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Essential spectrum of the Cariñena operator
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Abstract

This paper addresses the proof that the Cariñena operator is self-

adjoint and has only discrete spectrum consisting of isolated eigenvalues

with finite multiplicities.
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1 Introduction

Cariñena et al. analyzed in [2] the non-polynomial one-dimensional quan-

tum potential

Vc = x2 + 2ga
x2 − a2

(x2 + a2)2
, ga > 0 (1)
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where a is a positive real parameter. This potential represents an oscillator

which is intermediate between the harmonic oscillator and the isotonic oscilla-

tor obtained from Vc when a → ∞ and a → 0 respectively, if ga remains con-

stant. They proved that the particular case a2 = 1

2
is Schrödinger solvable and

obtained eigenvalues and eigenfunctions which have properties closely related

to those characterizing the harmonic oscillator. They thus enlarged the re-

stricted family of Schrödinger solvable potentials. In [3], Fellows et al. showed

that these results can be obtained much more simply by noticing that this

potential is a supersymmetric partner potential of the harmonic oscillator.

Through out what follows we call Cariñena operator the operator defined

in the Hilbert space H = L2(R) of square integrable complex functions defined

on R by the formal relation

Hc = −
d2

dx2
+ Vc. (2)

We prove that the Cariñena operator is self-adjoint with empty essential spec-

trum using Kato-Rellich and Weyl theorems in perturbation theory.

The paper is organized as follows. In Section 2 we recall two main theorems

from the perturbation theory which we use to state our main results in Section

3.

2 Preliminary notes

The following definition of relatively boundedness can be found in [4], page

190.

Definition 2.1. Let A and T be densely defined linear operators on a Hilbert

space. The operator A is said to be relatively bounded with respect to T or T -

bounded if D(A) ⊃ D(T ) and there exists α > 0, β > 0 such that

‖Af‖ ≤ α‖f‖+ β‖Tf‖, ∀f ∈ D(T ). (3)

The T -bound of A is defined as the greatest lower bound of the possible values

of β.

The following theorem which is a fundamental perturbation result due to

Kato and Rellich (see [4], page 287) has been found to be very convenient for
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establishing the self-adjointness of various operators that appear in applica-

tions.

Theorem 2.2. Let T be self-adjoint. If A is symmetric and T -bounded with

T -bound smaller than 1, then T + A is also self-adjoint. In particular T + A

is self-adjoint if A is bounded and symmetric with D(A) ⊃ D(T ).

Let T be a closed operator and ξ ∈ C. If T − ξ is invertible with (T − ξ)−1

bounded then ξ is said to belong to the resolvent set of T . The complementary

set σ(T ) of the resolvent set in the complex plane is called the spectrum of

T . Let us denote by σd(T ) the discrete spectrum of the operator T, i.e. the

set of isolated eigenvalues with finite multiplicities. By definition the essential

spectrum of T is the set σe(T ) = σ(T ) \ σd(T ). If σe(T ) = ∅, we say that T is

an operator with pure point spectrum.

To go further let us recall the definition of relatively compactness (see for

instance in [1], page 173).

Definition 2.3. Let A and T be densely defined linear operators on a Hilbert

space. T is said to be relatively compact with respect to A or A−compact if

D(T ) ⊃ D(A) and T (A− i)−1 is compact.

The following stability theorem due to Weyl can be found in [4], Theorem

5.35 or [1], page 174.

Theorem 2.4. The essential spectrum of a self-adjoint operator A is stable

with respect to a symmetric A-compact perturbation T i.e

σe(A+ T ) = σe(A).

3 Main results

Let us denote by H0 the one-dimensional normal harmonic oscillator

H0 := −
d2

dx2
+ x2. (4)
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The Hermite functions

hn = (2nn!)−
1

2 (−1)nπ−
1

2 exp(
1

2
x2)

dn

dxn
exp(−x2) (5)

satisfy the relation

H0hn = (2n+ 1)hn (6)

i.e the Hermite functions hn are the harmonic oscillator wave functions with

eigenvalues 2n + 1. The set {hn}
∞

n=0
is an orthonormal basis of L2(R). For

all f ∈ L2(R), we have f =
∑
n

λnhn where λn ∈ R for all n. The following

relations

H0f =
∑

n

λnH0hn =
∑

n

λn(2n+ 1)hn (7)

lead to the fact that

H0f ∈ L2(R) if and only if
∑

n

λ2

n
(2n+ 1)2 < ∞ (8)

as consequence of the Parseval equality. The domain of the harmonic oscillator

H0 can then be described as follows :

D(H0) = {f ∈ L2(R) : f =
∑

n

λnhn,
∑

n

λ2

n
(2n+ 1)2 < ∞} (9)

In the other hand, we consider the maximal multiplication operator Va

determined by the continuous function

Va(x) = 2ga
x2 − a2

(x2 + a2)2
(10)

with domain of definition and action given by

D(Va) = L2(R), Vaf = 2ga
x2 − a2

(x2 + a2)2
f. (11)

where Vaf is the conventional product of the functions Va and f . The domain

of the operator Va is the whole Hilbert space L2(R) because the function x 7→

Va(x) is a real-valued bounded function on R. Another consequence of the

latter is that the operator Va is symmetric and bounded. We look at the

Cariñena operator as a perturbation of the harmonic oscillator by the potential

Va. Its domain and action are given by

D(Hc) = D(H0) ∩D(Va) = D(H0) (12)
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and

Hcf = −
d2f

dx2
+ x2f + Vaf. (13)

Theorem 3.1. The operator Va is H0-bounded.

Proof. We have D(Va) = L2(R) ⊃ D(H0). In the other hand

‖Vaf‖ ≤ ‖Va‖‖f‖ ≤ ‖Va‖‖f‖+
1

2
‖H0f‖, ∀f ∈ D(H0). (14)

Hence the operator Va is relatively bounded with respect to H0.

Theorem 3.2. The Cariñena operator is self-adjoint.

Proof. The Cariñena operator Hc is the sum of the operators H0 and Va.

The harmonic oscillator H0 is self-adjoint and the multiplication operator Va

is bounded and symmetric with D(Va) ⊃ D(H0). Then according to Theorem

2.2 the Cariñena operator Hc is self-adjoint.

Theorem 3.3. The following equality holds :

σe(Hc) = σe(H0).

We may prove the following lemma.

Lemma 3.4. The operator C = Va(H0 − i)−1 is Hilbert-Schmidt.

Proof. Let us first notice that

∀x ∈ R, |Va(x)| ≤
2ga
a4

. (15)

We also have

Chn = (2n+ 1− i)−1Vahn. (16)

Then
∑

n

‖Chn‖
2 =

∑

n

‖(2n+ 1− i)−1Vahn‖
2 (17)

≤
∑

n

|2n+ 1− i|−2‖Vahn‖
2 (18)

≤
4g2

a

a8

∑

n

|2n+ 1− i|−2 < ∞. (19)
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So the operator C is Hilbert-Schmidt.

Proof of Theorem 3.3. We have D(Va) ⊃ D(H0). The operator C =

Va(H0 − i)−1 is Hilbert-Schmidt, hence compact. Thus Va is H0−compact.

Then according to Theorem 2.4, one has

σe(Hc) = σe(H0).

It is well known that the harmonic oscillator H0 has empty essential spec-

trum. Therefore we derive the following consequence for the Cariñena operator

Hc.

Corollary 3.5. We have σe(Hc) = ∅. In other words, the Cariñena operator

Hc has only discrete spectrum consisting of isolated eigenvalues with finite

multiplicities.

Remark that the main property of Va(x) used to achieve the results is that

Va(x) is bounded on R. Therefore, we can state the following theorem which

is more general.

Theorem 3.6. Let V ∈ L∞(R). Then the operator H = H0 + V (x) is

self-adjoint with pure point spectrum.
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