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Abstract

Error in measuring time varying data setting is one important source

of bias in estimating of time series modeling parameters. When the

measurement error model is non-classic, this raises the question whether

the different measurement error model strategy might differently affect

the estimation of the time series modeling parameters. In this article,

we investigate this in Autoregressive (AR) model parameters estimation

under the non-classical measurement error model. We compare the

parameters estimation of the AR model under the classical and non-

classical error models. We perform analytically this on the AR model of

order p. Further, we confirm this through simulation study specifically

on the AR model of order 1.
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1 Introduction

Similar to other types of data, time series data can be prone to measure-

ment error (e.g., measuring of population abundances or density, air pollution

or temperatures levels, disease rates, medical indices) [1, 2]. That is a vari-

able of interest is observed with some measurement error and modeled as an

unobserved component. Since various error models are already known to be

classical measurement error model [3, 4], (a measurement error is classical if it

is independent of unobserved variable), while in many situation measurement

error might follows the model as follows,

yt = γ0 + γ1xt + ut t = 1, ..., T (1)

where the observed error prone variable yt is assumed to be related to the true

unobserved xt through the above model [2, 3]. This error model is referred

to as the non-classical measurement error model or error calibration model [3,

4]. Model (1) is the classical measurement error model when γ0 = 0, γ1 = 1.

This implies that E(Yt|Xt = xt) = γ0 + γ1xt, unlike the classical error model,

suggesting that Yt is a possibly biased measure of Xt. Here, it is assumed that

Xt and Ut are independent in each time t [3, 4]. For example [5] examined

the time series studies of air pollution (effect of PM10) and mortality, if Xt

and Yt are respectively the average personal exposure to PM10 and measured

ambient PM10 concentration on day t, then the slope γ1 measures the change

in personal exposure per unit change in a measured ambient concentration and

the intercept γ0 represents personal exposure to particles that does not drive

from external sources, but arises from particle clouds generated by personal

activities or unmeasured micro-environments.

Since Autoregressive process has a clear structure in presence measurement

errors, therefore it is a popular choice for modeling of time series in many fields.

This is especially true in population dynamics where AR(1), AR(2) models are

often employed (see e.g., [6, 7]). [4] develops tests to identification of mea-

surement error in long and short memory series. [8] studies the parameters

estimation of Autoregressive models using naive, ARMA and corrected naive

methods under the classical error model and heteroskedastic measurement er-

rors. [9] studies the asymptotic properties of estimators based on Yule-Walker

equations in autoregressive models with measurement error.
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The goal of this paper is to estimate the parameters of AR(p) process under

the non-classical error model (1), and compare the bias and corresponding

standard errors of the estimators with the classical error model.

In model (1), {xt} the true time series agent which is unobserved, instead

we observed {yt}, and {ut} is measurement error with heteroskedastic variance

i.e. σ2
ut
.

Without loss of generality, suppose that unobserved time series {xt} is

mean zero Autoregressive process model of order p, AR(p),

Xt = φ1Xt−1 + ...+ φpXt−p + et t = p+ 1, ..., T (2)

where et is white noise (Random variables e1, e2, ..., en are independent and

identically distributed with a mean of zero. This implies that the variables all

have the same variance σ2
e and Cor(ei, ej) = 0 for all i 6= j. If, in addition,

the variables also follow a normal distribution (i.e., et ∼ N(0, σ2
e)) the series

is called Gaussian white noise). This paper is summarized as follows. In the

next Section, the homoskedastic and heteroskedastic measurement errors are

described. In Section 3, we obtain the AR estimators and theirs variances

using different method under the non-classical error model. We compare the

extracted estimators with that [8] examined under the classical error model.

Section 4 provides the result of simulation studies. It should be noted that

method based on the ARMA result among the existing (naive and corrected

naive methods) is free from the estimation of σ̂2
ut
.

2 Hemosckedastic and Heteroskedastic Mea-

surement Errors

Hemosckedastic measurement error refers to case that the variance of mea-

surement error is constant. While historically constant measurement error

variances have been used, there are many situations that changing variances

be allowed, i.e., with respect to definition of the Heteroskedastic measure-

ment error, we are allowed for the fact that measurement error variances could

change across observation. The variances of the Heteroskedastic measurement

errors introduce as a function of sampling effort and unobserved variable, i.e.
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σ2
ut
(xt) which may depend on xt through a function h(xt) and may depend on

the sampling effort at time t. For asymptotic purpose it is assumed when the

measurement error is Heteroskedastic, σ2
u is defined as the limit average of σ2

ut

as follows [8],

limT→∞

∑T

t=1 σ
2
ut

T
= σ2

u (3)

3 Estimators under the Non-Classical Error

Model

In this section, we obtain the parameter estimation of AR process using

different methods. To make clear our example, we focus on the AR(p) and

provide our simulation on AR (1). We first assume Hemosckedastic measure-

ment errors, we obtain four estimators so called the propose ARMA, naive

estimators, and corrected estimators.

3.1 Gold Estimator (GE)

Suppose {Xt}, is an AR(p) process as model (2) with the unknown parame-

ter φu = [φ1, , φp]
′ and σ2

e . Parameter φ̂Gold, without presence the measurement

error and using Yule- walker estimation method (YW), derived from the fol-

lowing equations,

[γ̂(1), , γ̂(p)]
′ − Γ̂φGold = 0,

−1

σe

+
φ′
uĜφu

σ3
e

= 0

whereγ̂(k), is lag k of sample Autocovariance from Γ̂, p× p sample covariance

matrix and Ĝ are defined as follows,

Γ̂ =




γ̂(0) · · · γ̂(p−1)

...
. . .

...

γ̂(p−1) · · · γ̂(0)


 , Ĝ =




γ̂(0) −γ̂(1) −γ̂(2) · · · −γ̂(p)

−γ̂(1) γ̂(0) γ̂(1) · · · γ̂(p−1)

...
...

...
...

−γ̂(p) γ̂(p−1) γ̂(p−2) · · · γ̂(0)



.
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3.2 Naive Estimator (NE)

Using some regularity conditions, the convergence of sample Autocovari-

ances can be determined as follows [10]

γ̂y,|t−s|
p→ γ2

1γ|t−s| ∀t 6= s

and

γ̂y,(0)
p→ γ2

1γ(0) + σ2
u ∀t = s

where
p→ stands for convergence in probability. As T → ∞, the parameters

estimating equation for φ is following;




γ2
1 γ̂(1)
...

γ2
1 γ̂(p)


−




γ2
1 γ̂(0) + σ2

u · · · γ2
1 γ̂(p−1)

...
. . .

...

γ2
1 γ̂(p−1) · · · γ2

1 γ̂(0) + σ2
u







φ1

...

φp


 = 0.

Hence, the naive estimators (φ̂naive, σ̂
2
e,naive) under the error model (1) and

using YW methods will converge in probability to the following equations;

φ̂naive
p→ (γ2

1Γ + σ2
uI)

−1γ2
1γ

T = (γ2
1Γ + σ2

uI)
−1γ2

1ΓφGold,

and

σ2
e,naive

p→ γ2
1γ(0) + σ2

u − γ2
1γ

T (γ2
1Γ + σ2

uI)
−1γ2

1γ.

Also the asymptotic bias of σ2
e,naive will converge in probability to;

σ̂2
e,naive − σ̂2

e,Gold

p→ ((γ2
1 − 1)γ(0)) + σ2

u − γ2
1γ

T (γ2
1Γ + σ2

uI)
−1γ2

1γ + γT (Γ)−1γ.

For example when p = 1, i.e. AR(1), it is implied that,

φ̂naive
p→ γ2

1γ(1)

γ2
1γ(0) + σ2

u

= λφGOld,

where λ =
γ2
1γ(0)

γ2
1γ(0)+σ2

u
.

Using the results of [8], the naive estimator of φ under the classical error model

(γ0 = 0, γ1 = 1),

φ̂naive
p→ γ(1)

γ(0) + σ2
u

= λφGOld,

where λ =
γ(0)

γ(0)+σ2
u
.
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3.3 ARMA Estimator

ARMA method is based on the fact that if Xt is an AR(p) process with

parameters φ and ut is i.i.d with mean zero and constant variance σ2
u, then

([11, 12]),

φ(B)(yt − γ0) = γ1et + φ(B)ut = θ(B)bt,

follows ARMA(p, p), where parameters in the ARMA model are the same as

in the original Autoregressive model. Also bt is white noise with mean zero

and variance σ2
b , φ(z) = 1−φ1z− ...−φpz

p, θ(z) = 1−θ1z−−θpz
p and B is the

backward shift operator with BjWt = W(t−j). A simple approach to estimate

φARMA, is to fit an ARMA(p, p) model to the observed {Yt − γ0} series. The

asymptotic properties of φ̂ARMA, can be computed. For example, when p=1

([10], chapter 8),

(
φ̂ARMA

θ̂ARMA

)
∼= N



(

φ

θ

)
, T−1

(
(1− φ2)

−1
(1 + φθ)−1

(1 + φθ)−1 (1− θ2)
−1

)−1

 .

It can be conclude φ̂ARMA
∼= AN

(
φ,

(1+φθ)2(1−φ2)
T (φ+θ)2

)
, where AN is denoted ap-

proximately normal. There are two solutions for θ1, but only one leads to a

stationary process. Defining,

k =
γ2
1σ

2
e + σ2

u (1 + φ2
1)

φ1σ2
u

,

then,

θ1 =
−k +

√
k2 − 4

2
, if 0 < φ1 < 1

and

θ1 =
−k −

√
k2 − 4

2
, when − 1 < φ1 < 0.

Therefore for classical error model, one can obtain the similar result as

non-classical one just by substituting σ2
e instead of γ2

1σ
2
e , because γ1et is white

noise with mean zero and variance γ2
1σ

2
e .

3.4 Corrected Naive Estimator (CNE)

The problem with the naive estimator arises from the bias in the estimator
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of γy,(0). For the eliminate bias, we obtain the following corrected estimator;

φ̂CNE =
(
Γ̂Y − σ̂2

uIp

)−1 (
γ̂Y,(1), ..., γ̂Y,(p)

)T

where σ̂2
u =

∑T
t=1 σ̂

2
ut

T
. Like moment estimator in linear regression, φ̂CNE can

have problems for small samples. One reason is the distribution of the cor-

rected estimator of γy,(0), γ̂y,(0) − σ̂2
u can have positive probability around zero,

so the estimate of γy,(0) may be negative (Bounaccorsi, 2010). To gard this

problem,we propose a modified version of this estimator; if Γ̂Y − σ̂2
uIp is non

positive definite, then φ̂CNE := φ̂naive. In line with the proposition of [8], the

estimator φ̂CNE is consistent if,

limT→∞σ̂2
u =

∑T

t=1 σ̂
2
ut

T

p→ σ2
u (4)

Theorem 1 Consider model AR(1), assuming independence Ut and σ2
Ut

of

Xt, and using the following equations,

σ2
u = limT→∞

∑T

t=1 σ
2
ut

T
, λ =

γ2
1γ(0)

γ2
1γ(0) + σ2

u

, λ́ =
γ(0)

γ(0) + σ2
u

,

and

σ2
σ2
u
= limT→∞var

(
σ̂2
u

)
, σ4

u = limT→∞

∑
t σ

4
ut

T
,E(u4) = limT→∞

∑
t E(u4

t )

T
,

then the asymptotic variance of φ̂CNE under non-classical error model is as

follows,

avar(φ̂CNE) =
1

T

[[
γ4
1

(
1− φ2

) [2− λ

λ

]]
+

(1− φ2) σ4
u

γ2
(0)

+
φ2E(u4)

γ2
(0)

+
φ2

γ2
(0)

σ2
σ2
u

]
.

By assuming variance σ2
u to be constant and E(u4) = δσ4

u,

avar(φ̂CNE) =
1

T

[[
γ4
1

(
1− φ2

) [2− λ

λ

]]
+

φ2

γ2
(0)

σ2
σ2
u
+

(1− λ́)2[φ2(δ − 1) + 1]

λ́2

]
,

and under normality measurement error, i.e δ = 3;

avar(φ̂CNE) =
1

T

[[
γ4
1

(
1− φ2

) [2− λ

λ

]]
+

φ2

γ2
(0)

σ2
σ2
u
+

(1− λ́)2[2φ2 + 1]

λ́2

]
.
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( For more details of proof see Appendix).

Finally using the proposition (3) of [8], it can be concluded that the asymp-

totic variance of φ̂CEE has approximately normal distribution. Under the clas-

sical error model, similar results can be observed by substituting γ0 = 0, γ1 = 1.

4 Simulation study

In this section, simulation studies are carried out for AR(1) process. In

order to investigate the bias of the estimators and theirs standard errors, a

simulation study is done for the case where {xt} is AR(1) process. The simu-

lation is done in three steps:

• At first step, T segment was simulated from AR(1) for {xt}

• At second step, by assuming normality of the measurement error ut, yt

was simulated from model (1) for all the different values of γ1 between

(0.5, 2).

• At third step, the biases and standard errors of estimators are evaluated,

with 500 replication for steps (1) and (2), given different values of β =

0.1, 0.3, 0.5, 0.7, 0.9 and T = 100, 200, 500, λ = 0.5, 0.75, 0.9 under the

non-classical error model.

Figure 1, represents the simulation result under the non-classical measure-

ment error model. The left and right panels are respectively bias and standard

error of the estimators. It is clear that biases are decreased when the values

of T are increased, but bias behavior of the estimators is uniform by changing

values of the γ1, that is it shows the low influence of the γ1. Also it can be

observed that the bias of the naive estimator is more than the other estimators.

Similarly, We observe that the influence of γ1 and T respectively in the naive

and ARMA estimators standard error.

Figure 2 shows the second scenarios of the obtained estimator through the

considered values of φ. It can be seen that, for the small values of φ, the bias of

the ARMA estimator is more than the other estimators, because identification

from of the ARMA model be harder.
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Figure 1: bias of the estimators of the Autoregressive process of order one for

γ1 = (0.5, 2) and T = 100, 200, 500 and φ = 0.5, λ = 0.75.

Figure 3 represents the simulation result of the corresponding estimator’s

standard error. It clearly can be seen that by changing the considered values of

φ, the naive and ARMA estimators considerably vary. This might be because

of the impact of increasing of the standard error of γ̂1.

Figure 4 shows the presentation of the estimators behavior and correspond-

ing standard errors by different values of the λ, where λ is function of γ1 and

σ2
u, i.e., λ =

γ2
1γ(0)

γ2
1γ(0)+σ2

u
. As is shown, when λ values is increased, bias is de-

creased. Because it might be the les impact of σ2
u. The standard error of the

naive estimator is more than the ARMA estimator when the values of γ1 and

λ is simultaneously increased.
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Figure 2: bias of the estimators of the Autoregressive process of order one for

γ1 = (0.5, 2) and φ = 0.1, 0.3, 0.5, 0.7, 0.9 and T = 300, λ = 0.75.
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Figure 3: standard error of the estimators of the Autoregressive process of

order one for γ1 = (0.5, 2) and φ = 0.1, 0.3, 0.5, 0.7, 0.9 and T = 300, λ = 0.75.
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Figure 4: bias of the estimators of the Autoregressive process of order one for

γ1 = (0.5, 2) and λ = 0.5, 0.75, 0.9 and T = 300, φ = 0.5.
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5 Conclusion

This study concerns the estimation of parameter for AR(1) process in the

presence of non-classical error model. From theoretical point of view and also

simulation study, it is concluded that Corrected naive and Gold estimators

have similar behaviors from biases and the standard errors in the presence of

the non-classical measurement error model. Moreover, when the parameters

of the model are like that the model is markedly far from to be a white noise,

i.e., φ and γ1 are increased simultaneously, it can be seen that the bias and

standard error of the ARMA estimator closed to CNE and GE. Further the

naive estimator has not good performance, because with increasing γ1 param-

eter, the corresponding standard error is increased. A comparison between the

estimators, it can be obtained that Corrected naive estimator is more efficient

than the other estimators. These results show the trace of non-classical mea-

surement error model and measurement error, and considering that tends to

be more valuable and informative.
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Appendix

In this Section we shad light on some formulas that we have pointed out

in the text.

The asymptotic behavior of
√
T

(
γ̂y − γy

σ̂2
u − σ2

u

)
is obtained, where γy =

[
γy,(0), ..., γy,(p)

]′
.

The variance of φ̂CEE is determined by using the delta method.

If Z ′
t = [Y 2

t , YtYt+1, ..., YtYt+p] and Z =
∑

t Zt

T
, then the asymptotic behavior

√
T

(
γ̂y − γy

σ̂2
u − σ2

u

)
is equivalent to

√
TZ. By taking the limit exists, we can

evaluate limT→∞Cov(
√
TZ) = Q, where

Q =

[
Qγ Qγ,σ2

u

Qσ2
u,γ

Qσ2
σ2
u

]
.
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For computation of the matrix Q, we should obtain elements of the matrix Q,

i.e., limT→∞Cov(γ̂y,(p), γ̂y,(r)) and limT→∞Cov(γ̂y(r) , σ̂
2
u). To do so, we obtain

limT→∞Cov(γ̂y,(p), γ̂y,(r))

= limT→∞
1

T
E(
∑

t

(Yt − E(Yt))(Yt+p − E(Yt+p))
∑

s

(Ys − E(Ys))(Ys+r − E(Ys+r)))

− limT→∞TE(γ̂y,(p))E(γ̂y,(r))

= limT→∞
1

T
(
∑

t

∑

s

E ((γ1Xt + Ut)(γ1Xt+p + Ut+p)(γ1Xs + Us)(γ1Xs+r + Us+r)))

− γy,(p)γy,(r).

Now it follows from the latter that,

E(γ1Xt + Ut)(γ1Xt+p + Ut+p)(γ1Xs + Us)(γ1Xs+r + Us+r).

Assuming independence of Xt and Ut, we have,

= I(r = 0)[γ2
1E(XtXt+p)E(U2

s )] + I(p = 0)[γ2
1E(XsXs+r)E(U2

t )]

+ I(p = r = 0)[E(U2
t U

2
s )] + I(p = r 6= 0)[E(U2

t U
2
t+p)]

+ I(s = t+ p− r)[γ2
1E(XtXs)E(Ut+pUs+r)]

+ I(s = t+ p)[γ2
1E(XtXs+r)E(Ut+pUs)]

+ I(s = t− r)[γ2
1E(Xt+pXs)E(UtUs+r)]

+ I(s = t)[γ2
1E(Xt+pXs+r)E(UtUs)] + [γ4

1E(XtXt+pXsXs+r)].

Replacing in the previous equation, it can be concluded,

limT→∞Cov(γ̂y,(p), γ̂y,(r))

= limT→∞
1

T
(
∑

t

∑

s

I(r = 0)[γ2
1E(XtXt+p)E(U2

s )])

+ limT→∞
1

T
(
∑

t

∑

s

I(p = 0)[γ2
1E(XsXs+r)E(U2

t )])

+ limT→∞
1

T
(
∑

t

∑

s

I(p = r = 0)[E(U2
t U

2
s )])

+ limT→∞
1

T
(
∑

t

∑

s

I(p = r 6= 0)[E(U2
t U

2
t+p)])

+ limT→∞
1

T
(
∑

t

∑

s

I(s = t+ p− r)[γ2
1E(XtXs)E(Ut+pUs+r)])
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+ limT→∞
1

T
(
∑

t

∑

s

I(s = t+ p)[γ2
1E(XtXs+r)E(Ut+pUs)])

+ limT→∞
1

T
(
∑

t

∑

s

I(s = t− r)[γ2
1E(Xt+pXs)E(UtUs+r)])

+ limT→∞
1

T
(
∑

t

∑

s

I(s = t)[γ2
1E(Xt+pXs+r)E(UtUs)])

+ limT→∞
1

T
(
∑

t

∑

s

[γ4
1E(XtXt+pXsXs+r)])− γy,(p)γy,(r).

If Cov(γ̂y,(p), γ̂y,(r)) = qγrp, then using simple calculation for different form

of r, p = 0, 1, we will have;

qγ,00 = γ4
1q00 + 4γ2

1γ(0)σ
2
u + E(u4)− σ4

u

qγ,01 = γ4
1q01 + 4γ2

1γ(1)σ
2
u

qγ,11 = γ4
1q11 + 2

[
γ2
1γ(0)σ

2
u + γ2

1γ(2)σ
2
u

]
+ limT→∞

∑T

t=1 σ
2
ut
σ2
ut+1

T

and also it implies Qγ̂,σ̂2
u
= 0, because

limT→∞Cov(γ̂y,(p), σ̂
2
u) = limT→∞

1

T
(
∑

t

∑

r

E(YtYt+p)σ̂
2
ut
)− γy,(p)σ

2
u = 0.

Now, is obtained the corrected naive estimator under AR(1) model, φ̂CNE =
γ̂y,(0)

γ̂y,(0)−σ̂2
u
, using three variables of the Taylor expansion evaluated at (γ̂y,(0), γ̂y,(1), σ̂

2
u),

we have,

φ̂CNE = φGold +
1

γ(0)
(γ̂y,(1) − φγ̂y,(0)) +

φ

γ(0)
σ̂2
u.

Then,

var(φ̂CNE) =
1

Tγ2
(0)

[
qγ11 + φ2qγ00 − 2φqγ01

]
+

φ2

Tγ2
(0)

σ2
σ2
u
.

Substituting var(φGold) =
1

Tγ2
(0)

[q11+φ2q00−2φq01] (where qrp is auto-covariance

between γ̂x,(p) and γ̂x,(r) ) in the above equation, it can be compute that,

var(φ̂CNE) = γ4
1

1− φ2

T
+

1

Tγ2
(0)

[
2γ2

1σ
2
u

(
γ(0) + γ(2)

)
+ limT→∞

∑
t σ

2
ut
σ2
ut+1

T

]

+
1

Tγ2
(0)

[
φ2(4γ2

1γ(0)σ
2
u + E(u4)− σ4

u)
]
− 1

Tγ2
(0)

[
8φγ2

1γ(1)σ
2
u

]

+
φ2

Tγ2
(0)

σ2
σ2
u
.

Proof is proved with simplification.
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