
Journal of Computations & Modelling, vol.7, no.4, 2017, 111-126 
ISSN: 1792-7625 (print), 1792-8850 (online) 
Scienpress Ltd, 2017 

 
Shaping the Fade-in Audio Effect 

with a View to JavaScript Implementation 

Lucian Lupşa-Tătaru1 

 

 

Abstract 

The present paper puts forward a novel technique of customizing the shape of the 

fade-in sound effect. In audio engineering, the most common fade-in shapes are of 

linear, logarithmic and exponential type. Since the valuation of the outputs of the 

transcendental functions (e.g. exponential and logarithm) is very time consuming, 

their employment with a view to imposing how the audio level has to change over 

time is mainly suitable for off-line volume processing, e.g. in various digital audio 

editors. In this paper, to depict the fade-in shape, we consider that the audio 

volume is the output of a function of time variable that is neither linear nor 

transcendental. In order to enable a smooth increasing in the audio level i.e. a 

smooth transition from silence, without notable “glitches”, the employed function 

is defined so that the initial instantaneous rate of change equals zero. More 

precisely, without taking into account the linear fade-in shape, we advance a 

method of fade shaping that is suitable for fast processing in real-time. 

1 Department of Electrical Engineering and Applied Physics, Faculty of Electrical 
Engineering and Computer Science, Transilvania University of Braşov, Romania. 
E-mail: lupsa@programmer.net 
 
Article Info: Received: June 29, 2017. Revised: August 1, 2017.  
           Published online : October 31, 2017. 
 
 

                                                 



112                                         Shaping the Fade-in Audio Effect 

Straightforward implementations in pure JavaScript are provided to the reader 

with the purpose of immediate use. Discretization is achieved by associating the 

“timeupdate” HTML DOM media event with the audio element. 

 

Mathematics Subject Classification: 94A12, 94A29, 68N15, 68N19, 97P40 

Keywords: Audio volume, Real-time processing, Fade-in audio effect, Fade-in 

shape, Programming techniques, JavaScript 

 

 

1  Introduction 

A fade-in audio effect designates an increasing of the volume of an audio 

signal, starting from an audio level of zero (silence) [1-3]. The fade-in effect is 

applied so that one perceives a smooth lead in to an audio recording i.e. a smooth 

increasing in the audio level, without notable “glitches” (clicks) [1-5]. 

The shape of an audio fade-in is determined by the function of time variable 

that has been selected to provide the audio volume as its output. The 

well-established fade-in shapes are of linear, logarithmic and exponential type 

[1-3]. It has to be emphasized here that the well-known S-curve (sine curve) shape, 

determined by the sine function, is particularly adopted for fading-out and 

cross-fading between two audio tracks [1, 2]. In order to avoid “glitches” and to 

perceive a smooth transition from silence [1-5], the fade-in profile has to be 

customized by minimizing the initial rate of change of the audio volume, 

occurring at the beginning of the fade-in effect. In this context, the employing of 

the linear fade-in is not appropriate having in view that, in this case, minimizing 

the rate of change of the audio level is equivalent to maximizing the fade-in length. 

The fade-in length, i.e. the time interval over which the audio volume is being 

processed, has to be correlated with the detected music genre [6-8]. Anyhow, short 

fade-ins, less than 0.5 s, can be useful just to soften the attack of a certain audio 

region [1, 2]. 



Lucian Lupşa-Tătaru 113  

In the present paper, in order to customize the shape of the fade-in audio 

effect, we consider that the audio level is represented by the output of a rational 

function that incorporates two coefficients, which are to be computed by setting 

the audio level at different instants of time. 

Although it implies real-time processing, the connection with JavaScript 

programming language is entirely justified here having in view that the computing 

of the output of a rational function is equivalent to valuating algebraic fractions 

and that the discretization can straightforwardly be achieved by linking the 

“timeupdate” HTML DOM event to the audio element. Moreover, audio volume 

processing in HTML5/JavaScript is straightforward: the input of the employed 

rational function i.e. the time variable is returned by the “currentTime” property of 

HTML DOM Audio Object while the output of the adopted function i.e. the audio 

level is used to set the Audio Object “volume” property [9-11]. 

 

 

2  The Fade-in Curve 

As aforementioned, the audio fade-ins are usually performed by employing 

linear or transcendental functions (e.g. exponential and logarithm) to set the 

manner of time-related increasing of the audio level, starting from zero (silence). 

However, the use of transcendental functions to customize the fade-in shape is 

mostly suitable for off-line mode, e.g. in several digital audio editors, and not for 

real-time volume processing, when the computational capabilities are of utmost 

significance. 

The time-related variation of the audio volume is depicted here by means of a 

function of time, which is neither linear nor transcendental. More precisely, we 

advance a rational function, i.e. a function defined by an algebraic fraction, to 

customize the shape of the fade-in effect. Thus, we assume that the audio volume 

is the output of the following function of time variable: 



114                                         Shaping the Fade-in Audio Effect 

 ( ) [ ]ftt
t

ttv ,0,
2

∈
+

=
β

α  (1) 

wherein α  and β  are coefficients that will be computed by setting the audio 

level at different instants whilst ft  is the length of the fade effect. 

The instantaneous rate of change of the audio volume is provided by the 

time-related derivative of function (1) that is: 

 
( )

[ ] .,0,2
2 fttt

t
t

td
vd

∈
+
+

=
β
βα  (2) 

Taking into account that, based on (1) and (2), we have 

 ( ) ,0,00
0

==
=ttd

vdv  (3) 

it follows that the employing of rational function (1) to shape the fade-in effect 

ensures a smooth transition from silence, without notable “glitches” (clicks). 

The coefficients α  and β  in (1) allow the fitting of the fade-in profile in 

accordance with the user requirements. One proceeds to compute these 

coefficients by setting the volume of the audio signal both at the end of the fade 

effect and at an intermediate instant of time int  during the fading-in. Thus: 

 
( )
( )




=
=

inin

ff

VOLtv
VOLtv

 (4) 

wherein fVOL  and inVOL  are the imposed audio levels. Having in view that 

the audio volume is precisely the output of (1), one obtains: 

 











=
+

=
+

in
in

in

f
f

f

VOL
t

t

VOL
t

t

β
α

β
α

2

2

 (5) 

System (5) is linear with respect to coefficients α  and β  i.e. 

 






⋅=⋅−⋅
⋅=⋅−⋅

inininin

ffff

tVOLVOLt
tVOLVOLt

βα
βα

2

2

 (6) 



Lucian Lupşa-Tătaru 115  

The solution to the linear system (6) in α  and β  is given by 

 ( ) ,22 inf
inffin

fin tt
tVOLtVOL

VOLVOL
−

⋅−⋅

⋅
=α  (7) 

 .22 fin
inffin

fininf tt
tVOLtVOL
tVOLtVOL
⋅−⋅

⋅−⋅
=β  (8) 

Expressions (7) and (8) allow the shaping of the fade-in effect in accordance 

with the values selected for the fade length ft , the audio level to be reached at the 

end of fade-in i.e. fVOL , the intermediate instant int  and its corresponding 

audio level inVOL . In practice, the intermediate instant of time is usually 

represented by the halfway point i.e. the fade-in midpoint [1, 2]. Thus, we 

consider: 

 .2fin tt =  (9) 

In this case, the coefficients in (1) come to be dependencies just on the fade length 

ft , the audio level at the midpoint i.e. inVOL , and the audio level to be reached 

that is fVOL . More precisely, based on (7)-(9), we have: 

 
( )

( )
,2

2
4

22
4 f

f
f

f
f

ffin

fin

t
tv

t
v

tv
t

v

tVOLVOL
VOLVOL

−







⋅

⋅








=
−⋅

⋅
=α  (10) 

 
( )

( )
.

2
4

2
2

4
2

f

f
f

f
f

f
fin

inf t
tv

t
v

t
vtv

t
VOLVOL
VOLVOL

−







⋅









⋅−

=
−⋅

⋅−
=β  (11) 

We consider 0>α  and 0>β , respectively. In this context, having in view 

expressions (10) and (11), one receives: 



116                                         Shaping the Fade-in Audio Effect 

 
( )

( )










>







⋅−

>−







⋅

0
2

2

0
2

4

f
f

f
f

t
vtv

tv
t

v
 

i.e. 

 ( ) ( ).
2
1

24
1

f
f

f tv
t

vtv <







<  (12) 

Taking into account expression (2) of the time-related derivative of function 

(1), condition (12) leads to 

 ( ]ftt
td
vd ,0,0 ∈>  

since both 0>α  and 0>β . Hence, with (12), the rate of change of audio 

volume is of positive sign, thus acting in the direction of increasing the audio 

level. 

To avoid “glitches” and for the sake of simplicity, we plainly take 

 ( ).
3
1

3
1

2 ff
f tvVOL

t
v ==








 (13) 

Having in view (13), one perceives that the resulted fade-in effect will act similar 

to a fade-in of exponential shape i.e. the audio volume will increase slowly till the 

halfway point and, then, it will go up quickly with an increasing rate of change 

[1-3]. Moreover, with (13), the coefficients α  and β  in (1), shaping the fade-in, 

become expressions in terms of only fade length ft  and the audio level to be 

reached i.e. fVOL . Based on (10), (11) and (13), we have: 

 
( )

.,22 f
f

f

f

f t
t
tv

t
VOL

=== βα  (14) 

With a view to JavaScript implementation, the output of function (1) has to 

be located within interval [0, 1], with the mention that the output value of 1 

designates the highest volume [9, 10]. We consider here that the volume to be 



Lucian Lupşa-Tătaru 117  

reached at the end of fade-in is: 

 ( ) .9.0== ff tvVOL  (15) 

With (15), both coefficients (14), interfering in (1), come to be dependencies on 

fade-in length only: 

 .,8.1 ff tt == βα  (16) 

In this context, Figure 1 highlights the fade-in curves i.e. the outputs of (1) 

for fade lengths s5.0=ft , s1=ft  and s2=ft , respectively. For the same set 

of fade lengths, Figure 2 illustrates the rate of change of audio volume i.e. the 

values of (2). 

 

 

 
Figure 1:  Fade-in curves for fade lengths s5.0=ft , s1=ft  and s2=ft  

 

 

 

 

 

 



118                                         Shaping the Fade-in Audio Effect 

 
Figure 2:  Instantaneous rate of change of audio volume for fade lengths 

s5.0=ft , s1=ft  and s2=ft  

 

 

 

3  JavaScript Implementations 

The applications put forward in this paper have been developed by 

considering the audio volume to be reached of value 9.0=fVOL  and the 

enhanced fade-in effect of length s8=ft . It has to be pointed out that the 

applications encompassed by the paper have been optimized so that the user can 

easily change the fade-in length and, then, the coefficients of (1) will be computed 

straightforwardly, according to (16). 

In this context, Figure 3 highlights both the fade-in curve i.e. the output of (1) 

and the instantaneous rate of change of audio volume i.e. the time-related 

derivative (2). 

 



Lucian Lupşa-Tătaru 119  

 
Figure 3:  Fade-in curve and the rate of change of audio volume 

for the enhanced fade-in effect of length s8=ft  

 

We also emphasize that the audio volume, provided here by (1), wherein the 

coefficients are given by (16), is to be set by using the “volume” property of 

HTML DOM Audio Object. With the purpose of discretization, one has to 

associate a “timeupdate” media event with the audio element. Thus, the 

discrete-time processing will require the use of the “currentTime” property of the 

Audio Object, which returns the position of the audio playback [9, 10]. 

In the following application, the audio is loaded with the page, and the 

playback starts as soon as the audio is loaded. The fade-in effect i.e. the audio 

volume processing is automatically applied from the beginning of the audio until 

the output of function (1) is greater than the audio level to be reached. One 

perceives that the “fade_in” global variable is used here just to skip volume 

processing if the value returned by (1) has been found greater than the value 

9.0=fVOL , selected for the volume to be reached at the end of fade-in. The input 

of rational function (1) i.e. the current playback time is provided by the Audio 

Object “currentTime” property. The code that implements the described 

application is given next. 

 



120                                         Shaping the Fade-in Audio Effect 

<!DOCTYPE html> 

<html> 

<head> 

<title>Fade-in</title> 

</head> 

<body> 

<script> 

 

// create the audio element 

var ae = document.createElement( “AUDIO” ); 

ae.preload = “auto”; // the audio is loaded with the page 

ae.controls = true; 

 

// specify the audio file 

ae.src = “sample.mp3”; // audio/mpeg 

 

// associate a timeupdate event with the audio element 

ae.addEventListener( “timeupdate”, setVol ); 

 

document.body.appendChild( ae ); 

 

var tf = 8.0;   // fade-in length, in second 

// compute coefficients for the fade length of 8 s 

var alpha = 1.8 / tf; 

var beta = tf; 

 

var fade_in = true; 

ae.currentTime = 0; ae.volume = 0; // sets properties 

ae.play(); 



Lucian Lupşa-Tătaru 121  

 

function v( t ) { 

var retVol = alpha * t * t / ( t + beta ); 

return retVol; 

} 

 

function setVol() { 

if ( fade_in ) { 

var finalVol = 0.9;   // audio volume to be reached 

var currentVol = v( ae.currentTime ); 

if ( currentVol <= finalVol ) { 

ae.volume = currentVol; 

} 

else { 

ae.volume = finalVol; // volume suppressing 

fade_in = false; 

} 

} 

} 

 

</script> 

</body> 

</html> 

 

More complex applications could be developed by linking multiple HTML 

DOM media events to the audio element, as performed within the implementation 

that follows. 

 

<!DOCTYPE html> 



122                                         Shaping the Fade-in Audio Effect 

<html> 

<head> 

<title>Fade-in</title> 

</head> 

<body> 

<script> 

 

// create the audio element 

var ae = document.createElement( “AUDIO” ); 

ae.preload = “auto”; // the audio is loaded with the page 

ae.controls = true; 

 

// specify the audio file 

ae.src = “sample.mp3”; // audio/mpeg 

 

// associate a play event with the audio element 

ae.addEventListener( “play”, init ); 

 

// associate a timeupdate event with the audio element 

ae.addEventListener( “timeupdate”, setVol ); 

 

document.body.appendChild( ae ); 

 

var tf = 8.0;   // fade-in length, in second 

// compute coefficients for the fade length of 8 s 

var alpha = 1.8 / tf; 

var beta = tf; 

 

var fade_in, referenceTime; 



Lucian Lupşa-Tătaru 123  

 

function v( t ) { 

var retVol = alpha * t * t / ( t + beta ); 

return retVol; 

} 

 

function init() { 

fade_in = true; 

referenceTime = ae.currentTime; // starting time 

ae.volume = 0; 

} 

 

function setVol() { 

if ( fade_in ) { 

var finalVol = 0.9;   // audio volume to be reached 

 

var deltaT = ae.currentTime - referenceTime; 

currentVol = v( deltaT ); 

if ( currentVol <= finalVol ) { 

ae.volume = currentVol; 

} 

else { 

ae.volume = finalVol; // volume suppressing 

fade_in = false; 

} 

} 

} 

 

</script> 



124                                         Shaping the Fade-in Audio Effect 

</body> 

</html> 

 

One observes that, in this case, alongside the “timeupdate” media event, a “play” 

media event has been associated with the audio element in order to allow the 

applying of the fade-in effect whenever the user has started playing the audio i.e. 

when the audio is no longer paused. More precisely, in contrast to the previous 

application, the playback does not start immediately after the audio is loaded and 

the fade-in effect is not initiated only at the beginning of the audio but also 

whenever the audio is no more paused. We have introduced the “referenceTime” 

global variable to hold the position of the audio playback each time the audio is 

started. Thus, the volume processing is performed according to formula (1) but 

with respect to the current value reft  of “referenceTime” variable i.e. according 

to the relation: 

 ( ) ( ) [ ]ftt
t

ttv ,0,
2

∈∆
+∆
∆

=∆
β

α  (17) 

wherein 

 .refttt −=∆  

 

 

4  Conclusion 
The shape of the audio fade-ins [1, 2] is usually customized in off-line mode, 

e.g. in various digital audio editors, by making use of different transcendental 

functions in order to set the time-related evolution of the audio level starting from 

zero (silence). In the present paper, to construct the fade-in shape, we consider that 

the audio volume is the output of a specific rational function. Having in view that 

the valuation of the outputs of rational functions is equivalent to computing values 

of algebraic fractions, such kind of approach comes to be suitable for real-time 



Lucian Lupşa-Tătaru 125  

volume processing. 

To make feasible a smooth increasing in the audio level that is a smooth 

transition from silence, the employed rational function has been defined so that 

both its initial output i.e. the initial audio volume and the corresponding initial 

instantaneous rate of change, occurring at the beginning of fade-in, have a value of 

zero. To allow the fitting of the fade-in profile, two coefficients have been 

introduced. The values of these coefficients have been computed by setting the 

audio level at the fade-in midpoint and at the end of the fade effect, taking into 

account that, with a view to JavaScript implementation [9-11], the audio volume, 

which becomes a property of HTML DOM Audio Object, has to be located within 

interval [0, 1]. The process of discretization has been accomplished by linking a 

“timeupdate” HTML DOM media event to the audio element. 

The optimized implementations, encompassed by the paper, and prepared for 

immediate utilization, emphasize the efficiency of the suggested technique of 

customizing the shape of the fade-in audio effect. By simply pointing to different 

audio files and by varying the fade-in length, one could perceive that the 

increasing in the audio level is smooth enough, without notable “glitches” (clicks). 

 

 

References 

[1] S. Langford, Digital Audio Editing: Correcting and Enhancing Audio in Pro 

Tools, Logic Pro, Cubase, and Studio One, Focal Press, Burlington, MA, USA, 

2014. 

[2] A.U. Case, Sound FX: Unlocking the Creative Potential of Recording Studio 

Effects, Focal Press, Burlington, MA, USA, 2007. 

[3] J.D. Reiss and A. McPherson, Audio Effects: Theory, Implementation and 

Application, CRC Press, Boca Raton, FL, USA, 2015. 

[4] D. Creasey, Audio Processes: Musical Analysis, Modification, Synthesis, and 

Control, Routledge, New York, NY, USA, 2017. 



126                                         Shaping the Fade-in Audio Effect 

[5] J. Corey, Audio Production and Critical Listening: Technical Ear Training, 

2nd edition, Routledge, New York, NY, USA, 2017. 

[6] Y. Panagakis, C.L. Kotropoulos and G.R. Arce, Music genre classification 

via joint sparse low-rank representation of audio features, IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, 22(12), (December 

2014), 1905-1917. 

[7] E. Benetos and C. Kotropoulos, Non-negative tensor factorization applied to 

music genre classification, IEEE Transactions on Audio, Speech, and Language 

Processing, 18(8), (November 2010), 1955-1967. 

[8] Y. Panagakis, C. Kotropoulos and G.R. Arce, Non-negative multilinear 

principal component analysis of auditory temporal modulations for music genre 

classification, IEEE Transactions on Audio, Speech, and Language Processing, 

18(3), (March 2010), 576-588. 

[9] I. Devlin, HTML5 Multimedia: Develop and Design, Peachpit Press, 

Berkeley, CA, USA, 2012. 

[10] S. Powers, HTML5 Media, O’Reilly Media, Sebastopol, CA, USA, 2011. 

[11] I. Jacobs, J. Jaffe and P. Le Hegaret, How the open web platform is 

transforming industry, IEEE Internet Computing, 16(6), (November-December 

2012), 82-86. 

 

 


