefficient tends towards 1, when  .  

 
Remark: In Rao and Tam [6], the formula for the Gini coefficient based on the 
Gupta model contains a misprint (c.f. our equation (12)), but our numerical check 
indicates that the authors have used the correct formula. 

Following Gupta, the variable log  can be estimated by using the 
logarithm of the model in (3), that is, from the equation  
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The generalized Gupta model (RT). For the generalized Gupta model, we obtain 

 1 1 1( ) logp p p
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The income distribution is defined on the interval  0, ( log )   . It can 

be observed that if   the range of the income distribution then tends 
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towards  0,  for both the Gupta and the generalized Gupta.  

Following Gradsheteyn and Ryshnik [11], Rao and Tam gives the Gini coefficient 
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for the generalised Gupta model where 11 F  denotes the confluent 
hyper-geometric function with the parameters indicated in the parentheses.  

The simplified RT model (S). The simplified RT model is obtained for 1   

and is given in (5), being ppLS )( , 1  . The Lorenz curves for various   

values are given in Figure 2. 
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Figure 2: Rao-Tam simplified Lorenz curves 

 
 

The Gini coefficient is 
1
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. The income distribution corresponding to 

the RT model can be found. The derivative of ppLS )( is 1( )SL p p   . We 
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distribution is 
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 defined on the interval  ,0 . Income 

distributions are given in Figure 3. 

The Chotikabanich model. Chotikabanich (1993) introduced the alternative 
one-parameter Lorenz curve  
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     Figure 3: Income distributions corresponding to the Rao-Tam simplified  
             Lorenz curve 
 
 
It is easily found that  
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The second derivative is positive and hence the Lorenz curve is convex. 
Consequently, the first derivative is increasing from the minimum 
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Lorenz curves as functions of parameter k are given in Figure 4. 
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Figure 4: Lorenz curves for the Chotikabanich models 
 

 
The Gini coefficient is  
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The Gini coefficient increases toward 1 when k  . 

If we consider an income distribution with the mean  , then income is 

distributed over the interval (
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Figure 5: Income distributions for the Chotikabanich models 
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obtained. Figure 5 presents income distributions for various k values. 

 
 

3  Applications  
Kakwani and Podder [2] applied their Lorenz model to Australian data, 

comparing four alternatives, of which all resulted in accurate estimates. The 
estimates varied between 0.3195 and 0.3208 when the actual value was 0.3196. 
Rao and Tam [6] applied the Kakwani-Podder, the generalised Pareto, the RT, the 
Gupta and the simplified RT models to the same data. Their comparison of the 
models indicates that the Kakwani-Podder, the generalised Pareto and the RT 
model yielded the best estimates. The Gupta and the simplified RT models 
resulted in estimates with the largest errors. For the Gupta model, the estimate was 
too high (0.3691) and for the simplified RT model it was too low (0.2508). The 
magnitude of these errors was comparable. These findings support the criticism of 
the use of simple one-parameter models.  

We applied the Chotikabanich model and obtained the following results. We 

considered  2
min ( )obs

k
f f k  and estimated the parameter k. We performed 

the minimization by using Lf   and )log(Lf  . We fitted the model to the 
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Kakwani and Podder data obtained, 0.2095k   and 0.3262G   and 
0.2097k   and 0.3263G  , respectively. We observe that the one-parameter 

Chotikabanich model yields slightly better but still less exact results. As a 
comparison, we present Lorenz models fitted to the Australian data graphically in 
Figure 6, observing that the Chotikabanich model is closest to the empirical curve. 
The simplified RT and the Gupta models show larger but comparable 
discrepancies. These findings support the results obtained by Rao and Tam. In 
Figure 6, we also observe that Gupta model yields too high an estimate and the 
simplified model too low an estimate. 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Gupta model

L

beta=4.8182

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Simplified RT model

L

S=1.6694

 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Chotikabanich model

L

Ch=2.095

 

 
        Note that the Chotikabanich gives the best fit. 

Figure 6: Graphical presentation of the goodness of fit obtained by the Gupta,  
          RT and Chotikabanich models  

 
Fellman [12] studied the numerical estimation of the Gini coefficient based 

on Lorenz curves. The alternative methods were the trapezium rule, Simpson´s 
rule, a modified version of Golden’s method [13] and the Lagrange method. In 
this study, the Simpson rule cannot be performed because it demands equidistant 
points. In general, the trapezium rule yields Gini coefficients which are too low. 
For the Australian data, the result is 0.3134, which is slightly below the correct 
value. Since the Lagrange method demands an even number of sub-intervals, we 
had to modify the method slightly. We applied the Lagrange method for the ten 
last sub-intervals and added a small correction from the first sub-interval. The 
estimate obtained is 0.3199, a result which is closest to the correct value. Fellman 
[12] presented a modified version of Golden´s method. When we apply this 
method to the Australian data, we obtain the estimate of 0.3075. This is too low, 
but still greater than the extremely low value obtained by the simplified RT model. 
Summing up, our opinion is that one has to chose the Lorenz model with due 
consideration. This is especially important if the selection should be performed 
among simple one-parameter models. 
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