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Abstract 

 Fractional differentials provide more accurate models of systems under 

consideration. In this paper, approximation techniques based on the shifted 

Legendre spectral method is presented to solve fractional Riccati differential 

equations. The fractional derivatives are described in the Caputo sense. The 

technique is derived by expanding the required approximate solution as the 

elements of shifted Legendre polynomials. Using the operational matrix of the 

fractional derivative the problem can be reduced to a set of nonlinear algebraic 

equations. From the computational point of view, the solution obtained by this 

method is in excellent agreement with those obtained by previous work in the 

literature and also it is efficient to use.  
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1  Introduction 

        Ordinary and partial fractional differential equations have been the focus of 

many studies due to their frequent appearance in various applications in fluid 

mechanics, viscoelasticity, biology, physics and engineering [1]. Consequently, 

considerable attention has been given to the solutions of fractional differential 

equations of physical interest. Most fractional differential equations do not have 

exact solutions, so approximation and numerical techniques [2],[3],[4],[5], must 

be used. Recently, several numerical methods to solve the fractional differential 

equations have been given such as variational iteration method[6], homotopy 

perturbation method[8], Adomian’s decomposition method [7], homotopy analysis 

method [9] and collocation method[10]. We describe some necessary definitions 

and mathematical preliminaries of the fractional calculus theory required for our 

subsequent development. 

Definition 1. Caputo’s definition of the fractional-order derivative is defined as 

[1]  

,,<1        ,
)(

)(

)(

1
=)(

1

)(

0
Nnnndt

tx

tf

n
xfD

n

n
x


  

 
  

 where   is the order of the derivative and n is the smallest integer greater than 

 . For the Caputo’s derivative we have:  

                     ,                    0,= constantaisCCD  












 









and  for,
)1(

1)(
<  and  for0,

=
0

0

Nx

N
xD  



D. Rostamy, K. Karimi, L. Gharacheh and M. Khaksarfard                                              87 

We use the ceiling function   to denote the smallest integer greater than or 

equal to  . Also 1,2,...=N  and 0,1,2,...=0N . Recall that for N , the Caputo 

differential operator coincides with the usual differential operator of integer 

order.The main goal in this article is concerned with the application of Legendre 

spectral method to obtain the numerical solution of fractional Riccati differential 

equation [11], [12], [13].  

,  <1       1,0   ,)()()(=)( 2 mmxuxguxbxaxuD              (1) 

 with initial conditions  

1,0,1,...=   ,=(0))( midu i
i                            (2) 

 where the fractional differential operator D  is defined as in definition 1 and 

where a(x), b(x) and g(x) are given functions id , i=0,1,...m-1, are arbitrary 

constants and , is a parameter describing the order of the fractional derivative.  

The general response expression contains a parameter describing the order 

of the fractional derivative that can be varied to obtain various responses. In the 

case of  , the fractional equation reduces to the classical Riccati differential 

equation. In the present paper we intend to extend the application of Legendre 

polynomials to solve fractional differential equations. Our main aim is to 

generalize Legendre operational matrix to fractional calculus. 

The organization of this paper is as follows. In the next section we describe 

the basic formulation of shifted Legendre polynomials. Section 3 summarizes the 

application of Legendre spectral method to solve Eqs. (1, 2).  As a result, a system 

of nonlinear ordinary differential equations is formed and the solution of the 

considered problem is introduced. In Section 4, some comparisons and numerical 

results are given to clarify the method. Figures and Tables are presented in 

section 5. And also, a conclusion is given in Section 6. 
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2  Shifted Legendre polynomials 

 The well-known Legendre polynomials are defined on the interval 1,1][  

and can be determined with the aid of the following recurrence formulas:  
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In order to use these polynomials on the interval[0,1], we define the so called 

shifted Legendre polynomials by introducing the change of variable  

1.0      1,2=  xxz  

 The shifted Legendre polynomials in x  are then obtained as follows:  
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 The analytic form of the shifted Legendre polynomial )(xpi of degree i given by  
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 Note that i
ip 1)(=(0)    and 1=(1)ip . The orthogonality condition is  
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A function )(xy , square integrable in [0,1] , may be expressed in terms of the 

shifted Legendre polynomials as  
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 where the coefficients jc  are given by  

1,2,....=   ,)()(1)(2=
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 In practice, only the first (m + 1)-terms shifted Legendre polynomials are 
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considered. Then we have  
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 where the shifted Legendre coefficient vector C and the shifted Legendre 

vector )(x  are given by  
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 The derivative of the vector )(x  can be expressed by  
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 It is clear that  
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 where Nn  and the superscript, in 1D  denotes matrix powers. Then  

1,2,....=     )(= (1) nDD nn                        (6) 

 

 Theorem 1. Let )(x  be the shifted Legendre vector defined in (5), and also 

suppose 0>  then  

,)()( )( xDxD                                (7) 

 where )(D  is the 1)1)((  mm  operational matrix of fractional derivative of 

order   in Caputo sense and is defined as follows:  
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Where kji ,,  is given by  
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 Proof. The proof is in [16].                                                                                      

 

Note that in )(D , the first   rows, are all zero and if Nn= , then Theorem 

1 gives the same result as (6). 

 

 

3 Applications of the operational matrix of fractional 

derivative 

 In this section, we Consider the Eqs. (1, 2). In order to use Legendre 

collocation method, we first approximate )(xu  as  
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 where vector ],...,[= 0 mccC  is an unknown vector. By using operational matrix of 

fractional derivative we have:  
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 we now collocate Eq. (9) at )1(  m  points px  as:  
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 For suitable collocation points we use roots of shifted Legendre )(
1

xp
m   . Eq. 

(10), together with   equations of the boundary conditions, give (m + 1) 

equations which can be solved, for the unknown iu , mi 0,...,= .  
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4  Numerical  results 

In this section, we illustrate efficiency and accuracy of the presented method 

by the following numerical examples. 

 

Example 1. Consider the following fractional Riccati equation:  

                                                     1<0     1,)(= 2  



tu
dt

ud
                          (11) 

 subject to the initial condition  

                                                     0.=(0)u                                                           (12) 

 The exact solution, when 1= , is  
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 and we can observe that,as t , 1)( tu . The obtained numerical results by 

means of the proposed method are shown in Table 1 and Figure 1.  

In Table 1, comparison between the exact solution, the numerical solution using 

[12] and the approximate solution using our proposed method for 1=  are 

presented. Note that as   approaches 1, the numerical solution converges to the 

analytical solution i.e. in the limit, the solution of the fractional differential 

equations approaches to that of the integer-order differential equations that it is 

shown in Figure 1. 

 

Example 2. Consider the following fractional Riccati equation:  

                                                ,1<0     1,)()(2= 2  



tutu
dt

ud
                   (14) 

 subject to the initial condition  

                                              0.=(0)u                                                                  (15) 

 The exact solution,when 1= ,is  
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 and we can observe that, as t , 2)(1)( tu . 

         In Table 2, we compare the exact solution,approximate solution by our 

method and solution in[12]. Also values of )(xu  for 0.98=  and 0.98= . From 

Figure 2, we see that as   approaches 1, the numerical solution converges to that 

of integer-order differential equation.  

 

 

5  Figures and Tables 

 

        Figure. 1:  Comparison of u(x) for m = 10 and with  = 0.5, 0.75, 0.98, 1,     

                         for Example 1 
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         Table 1: Comparison between, the numerical solution using [12] and the    

                       approximate solution using our proposed method at  = 1  

                       for Example 1 

X exact Present method method in  = 0.98   = 0.75 
0.1 0.099667 0.099667 0.099668 0.103687 0.177702 
0.2 0.197375 0.197375 0.197375 0.203843 0.300755 
0.3 0.291312 0.291312 0.291313 0.298710 0.396847 
0.4 0.379948 0.379948 0.379944 0.387358 0.475789 
0.5 0.462117 0.462117 0.462078 0.468723 0.539956 
0.6 0.537049 0.537049 0.536857 0.542338 0.593448 
0.7 0.604367 0.604367 0.603631 0.608056 0.638465 
0.8 0.664036 0.664036 0.661706 0.665936 0.675767 
0.9 0.716297 0.716297 0.709919 0.716423 0.707735 
1 0.761594 0.761594 0.746032 0.760027 0.734731 

 

 

 

 

Figure. 2: Comparison of u(x) for m = 10 and with  = 0.5, 0.75, 0.98, 1,  

                 for Example 2 
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        Table 2: Comparison between, the numerical solution using [12] and the         

                      approximate solution using our proposed method at  = 1 for   

                      Example 2. 

X exact Present method method in [12] a = 0.98 a = 0.75 
0.1 0.110295 0.110298 0.110294 0.1154867087 0.2259844123
0.2 0.241976 0.241980 0.241965 0.252793 0.455368 

0.3 0.395104 0.395109 0.395106 0.411317 0.689809 

0.4 0.567812 0.567817 0.568115 0.589043 0.919952 

0.5 0.756014 0.756019 0.757564 0.781108 1.132044 

0.6 0.953566 0.95357 0.958259 0.980806 1.319546 

0.7 1.152948 1.152954 1.163459 1.180229 1.479780 

0.8 1.346363 1.346368 1.365240 1.371442 1.61272 

0.9 1.526911 1.526916 1.554960 1.547936 1.72237 

1 1.689498 1.689502 1.723810 1.705192 1.811774 

 

 

 

6  Conclusions 

The properties of the Legendre polynomials are used to reduce the 

fractional diffusion equation to the solution of system of nonlinear equations. 

From the solutions obtained using the suggested method we can conclude that 

these solutions are in excellent agreement with the already existing ones. ([12], 

[14], [15], [7]). 
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