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Lie Ring of 4−move Invariant Group R4(L) and

Kawauchi’s 4−move Conjecture

Noureen Khan1

Abstract

We study the invariants of 4−move defined in [5], and calculate

Lie ring of the group R4(L) in response to the question proposed by

Kawauchi [8], are link- homotopic links 4-move equivalent? We test

the strength of the invariant R4(L) = π1(S  L)/N over the nth Burnside

group of links and then apply it on link ”L”, motivated by Askitas knot

and propose it as a potential counter example to Kawauchi’s question.
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1 Introduction

This work is motivated by the example of Askitas knot proposed in [2] as

a counter example to Nakanishi’s 4−move conjecture [9]. Askitas, suspected

that (2, 1)− cable of the figure eight knot as the simplest counter example to

the Nakanishi’s 4−move conjecture. Since every link can not be reduced to a
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trivial link by 4−move, in particular the linking matrix modulo 2 is preserved

by 4−move. Kawauchi [7], later on, expressed his questions for links as follow:

(i) Is it true that if two links are link homotopic, then they are 4−move equiv-

alent?

(ii) In particular, is it true that every 2−component link is 4−move equivalent

to the trivial link of two components or to the Hopf link? In this paper we

response to Kawauchi’s above posed questions, the work was motivated by our

initial effort to address Nakanishi’s 4−move conjecture. Our effort of 4−move

reduction of Askitas knot [2] was unsuccessful, and the knot still stands as a

counter example of Nakanishi’s conjecture. However, as a result, we created a

link L, the double figure eight with an additional component (shown in Figure

1), which can not be reduced by 4-moves invariants. Our results of 4- moves

reduction of the link L conclude that the link L is a potential counter exam-

ple to Kawauchi’s conjecture. We organize this paper in three main sections,

the first section introduces essential results requisite for clear understanding

of the topic. Section two presents the construction of link L and the 4−move

invariant R4(L) defined in [5], and the main results obtained for the link L.

We conclude our results with some speculations for future research in the last

section.

2 The Invariants

The rational moves and their invariants have been introduced and stud-

ied for their importance in reduction of knots and links. Such invariants for

instance, the nth Burnside group of links was used by J. Przytycki and M.

Dabkowski [4] to solve some long standing problems in the classical knot the-

ory.

Definition 2.1. The nth Burnside group of a link is the quotient of the

fundamental group of the double branched cover of S with the link as the branch

set divided by all relations of the form ωn = 1. Succinctly:

BL(n) = π1(M
(2)
L )/ (ωn)
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Notice that for the trivial link of k components, Tk , one has BTk
(n) =

B(k−1, n), where B(k−1, n) is the classical Burnside group of k−1 generators

and exponent n. However; this method cannot be used in the case when the

abelianization of the nth Burnside group, i.e. H1(M
(2)
L , Zn) is a cyclic group.

That is, for the 4th Burnside group of a link L of 2 components, it was shown

that BL(4) is a quotient of Z4. Therefore, BL(4) caries no more information

about 4− move equivalence classes as the group of 4-coloring. Therefore, the

Nakanishi 4− move conjecture remains open as well as 2-component version

of the Kawauchi 4-move question. Later on, Dabkowski and Sahi [5] defined

a new invariant of links R4(L) that is preserved by 4− moves, and that can

be used to answer several problems concerning 4−moves and is potentially

stronger than the 4th Burnside group of a link L of 2 components. Here are

some main results concerning R4(L), invariant of 4−moves:

Definition 2.2. Let L be a link and π(S3 \L) denote fundamental group of

the complement of L in S . We define: R4(L) = π1(S
3 \ L)/N , where

N =<< (aωbω−1)2(ωbω−1a)−2|ω ∈ π1(S
3 \ L), a, b ∈ X±1 >>

is the normal subgroup of π(S3 \ L) generated by

R = (aωbω−1)2(ωbω−1a)−2|ω ∈ π1(S
3 \ L), a, b ∈ X±1.

Theorem 2.3. [6] R4(L) is an invariant of link L which is preserved by

4−moves.

Theorem 2.4. Let T2 be a trivial link of two components and a, b ∈

x±1
1 , x±1

2 , then R4(T2) =< x1, x2|aεbab = babaε, ab4 = b4a, a2b2 = b2a2, ε =

±1 > . The main tool which they used to derive further results about the in-

variant R4(L) was a technique of the associated Lie Rings of a group introduced

by W. Magnus [11].

Theorem 2.5. [6] The associated Lie ring of R4(T2) decomposes into the

homogenous terms 2 as follows:

L(R4(T2)) = L1(T2)⊕ L2(T2)⊕ L3(T2) = Z2 ⊕ Z2 ⊕ Z2

2Dabkowski and Sahi proved much more general result for trivial links of m components,

however we only restrict here to a Corollary of their results.
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Figure 1: Double Figure Eight with an additional component

Here we note that for the 4th Burnside group of a 2−component link L,

the group BL(4) is a quotient of Z4 as we mentioned earlier. Since L3(T2) 6= 0,

the invariant R4(L) is potentially stronger for links of 2− components than

BL(4).

3 The Link: Double figure Eight with an ad-

ditional component

Problem:

Is the link L (Double figure Eight with an additional component) shown in

”figure1”, 4− move reducible to the trivial link or Hopf link?

As mentioned before, the example of the above shown link L was motivated

by the example given in [2]. The link L is obtained by adding an additional

component to double figure eight knot and has 21 crossings. Our first approach

towards the link L was crossing reduction. We apply 4-moves and isotopy to

reduce 21 crossing to 11 crossings or less, as we have well established results

for all links up to 11 crossing are 4-moves reducible to trivial link or Hopf link
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[6]. Practically, it was not easy to handle the link when applying isotopy and

4−moves, since the number of crossings being so large, 21. Therefore it was

necessary to move forward with option of using invariant R4(L) for the link L.

In this regard, we first use the commutator calculus to calculate the associated

Lie ring of the group R4(L) for the link L. We organize our results as a

sequence of propositions and lemmas and present the meticulous calculations

in the following sections.

Theorem 3.1. (Wirtinger) Let D be an oriented diagram of a link L in

S3, then the group
∏

1(D) is an invariant of a link L and
∏

1(D) ∼= (S3 \ L),

where
∏

1(D) =< x1, x2, . . . , xn | r1, r2, . . . , rm > is the group associated to the

diagram D of link L and
∏

1(S
3 \ L) denotes the fundamental group of the

complement of link L in S3.

It was also shown by Wirtinger, one of the relations can be always dropped

from the presentation of
∏

1(D), as it is a consequence of the other relations

and the group defined by the above presentation does not depend (up to iso-

morphism) on the orientation of the diagram D.

Theorem 3.2. Let L be the link shown in ”Figure 1”, then the fundamental

group of the complement of L in S3 admits the following presentation:

π1(S
3 \ L) =< a, b, c, d, e |R1, R2, R3, R4, R4 >,

where

R1 = [[(ab)−1, (dc)−1]dc, e]

R2 = [[dc, (eab)−1, b−1]bd−1]

R3 = [[dc, (eab)−1]d, a−1]ac−1

R4 = [e−1[e−1, ab][ab, (dc)−1], c−1]cb−1

R5 = [e−1[e−1, ab][ab, (dc)−1], d−1]da−1

We label the arcs of the link L by the generators of the free group F5 =<

a, b, c, d, e | − > as it is shown in Figure 1. By using Wirtinger Theorem, we

derive the presentation as described above in the statement. The relations are

calculated by the chain of lemmas:
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Lemma 3.3. Let G be a group and x, y, z ∈ G. Then the following identi-

ties hold:

[xy, z] = [x, z][x, z, y][y, z],

xy = yx[x, y],

[x−1, y] = [x, y]−1[y, x, x−1],

[x, y−1] = [x, y]−1[y, x, y−1],

[x−1, y−1] = [x, y][x, y, (yx)−1]

Proof. The first two identities are the standard commutator identities which

one can, for instance, find in [12]. The last three identities follow by simple

computations.

[x−1, y] = xy−1x−1y = x(y−1x−1yx)x−1 = x[y, x]x−1 = xx−1[x, y]−1[y, x, x−1]

[x, y−1] = x−1yxy−1 = y(y−1x−1yx)y−1 = y[y, x]y−1 = yy−1[y, x][y, x, y−1]

= [x, y]−1[y, x, y−1]

[x−1, y−1] = xyx−1y−1 = yx(x−1y−1xy)(yx)−1 = yx[x, y](yx)−1 = [x, y][x, y, (yx)−1]

This finishes our argument.

Corollary 3.4. Let G be a group with x, y, z ∈ G and let γ1 ≥ γ2 ≥ γ3 . . .

be the lower central series of G. Then

[xy, z] ≡γ4 [x, z] + [x, z, y] + [y, z]

[x−1, z] ≡γ4 [x, y]−1 − [y, x, x]

[x, y−1] ≡γ4 [x, y]−1 − [y, x, y]

[x−1, y−1] ≡γ4 [x, y]− [x, y, y]− [x, y, x]

A proof follows directly from Lemma 3.3 since, for instance for the second

identity, we have:

[x, y−1] = [x, y]−1[x, y, x−1] ≡γ4 [x, y]−1 + [[y, x], x]−1

= [x, y]−1 + [[y, x], x−1] + [x, [y, x], x−1] ≡γ4 [x, y]−1 − [y, x, x].
Analogous calculations prove the remaining identities.

Lemma 3.5. Let R1 = [[(ab)−1, (dc)−1]dc, e] ∈ F5. Then we have:

R1 ≡γ4 −[d, a, e]− [c, a, e]− [d, b, e]− [c, b, e] + [d, c, e]− [e, c, d] + [e, d]−1 + [e, c]−1

= −e19 − e31 − e23 − e35 + e26 − e11 + [e, d]−1[e, c]−1
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We apply the commutator identities given in Lemma 3.3 and the result of

Lemma 3.4 We have:

R1 = [[(ab)−1, (dc)−1]dc, e] = [(ab)−1, (dc)−1, e][[(ab)−1, (dc)−1], e, dc][dc, e]

≡γ4 [(ab)−1, (dc)−1, e] + [dc, e] ≡γ4 [ab, dc, e] + [d, e] + [d, e, c] + [c, e]

≡γ4 [a, d, e] + [a, c, e] + [b, d, e] + [b, c, e] + [d, e] + [d, e, c] + [c, e]

Now, we use the Jacobi identity:

[d, e, c] = −[e, c, d]− [c, d, e] = [d, c, e]− [e, c, d]

and we obtain;

R1 ≡γ4 −[d, a, e]−[c, a, e]−[d, b, e]−[c, b, e]+[d, c, e]−[e, c, d]+[e, d]−1+[e, c]−1,

which finishes our proof. Analogously, we have:

Lemma 3.6. Let R2 = [[dc, (eab)−1], b−1]bd−1 ∈ F5. Then

R2 ≡γ4 ([d, b, e]−[e, b, d]+[d, a, b]+[d, b, b]+[c, b, e]−[e, b, c]+[c, a, b]+[c, b, b])+bd−1.

We also have:

Lemma 3.7. Let R3 = [[dc, (eab)−1]d, a−1]ac−1 ∈ F5. Then

R3 ≡γ4 [d, a, e]− [e, a, d] + 2[d, a, a] + [d, a, b]− [b, a, d] + [c, a, e]

− [e, a, c] + [c, a, a] + [c, a, b]− [b, a, c] + [d, a]−1ac−1.

Moreover, we have:

Lemma 3.8. Let R4 = [[e−1, ab][ab, (dc)−1], c−1]cb−1 ∈ F5. Then

R4 ≡γ4 ([e, a, c]+[e, b, c]−[e, c, c]−[e, c, e]−[c, a, c]−[d, a, c]−[d, b, c]−[c, b, c])+[e, c]cb−1.

Finally, we obtain:
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Lemma 3.9. Let R5 = [e−1[e−1, ab][ab, (dc)−1], d−1]da−1 ∈ F5. Then

R5 ≡γ4 ([e, a, d]+[e, b, d]−[e, d, d]−[e, d, e]−[d, a, d]−[c, a, d]−[d, b, d]−[c, b, d])+[e, d]da−1.

That completes the proof.

Corollary 3.10. Let R1, R2, R3, R4, R5 be the relations defined in Theo-

rem 3.2. Then

R1,≡γ2 0; R2 ≡γ2 b− d; R3 ≡γ2 a− c; R4 ≡γ2 c− b; R5 ≡γ2 d− a

the relations R2, R3 and R4 are linearly independent over Z in γ1/γ2, where;

R5 ≡γ2 R−1
2 R−1

4 R−1
3 = (R3R4R2)

−1and γ1/γ2 ≡ Z⊕ Z.

Proof. As it is known [12], γ1/γ2 is generated by a, b, c, d, e. We order them

in the alphabetic order a < b < c < d < e. Therefore, we obtain the following

matrix of the presentation for γ1/γ2 : Now, let

a b c d e

R1 0 0 0 0 0

R2 0 1 0 −1 0

R3 0 1 −1 0 0

R4 0 −1 1 0 0

R5 −1 0 0 1 0

M =











0 1 0 −1 0

1 0 −1 0 0

0 −1 1 0 0

−1 0 0 1 0











We observe that, rank(M) = 3. Thus, we obtain,

γ1/γ2 ≡ Z⊕ Z.

Moreover, we have

R5 ≡γ2 (R3R4R2)
−1 ≡γ2 −(c− b)− (a− c)− (b− d) = d− a.
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[Ri, x] ≡γ3 0, i = 2, 3, 4; x ∈ a, b, c, d, e

R1 ≡γ3 0

R5R4R3R2 ≡γ3 0

This finishes our proof.

Using the algorithm for finding presentation of the successive terms of the

quotients of the lover central series given in [9] we conclude that the matrix of

the presentation of γ2/γ3 has the following rows:

Let e1 = [e, a], e2 = [e, b], e3 = [e, c], e4 = [e, d], e5 = [d, a], e6 = [d, b],

e7 = [d, c], e8 = [c, a], e9 = [c, b], e10 = [b, a] with e1 < e2 < . . . < e10 be a basis

of γ2/γ3. The following result holds:
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Lemma 3.11. Let R1, R2, R3, R4, R5 be the relations defined in Theorem

3.2. Then:

R1 ≡γ3 −e3 − e4 [R2, a] ≡γ3 −e5 + e10

[R2, b] ≡γ3 −e6 [R2, c] ≡γ3 −e7 − e9

[R2, d] ≡γ3 −e6 [R2, e] ≡γ3 −e2 + e4

[R3, a] ≡γ3 −e8 [R3, b] ≡γ3 −e9 − e10

[R3, c] ≡γ3 −e8 [R3, d] ≡γ3 −e5 + e7

[R3, e] ≡γ3 −e1 + e3 [R4, a] ≡γ3 e8 − e10

[R4, b] ≡γ3 e9 [R4, c] ≡γ3 e9

[R4, d] ≡γ3 e6 − e7 [R4, e] ≡γ3 e2 − e3

R5R3R4R2 ≡γ3 e3 + e4 − e5

Proof. The proof follows simple calculations using commutator calculus.

Corollary 3.12. Let R1, R2, R3, R4, R5 be the relations defined in Theorem

3.2. Then:

(γ2/γ3)⊗ Z2 ≡ Z2.

Proof. Applying Lemma 3.11 we obtain the ”Relation Matrix” of the pre-

sentation for (γ2/γ3) , see Table 1 on next page.

From these relations, we find that:

γ2/γ3 = {ei, 1 ≤ i ≤ 10 | − e1 − e4, e2 − e4,−e3 − e4, 2e4, e5, e6, e7, e8, e9, e10}

= {e1, e2, e3, e4 | − e1 − e4, e2 − e4,−e3 − e4, 2e4}

= {e1 | 2e4}

≡ Z2

Therefore, we have: (γ2/γ3) ⊗ Z2 ≡ Z2. This finishes our proof here.
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Table 1: Relation Matrix
e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

R1 0 0 -1 -1 0 0 0 0 0 0

[R2, a] 0 0 0 0 -1 0 0 0 0 1

[R2, b] 0 0 0 0 0 -1 0 0 0 0

[R2, c] 0 0 0 0 0 0 -1 0 -1 0

[R2, d] 0 0 0 0 0 -1 0 0 0 0

[R2, e] 0 -1 0 1 0 0 0 0 0 0

[R3, a] 0 -1 0 1 0 0 0 0 0 0

[R3, b] 0 0 0 0 0 0 0 0 -1 -1

[R3, c] 0 0 0 0 0 0 0 -1 0 0

[R3, d] 0 0 0 0 -1 0 0 0 0 0

[R3, e] -1 0 1 0 0 0 0 0 0 0

[R4, a] 0 0 0 0 0 0 0 0 0 -1

[R4, b] 0 0 0 0 -1 0 0 0 1 0

[R4, c] 0 0 0 0 -1 0 0 0 1 0

[R4, d] 0 0 0 0 -1 1 -1 0 0 0

[R4, e] 0 1 -1 0 0 0 0 0 0 0

R5R3R4R2 0 0 1 1 -1 0 0 0 0 0

Since the rank of the matrix of the presentation of γ2/γ3 is 10 over R, we

need to find 10 linearly independent rows of the matrix of relations and use

them to express the remaining 8 relations. We make the following choices for

our relations:

R1 = −e3 − e4 ‖ [R2, c] = −e7 − e9 ‖ [R3, d] = −e5 + e7

[R2, a] = −e5 − e10 ‖ [R2, e] = −e2 + e4 ‖ [R3, e] = −e1 + e3

[R2, b] = −e6 ‖ [R3, a] = −e8 ‖ [R4, b] = e9

[R4, e] = e2 − e3

Lemma 3.13. Let R1, R2, R3, R4, R5 be the relations defined in Theorem

3.2 . Then the relations given above are linearly independent over Z2 and
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moreover we have:

[R2, d][R2, b]
−1 ≡γ3 0

[R3, c][R3, a]
−1 ≡γ3 0

[R4, c][R4, b]
−1 ≡γ3 0

[R3, b][R2, c]
−1[R3, d]

−1[R2, a] ≡γ3 0

[R4, d][R4, b]
−1[R2, c]

−1[R2, b] ≡γ3 0

[R4, a][R4, b]
−1[R2, c]

−1[R3, d]
−1[R2, a][R3, a] ≡γ3 0

(R5R3R4R2)[R4, b]
−1[R2, c]

−1[R3, d]
−1R1 ≡γ3 0

Proof. The proof follows by direct calculations and the result of Lemma

3.11.

Now, we start calculating the relations modγ4. We start by fixing the basis

for γ3/γ4 of third commutators:

e1 = [e, a, a] e11 = [e, c, d] e21 = [d, b, c] e31 =[c, a, e]

e2 = [e, a, b] e12 = [e, c, e] e22 = [d, b, d] e32 =[c, b, b]

e3 = [e, a, c] e13 = [e, d, d] e23 = [d, b, e] e33 =[c, b, c]

e4 = [e, a, d] e14 = [e, d, e] e24 = [d, c, c] e34 =[c, b, d]

e5 = [e, a, e] e15 = [d, a, a] e25 = [d, c, d] e35 =[c, b, e]

e6 = [e, b, b] e16 = [d, a, b] e26 = [d, c, e] e36 =[b, a, a]

e7 = [e, b, c] e17 = [d, a, c] e27 = [c, a, a] e37 =[b, a, b]

e8 = [e, b, d] e18 = [d, a, d] e28 = [c, a, b] e38 =[b, a, c]

e9 = [e, b, e] e19 = [d, a, e] e29 = [c, a, c] e39 =[b, a, d]

e10 = [e, c, c] e20 = [d, b, b] e30 = [c, a, d] e40 =[b, a, e]

In order to derive a presentation of γ3/γ4 we use the algorithm given in

[9]. That is we first find all the relations: [R1, x]modγ4, [[R2, a], x]modγ4,

[[R2, b], x]modγ4, . . . , [[R4, b], x]modγ4, where x ∈ a, b, c, d, e. This way we

obtain the first 45 relations for the matrix of the presentation of γ3/γ4. Now, we

find [[R2, a], x]modγ4. Applying commutator calculus, we obtain the following

matrix of the presentation for γ3/γ4:

Hence, it follows that:

L3(L) = Z2
2 = L3(T2)

Therefore, we conclude our result and complete this section here.
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

[R3, e]R1 -1 0 0 -1 0 0 0 0 0 0

[R2, e] 0 -1 0 1 0 0 0 0 0 0

R1 0 0 -1 -1 0 0 0 0 0 0

[R4, e](R1)
−1[R2, e] 0 0 0 2 0 0 0 0 0 0

[R2, a][R3, b][R4, b] 0 0 0 0 -1 0 0 0 0 0

[R2, d] 0 0 0 0 0 -1 0 0 0 0

[R2, c][R4, b] 0 0 0 0 0 -1 0 0 0 0

[R3, c] 0 0 0 0 0 0 0 -1 0 0

[R4, b] 0 0 0 0 0 0 0 0 1 0

[R3, b][R4, b] 0 0 0 0 0 0 0 0 0 -1

[R2, b]([R2, d])
−1 0 0 0 0 0 0 0 0 0 0

[R3, a]([R3, c])
−1 0 0 0 0 0 0 0 0 0 0

[R3, d][R2, c][R4, b]

([R2, a][R3, b][R4, b])
−1 0 0 0 0 0 0 0 0 0 0

[R4, a]([R3, b][R4, b])
−1[R3, c] 0 0 0 0 0 0 0 0 0 0

[R4, c][R4, b]
−1 0 0 0 0 0 0 0 0 0 0

[R4, d]([R2, c][R4, b])
−1[R2, d] 0 0 0 0 0 0 0 0 0 0

R5R3R4R2([R2, a][R3, b][R4, b])
−1R1 0 0 0 0 0 0 0 0 0 0

4 Conclusion

The combinatorial approach to reduce the link L by 4−moves and isotopy

to a link of 11 crossings or less is not convenient at all as number of crossings

go beyond control. The 4-moves invariant R4(L) defined in [5], is potentially

stronger than nth Burnside group of links; as the BL(4) deficits information

about 4−move equivalence classes. As we have mentioned earlier, the example

of the link L was motivated by the example given in [2], that is still an open

problem therefore, we conclude that the link L, serves as a counterexample for

Kawauchi’s question. The results we obtained as an effect of calculations of the

associated Lie ring of the group R4(L) only show that using the commutator

calculus we cannot deduce if R4(L) � R4(T2). This does however implies that

other invariants like, K
(n)
4 (L) and N

(n)
4 (L) [6] can be used to show that if L

reduces to the trivial link with 2 components or not. The challenge in this

context is to find the convenient presentations for these groups, once knowing



128 Lie Ring of 4−move Invariant Group R4(L)...

their presentations computer algebra systems (for instance GAP) can be used

to make the necessary computations. For now, we leave these ideas open and

plan to investigate more techniques from the combinatorial group theory in

the near future.
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