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Abstract

In this paper, we focus on an interface problem. Two fluids immis-

cible satisfying stationary Navier-Stokes equations, with transmission

boundary conditions on the interface are considered. We use topological

optimization tools to get a topological sensitivity of a given cost func-

tion, in order to do numerical simulations locating the interface that

separates the two fluids. In fact the obtained numerical results permit

to see the comportment or the behavior of the fluids when changing the

pressure in one compartment.
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2 Location Problems

1 Introduction

This work deals about interface problem of two immiscible fluids dynamics,

satisfying the stationary Navier-Stokes system with transmissions boundary

conditions on the interface. Let us mention that this questioning is an im-

portant and interesting one and an increasing attention is done to the fluid

interface computation in industrial and environmental applications.

From a mathematical viewpoint, one of the most intriguing unresolved

questions concerning the Navier-Stokes equations and closely related to tur-

bulence phenomena is the regularity and uniqueness of the solutions to the

initial value problem. More precisely, given a smooth datum at time zero, will

the solution of the Navier-Stokes equations continues to be smooth and unique

for all time? This question was posed in 1934 by Leray and is still without

answer. Let us note that the authors would say that they are not aware that

this question is solved.

In the nineteenth century, finding the exact solution to the Navier Stokes

equation were studied. In the twentieth century, the concept of weak solution

was introduced. Only the existence of the solutions can be ensured. The

uniqueness question is among the most important unsolved problems in fluid

mechanics. Some particular results on the existence, uniqueness, and regularity

of the Navier Stokes equations are nowadays considered as famous and well

understood by people who work around these types of problems. They can

be found in many references on the mathematical theory of the Navier Stokes

equations (see Constantin and Foias [5], Ladyzhenskaya [12], J. L. Lions [13],

R. Temam [21], P. L. Lions [14].

In the 2-dimensional evolutive case, the mathematical theory is fairly com-

plete. The weak solutions turn out to be more regular and are, in fact, strong

solutions. Moreover, the solutions are unique for a given initial condition and

exist for all time.

In the 3-dimensional evolutive case, the mathematical theory is not yet

complete. It is known that the weak solutions exists for all time, but it is not

known whether they are unique. On the other hand, the strong solution is

unique and exists on a certain finite time interval, but it is not known whether

they exist for all time (see C. Foias O. Manley R. Rosa R. Temam [7]).

In this paper, we are interested in the steady-state of the Navier Stokes
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problem. There is non-uniqueness of solutions, in general. Uniqueness occurs

only when ”the data are small enough, or the viscosity is large enough”.

The nature of the interface between two fluids has been the subject of

extensive investigation for over two centuries. Young, Laplace, and Gauss,

in the early part of the 1800s, considered the interface between two fluids to

be represented as a surface of zero thickness endowed with physical properties

such as surface tension. In the classical fluid mechanical approach, the interface

between two immiscible fluids is modeled as a free boundary that evolves in

time. The equations of motion that hold in each fluid are supplemented by

boundary conditions at the free surface that involve the physical properties of

the interface. Specifically, in the free-boundary formulation it is assumed that

the interface has a surface tension, which on applying a stress balance at the

interface gives rise to the interfacial boundary condition, see [2]:

σ.n̂ = |+− = γκn̂

which relates the jump in the stress across the interface to the interfacial

curvature. Here σ is the stress tensor, n̂ is the unit vector normal to the

interface, γ is the surface tension (here assumed to be constant), and κ is the

appropriately signed mean curvature. In addition, an interface between two

immiscible fluids is impermeable, in which case conservation of mass across

the interface leads to

−→u .n̂ = |− = −→u .n̂ = |+ = Un

where −→u represents the velocity of the fluid and Un is the normal velocity

of the interface. Finally, for viscous fluids, there is continuity of tangential

velocity across the interface

[−→u − (−→u .n̂)n̂]|+− = 0

The free-boundary description has been a successful model in a wide range of

situations. However, there are also important instances where it breaks down.

In this paper, we use topological optimization tools to study the steady

Navier-Stokes problem, with transmission boundary condition on the interface

between the two fluids. And our aim is to locate the interface that separates

the two fluids.
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The goal of the topological optimization problem is to find an optimal

design with an a priori poor information on the optimal shape of the struc-

ture. The topological optimization problem consists in minimizing a functional

j(Ω) = J(Ω, uΩ) where the function uΩ is defined, for example, on a variable

open and bounded subset Ω of Rn. For ρ > 0, let Ωρ = Ω\(x0 + ρω), be the set

obtained by removing a small part x0 + ρω from Ω, where x0 ∈ Ω and ω ⊂ R
n

is a fixed open and bounded subset containing the origin. Then, using general

adjoint method, an asymptotic expansion of the function will be obtained in

the following form:

j(Ωρ) = j(Ω) + f(ρ)g(x0) + o(f(ρ))

lim
ρ→0

f(ρ) = 0, f(ρ) > 0

The topological sensitivity g(x0) provides information when creating a small

hole located at x0. Hence the function g will be used as descent direction in

the optimization process.

Remark 1.1. The physical interpretation of holes depend to the nature of

the design. In the case of structural optimization, the insertion of a hole

means simply removing some material (see [20], for example). In the case of

fluid dynamics, creating a hole means inserting a small obstacle (see [19], for

example). The objective here is to see how evolute the fluids when acting on

one pressure (for example p2 varies and p1 is constant).

The rest of the paper is organized as follows: in Section 2, we recall to the

Navier-Stokes equation and some results related to existence and unicity (under

useful conditions) of the solution of the problem. In section 3 we formulate

the two layer problem and the adapted boundary conditions on the interface.

In section 4 we set the topological optimization problem and we derive the

topological sensitivity, which is the main theoretical result of the paper and so

far its proof. To end the paper, section 5, we use topological gradient to do

numerical simulations (2d), in order to see variations of δj which respects p2

and therefore to locate the interface between the two fluids.
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2 Existence of solution of the Navier-Stokes

problem.

The Navier-Stokes equations describing the n−dimentional motion of a

viscous and incompressible fluid are as follows:

%

(
∂ui

∂t
+

n∑

j=1

uj
∂ui

∂xj

)
−

n∑

j=1

∂

∂xj

σij = %fi, 1 ≤ i, j ≤ n, (1)

with the incompressibility condition

div u =
n∑

i=1

Dii(u) = 0, (2)

where {
σij = −Pδ

j
i + 2µDij(u)

Dij(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
}

1 ≤ i, j ≤ n. (3)

In these equations, the vector u is the velocity of the fluid, % is its density

(assumed to be constant), µ > 0 is the viscosity (also assumed to be constant)

and P is its pressure; (σij) is the stress tensor and the vector f represents a

density of body forces per unit mass (gravity for instance). We set

p =
P

%
and ν =

µ

%
.

Here p is the kinematic pressure and ν the kinematic viscosity, but for sake

of simplicity they will be called pressure and viscosity.

In the sequel, we focus only on the steady case, that is ∂u
∂t

= 0. Thus the

global stationary Navier-Stokes system writes




−ν∆u+
∑n

i=1 uiDiu+∇p = f in Ω

div(u) = 0 in Ω

γ(u) = g, on ∂Ω = Γ

(4)

where Ω is a bounded domain of Rn with a Lipschitz continuous boundary Γ

and g is a regular given vector function.

In order to write (4) in a variational form, we introduce a trilinear func-

tional,

b(u, v, w) =
n∑

i,j=1

∫

Ω

uiDivjwidx. (5)
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We also recall the following spaces

V = {v ∈ (D(Ω))n; div v = 0} and V = {v ∈ (H1
0 (Ω))

n div v = 0}

The following lemmas give useful properties of b, there proofs can be found

in [10, 21].

Lemma 2.1. The trilinear form b is defined and continuous on H1
0 (Ω)

n ×

H1
0 (Ω)

n × (H1
0 (Ω)

n ∩ Ln(Ω)), Ω bounded or unbounded, any dimension of Rn.

Lemma 2.2. Let u ∈ H1(Ω)n with div u = 0 and γ(u) = 0 and let v and

w ∈ H1
0 (Ω)

n ∩ Ln(Ω); then

b(u, v, v) = 0 (6)

b(u, v, w) = −b(u, w, v) (7)

And the following estimations holds: (see also [10])

∣∣∣∣
∫

Ω

ui(Divj)widx

∣∣∣∣ ≤ |ui|
L

2n
n−2 (Ω)

|Divj|L2(Ω)|wj|Ln(Ω) (8)

‖ui‖
L

2n
n−2 (Ω)

≤ C(Ω)‖u‖H1

0
(Ω)n

‖Divj‖L2(Ω) ≤ ‖vj‖H1

0
(Ω)

‖wi‖Ln(Ω) ≤ ‖wi‖H1

0
(Ω)∩Ln(Ω)

It follows (8) and the above estimations that:

|b(u, v, w)|L3(Ω) ≤ C(Ω)‖u‖H1

0
(Ω)‖vj‖H1

0
(Ω)n‖wi‖H1

0
(Ω) (9)

with

C(Ω) =

{
2
3
|Ω|1/6, if n = 3
|Ω|1/2

2
, if n = 2

Now let

a(u, v) =

∫

Ω

∇u.∇vdx (10)

The variational form associated to (4) is: Find u ∈ V such that

νa(u, v) + b(u, u, v) = (f, v), ∀ v ∈ Ṽ , (11)
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where Ṽ is the closure of V in H1
0 (Ω) ∩ Ln(Ω). Given f ∈ L2(Ω)n, it is clear

that if u, and p are smooth functions satisfying (4), then u satisfies (11),

conversely, if u ∈ V satisfying (11) then (4) is satisfied (see the Theorem of De

Rham below):

Proposition 2.3 (De Rham). Let Ω be an open set of Rn and h ∈ (D′(Ω))n, a

necessary and sufficient condition that h = gradp for some p ∈ D′(Ω), is that

< h, v >= 0.

Remark 2.4. In the case of incompressible Stoke’s system, the pressure can

be interpreted as a Lagrange multiplier. In fact the pressure p ∈ L2
l oc(Ω). For

more details see for instance [6].

The following theorem gives existence result for the Navier-Stokes problem

and the proof can be found in [10].

Theorem 2.5. Let Ω be a bounded domain of Rn with a Lipschitz continuous

boundary Γ. Given a function f ∈ (H−1(Ω))n, there exists at least one solution

u in V that satisfies (11), and there exists a distribution p ∈ L1
loc(Ω) such that

(4) is satisfied.

Remark 2.6. Under the hypothesis of the above lemmas and the theorem,

and in addition, if we suppose that ‖u‖V < ν
κ
, (κ = C(Ω) as defined above)

the Navier-Stokes problem (4) admits a unique solution u ∈ V .

3 The two layer problem

Assuming that Ω is halved in two parts Ω1 and Ω2 by a manifold Γint as in

Figure 1.

We now consider functions gk ∈ L2(Ωk)
n (k = 1, 2). Each domain Ωk is

occupying by a fluid in which the following system holds:




−νk∆uk +
∑n

i=1 ukiDiuk +∇pk = 0 in Ωk

div(uk) = 0 in Ωk

Bk(uk) = gk, on ∂Ωk = Γk

(12)
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Ω
1

Ω
2

Γ
int

Γ
1

Γ
2

Γ
2
 − Γ

int

Γ
1
=Γ

int

Ω
1

Ω
2

Figure 1: Example of domain Ω halved in two parts Ω1 and Ω2

where B1, B2 are Dirichlet or Neumann operators.

We have either the addition transmission boundary conditions

{
u1 = u2 on Γint = Γ1 ∩ Γ2

σ1.n = σ2.n on Γint

(13)

Without losing generality, we will suppose, in the sequel thatB1 = B2 = Id.

Hence the systems (12)-(13) is an interface problem: Our aim is to look for

(u1, p1) ∈ V × L2
0(Ω1) and (u2, p2) ∈ V × L2

0(Ω2) satisfying





−ν1∆u1 +
∑n

i=1 u1iDiu1 +∇p1 = 0 in Ω1

−ν2∆u2 +
∑n

i=1 u2iDiu2 +∇p2 = 0 in Ω2

div(u1) = 0 in Ω1

div(u2) = 0 in Ω2

γ1(u1) = g1, on Γ1

γ2(u2) = g2, on Γ2

u1 = u2 on Γint

σ1.n = σ2.n on Γint

(14)

In order to construct an equivalent variational problem, we have to introduce





(i) the space V = V × V

(ii) the space T = H1/2(Γ1)×H1/2(Γ2)

(iii) the operator γ = (γ1,−γ2)

(15)

For this choice, we can present the following trilinear and bilinear forms on V

by:

b(u, v, w) = b1(u1, v1, w1)+ b2(u2, v2, w2), a(u, v) = ν1a1(u1, v1)+ ν2a2(u2, v2)
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where bk(., ., ) is defined by (5) and ak(., .) by (10).

Then the interface problem is the one posed to the space W defined by

W = {u = (u1, u2) ∈ V × V such that u1|Γint
= u2|Γint

}. (16)

equipped with the norm: ‖u‖W = max{|u1|V , |u2|V } with |.|V = |∇.|2L. The

above variational formulation writes: Find u ∈ W such that

a(u, v) + b(u, u, v) = (f, v), ∀ v ∈ W̃ (17)

where W̃ is the closure of W. The existence of solution for (17) follows from

Theorem 2.5. The unicity follows when ‖u‖W < min{ ν1
κ1

, ν2
κ2

}.

4 Topological asymptotic results

4.1 Setting of the topological optimization problem

For all ρ > 0, let Ωρ = (Ω1 ∪ Ω2) \ ωρ, the domain obtained by removing

a small part ωρ of radius ρ centered to x0 ∈ ωρ from Ω = Ω1 ∪ Ω2 and let

uρ = (u1,ρ, u2,ρ) be the solution of the problem posed on Ωρ (see Figure 2):

Find (uρ, pρ) ∈ Vρ × L2
0(Ωρ)




−ν∆uρ + uρ∇uρ +∇pρ = 0 Ωρ

div(uρ) = 0 Ωρ

γ(uρ) = g ∂Ω = Γ

uρ = 0 ∂ωρ

(18)

The weak formulation of (18) is: find uρ ∈ Vρ such that

νaρ(uρ, v) + bρ(uρ, uρ, v) = 0, ∀ v ∈ Vρ, (19)

with

aρ(uρ, v) = ν

∫

Ωρ

∇uρ.∇v and bρ(uρ, uρ, v) =

∫

Ωρ

uρDjuρ,j vjdx

Where

Vρ = {v ∈ (D(Ωρ))
n; div v = 0 and v = 0 on ∂ωρ}

Due to the Theorem 2.5, the problem (18) is well posed and we have the

following result.
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Proposition 4.1. Let u = (u1, u2) and uρ = (u1,ρ, u2,ρ) ∈ Vρ be the solution

of (4) and (18), then the following estimation holds

‖uρ − u‖Vρ = o(f(ρ)), with

{
f(ρ) = ρ, n = 3

f(ρ) = − 1
log ρ

, n = 2
(20)

4.2 General adjoint method framework

The mathematical framework for domain parametrization introduced by

the Murat-Simon work [17] cannot be used here. Alternatively, it is possible

however to invoke the adjoint method, as described in [15], in application

to topological optimization. A basic feature of the adjoint method is yield

of an asymptotic expansion of a functional J(Ω, uΩ) = J(u) which depends

of a parameter uΩ, using a adjoint state vΩ which does not depend on the

parameter. This implies the need to solve a certain system of equations in

order to obtain an approximation of the topological gradient g(x), ∀ x ∈ Ω.

Accordingly, let V be a fixed Hilbert space and L(V) (resp L2(V), and L3(V))

denotes the spaces of linear (resp bilinear and trilinear) forms on V . We are

able then to state the following hypotheses:

• H-1: There exists a real function f , a trilinear form δb ∈ L3(V), a bilinear

form δa ∈ L2(V) and a linear form δl ∈ L(V) such that:

f(ρ) −→ 0, ρ −→ 0+, (21)

‖bρ − b− f(ρ)δb‖L3(V) = o(f(ρ)), (22)

‖aρ − a− f(ρ)δa‖L2(V) = o(f(ρ)), (23)

‖lρ − l − f(ρ)δl‖L(V) = o(f(ρ)). (24)

• H-2: Consider a cost function j(ρ) = J(uρ), where the functional J

is differentiable. For u ∈ V there exists a linear and continuous form

DJ(u) ∈ L(V) and δJ such that:

J(u)− J(v) = DJ(u)(u− v) + f(ρ)δJ(u) + o(‖u− v‖V). (25)
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The Lagrangian of the problem L is defined by,

L(u, v) = b(u, u, v) + a(u, v)− l(v) + J(u) ∀u v ∈ V ,

and its variation is given, for all ρ ≥ 0,

Lρ(u, v) = bρ(u, u, v) + aρ(u, v)− lρ(v) + Jρ(u) ∀u v ∈ V ,

The next theorem gives an asymptotic expansion for j(ρ).

Theorem 4.2. If hypotheses (H-1) and (H-2) are satisfied, then

j(ρ)− j(0) = f(ρ)δL(u, v0) + o(f(ρ)), (26)

where u is the solution of (18) with ρ = 0, v0 is the solution to the adjoint

problem, find v0 such that:

b(u, u, v0) + a(u, v0) = −DJ(u)w ∀w ∈ V , (27)

and

δL(u, v) = δb(u, u, v) + δa(u, v)− δl(v) + δJ(u). (28)

Proof. The proof is standard in partial differential equations and can be found

in [11, 1]

Variation of the trilinear form

Proposition 4.3. Let bρ and b the trilinear forms defined as above. Then,

there exists, a trilinear and continuous form δb such that

‖bρ − b− f(ρ)δb‖L3(Ω) = o(f(ρ)) (29)

where L3(Ω) is the set of trilinear and continuous form on W × L2(Ω)

Proof.

bρ(uρ, uρ, v)− b(u, u, v) = bρ(uρ, uρ, v)− bρ(u, uρ, v) + bρ(u, uρ, v)− b(u, u, v)

= bρ(uρ − u, uρ, v) + bρ(u, uρ, v)− b(u, u, v)

= bρ(uρ − u, uρ, v) + bρ(u, uρ, v)− bρ(u, u, v) + bρ(u, u, v)− b(u, u, v)

= bρ(uρ − u, uρ, v) + bρ(u, uρ − u, v) + bρ(u, u, v)− b(u, u, v)
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= bρ(uρ − u, uρ, v) + bρ(u, uρ − u, v) + bρ(u, u, v)− b(u, u, v)

= bρ(uρ − u, uρ, v) + bρ(u, uρ − u, v) + (bρ − b)(u, u, v)

Due to the above estimation in Lemma 2.2, we have,

|bρ(uρ − u, uρ, v)|L3(Ω) ≤ ‖uρ − u‖Vρ‖uρ‖Vρ‖v‖V = o(f(ρ))

|bρ(u, uρ − u, v)|L3(Ω) ≤ ‖uρ − u‖Vρ‖u‖V‖v‖V = o(f(ρ))

We set,

bρ(u, u, v)− b(u, u, v) = (bρ − b)(u, u, v) = f(ρ)δb

It follows that

‖bρ(uρ, uρ, v)− b(u, u, v)‖L3(Ω) = f(ρ)δb + o(f(ρ)).

Variation of the bilinear form

Proposition 4.4. Let aρ and a the bilinear forms defined as above. Then,

there exists a bilinear and continuous form δa such that

‖aρ − a− f(ρ)δa‖L2(Ω) = o(f(ρ)) (30)

where L2(Ω) is the set of bilinear and continuous form on V

Proof.

aρ(uρ, uρ)− a(u, u) = ν

∫

Ωρ

|∇uρ|
2 − ν

∫

Ω

|∇u|2dx

= ν

∫

Ω

(|∇uρ|
2 − |∇u|2)dx− ν

∫

ωρ

|∇u|2dx

= ν

∫

Ω

∇(uρ − u)∇(uρ + u)dx− ν

∫

ωρ

|∇u|2dx

∣∣∣∣
∫

Ω

∇(uρ − u)dx

∣∣∣∣ ≤
∫

Ω

||∇(uρ − u)||L2(Ω) ≤ m(Ω)||∇(uρ − u)||L2(Ω)

≤ m(Ω)||∇(uρ − u)||L2(Ω) ≤ m(Ω)||uρ − u||H1

0
(Ω) = o(f(ρ))
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It follows that
∣∣∣∣ν
∫

Ω

∇(uρ − u)∇(uρ + u)dx

∣∣∣∣ ≤ m(Ω)||uρ − u||H1

0
(Ω)||uρ + u||H1

0
(Ω) = o(f(ρ))

Setting

f(ρ)δa = ν

∫

ωρ

|∇u|2dx,

the desired result holds.

Variation of the cost function

The cost functional

JΩ(u1, u2) =

∫

Ω

|u1 − u2|
2

writes

JΩ1∪Ω2
(u1, u2) =

∫

Ω1∪Ω2

|u1 − u2|
2 =

∫

Ω1

|u1 − u2|
2 +

∫

Ω2

|u1 − u2|
2

Due to the continuity condition on the interface between Ω1 and Ω2 (u1 = u2

on Γint), it follows that the integral

∫

Γint

|u1 − u2| = 0

JΩρ(u1,ρ, u2,ρ) =

∫

Ω

|u1,ρ − u2,ρ|
2 (31)

Three cases can presented (see Figure 2):

i) ωρ ⊂ Ω1

ii) ωρ ⊂ Ω2

iii) ωρ = ω1,ρ ∪ ω2,ρ with ω1,ρ ∩ ω2,ρ = ∅ and ω1,ρ ⊂ Ω1, ω2,ρ ⊂ Ω2

u1,ρ is defined on Ω1 and u2,ρ on Ω2 as u1 and u2. Thus, we can use the following

extension (without lost of generality)

u1(x) =

{
u1(x) x ∈ Ω1

0 x ∈ Ω2

, u2(x) =

{
u2(x) x ∈ Ω2

0 x ∈ Ω1
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Ω
1,ρ

Ω
2,ρ

Γ
int

Γ
1

Γ
2

ωρ

ωρ

ωρ

Case
1

Case
2

Case
3

Ωρ

Figure 2: Example of perturbed domains

X In the case i), the functional (31) writes

JΩρ(u1,ρ, u2,ρ) =

∫

Ω1\ωρ

|u1,ρ − u2,ρ|
2 +

∫

Ω2

|u1,ρ − u2,ρ|
2

or in Ω2, u1,ρ = u1 and u2,ρ = u2, so

∫

Ω2

|u1,ρ − u2,ρ|
2 =

∫

Ω2

|u1 − u2|
2

Thus,

JΩρ(u1,ρ, u2,ρ)− JΩ(u1, u2) =

∫

Ω1\ωρ

|u1,ρ − u2,ρ|
2 −

∫

Ω1

|u1 − u2|
2

=

∫

Ω1

|u1,ρ − u2,ρ|
2 −

∫

Ω1

|u1 − u2|
2 −

∫

ωρ

|u1,ρ − u2,ρ|
2

=

∫

Ω1

[
|u1,ρ − u2,ρ|

2 − |u1 − u2|
2
]
−

∫

ωρ

|u1,ρ − u2,ρ|
2

As u1,ρ → u1 and u2,ρ → u2 when ρ → 0, follows

lim
ρ→0

|u1,ρ − u2,ρ|
2 = |u1 − u2|

2 ⇒ lim
ρ→0

∫

Ω1

|u1,ρ − u2,ρ|
2 =

∫

Ω1

|u1 − u2|
2 (32)

Consequently, the variation of the cost function writes

JΩρ(u1,ρ, u2,ρ)− JΩ(u1, u2) =

∫

ωρ

|u1,ρ − u2,ρ|
2 + o(f(ρ)). (33)
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X The case ii) is the same as i) (it suffices to replace Ω1 by Ω2 in the above

calculous) and the result (33) holds.

X In the case iii), we have:

JΩρ(u1,ρ, u2,ρ)− JΩ(u1, u2) =

∫

Ω1\ω1,ρ

|u1,ρ − u2,ρ|
2 +

∫

Ω1\ω2,ρ

|u1,ρ − u2,ρ|
2

−

∫

Ω1

|u1 − u2|
2 −

∫

Ω2

|u1 − u2|
2

=

∫

Ω1

|u1,ρ − u2,ρ|
2 −

∫

Ω1

|u1 − u2|
2

︸ ︷︷ ︸
=o(f(ρ)) due to (32)

−

∫

ω1,ρ

|u1,ρ − u2,ρ|
2

+

∫

Ω2

|u1,ρ − u2,ρ|
2 −

∫

Ω2

|u1 − u2|
2

︸ ︷︷ ︸
=o(f(ρ)) due to (32)

−

∫

ω2,ρ

|u1,ρ − u2,ρ|
2

It follows that

JΩρ(u1,ρ, u2,ρ)− JΩ(u1, u2) = −

[∫

ω1,ρ

|u1,ρ − u2,ρ|
2 +

∫

ω2,ρ

|u1,ρ − u2,ρ|
2

]

+o(f(ρ))

=

∫

ω1,ρ∪ω2,ρ

|u1,ρ − u2,ρ|
2 + o(f(ρ)) =

∫

ωρ

|u1,ρ − u2,ρ|
2 + o(f(ρ)).

Consequently, we have the following result.

Proposition 4.5. Let u = (u1, u2) and uρ = (u1,ρ, u2,ρ) be the solution respec-

tively of systems (14) and (18) and J(uρ) = JΩρ(u1,ρ, u2,ρ) be the cost functional

defined by (31). Then we have the following asymptotic development.

JΩρ(u1,ρ, u2,ρ)− JΩ(u1, u2) =

∫

ωρ

|u1,ρ − u2,ρ|
2 + o(f(ρ)). (34)

Remark 4.6. It is proven in [1] that
∫
ωρ

|uρ − u|2dx = o(f(ρ)).

Due to the general framework of generalized adjoint method in topological

optimization, we can derive from Theorem 4.2, the following result which is

the main result of this paper.

Theorem 4.7 (Main result). Let u = (u1, u2) and uρ = (u1,ρ, u2,ρ) be the solu-

tion respectively of systems (14) and (18) and J(uρ) = JΩρ(u1,ρ, u2,ρ) be the cost
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functional defined by (31). Then there exist a function f(ρ) > 0, limρ→0 f(ρ) =

0, a trilinear and continuous form δb on L3(Ω), a bilinear and continuous form

for δa on L2(Ω) and a function δj such that:

JΩρ(uρ)− JΩ(u) = f(ρ)(δb(u, u, v0) + δa(u, v0) + δJ(u)) + o(f(ρ)), (35)

where v0 is the solution of the adjoint problem: Find v0 ∈ V such that

a(u, v0) + b(u, u, v0) = −DJ(u).ϕ, ∀ ϕ ∈ V.

Proof. The lagrangian of the problem min JΩ(u) (J defined by (31)) with u

solution of (14) writes:

L(u, v) = J(u) + b(u, u, v) + a(u, v)− (f, v)

and its variation which respect ρ

Lρ(uρ, v) = J(uρ) + b(uρ, uρ, v) + a(uρ, v)− (f, v)

Thus

Lρ(uρ, v)− L(u, v) = J(uρ) + b(uρ, uρ, v) + a(uρ, v)− (f, v)

−(J(u) + b(u, u, v) + a(u, v)− (f, v))

= J(uρ)− J(u) + b(uρ, uρ, v)− b(u, u, v) + a(uρ, v)− a(u, v).

Using the above propositions, it follows that:

Lρ(uρ, v)− L(u, v) = f(ρ)δL(u, v) + o(f(ρ))

where δL(u, v) = δJ(u) + δb(u, u, v) + δa(u, v).

We now use the fact that the variation of the cost function is equal to the

one of the lagrangian, we set j(ρ) = JΩρ(uρ), it follows that

j(ρ)− j(0) = f(ρ)δj + o(f(ρ)), (δj = δL(u, v))
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5 Numerical simulations

In this section, we consider a subset Ω = [−1, 1]2 in which we solve a Navier-

Stokes system of two equations {(u1, p1), (u2, p2)} with viscosities ν1 = 1 and

ν2 = 5 with boundaries conditions g1 = g2 = (1, 1) on ∂Ω. We are going

to consider two immiscible fluids, and we do not to initialize the interface.

It appears naturally because the fluids are in the same domain. After the

first step of the resolution, the interface between the two fluids appears in the

plot of the topological derivative (Figure 3-(a)). Thus we obtain the solutions

(u1, p1), (u2, p2). So after each step, we fix the pressure p1 and we augment

the pressure p2 and we observe the evolution of topological derivative with the

pressure.
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Algorithme 5.1. The algorithm is summarized on the following figure.

Ω = [−1 , 1]2

Solve (u
1
, p

1
, ν

1
) in Ω Solve (u

2
, p

2
, ν

2
) in Ω

Compute δ
j
 (x), ∀  x ∈

Ω

(u*
1
,p*

1
,ν

1
) (u*

2
,p*

2
,ν

2
)

End

yes

no

p
2
=p’

2

δ
j
(x)  =  cste

Proposed algorithm
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Figure 3: Topological derivative in 2D at the first and last step of optimization

process
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Figure 4: Vector fields on the plotting mesh at the first and last step.

Figure 5: Topological derivative in 3D at the first and last step of optimization

process

Remark 5.2. There exists an pressure p∗2 such that the topological derivative

still be constant: δj(u
∗
1(x), u

∗
2(x)) = −33, 16.10−6 in 2D and 5, 84.10−4 in 3D

∀p2 ≥ p∗2.
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