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The Join Mapping of
two Stratified Graphs

Nicolae Tanddreanu' and Irina Tudor (Preda)?

Abstract

Using the mappings u; and ug that uniquely define [9] two stratified
graphs G; and G, respectively, we define the mapping u; @ uo. This
mapping is used in further research to define the least upper bound of
stratified graphs G; and Go. The upper bound helps us in future research
to prove the closure under union set operation of stratified languages,
a family of languages generated by stratified graphs. A few properties,

including the associativity of the operation @ are proved.
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1 Introduction

The concept of labeled stratified graph (shortly, a SG or stratified graph)
was introduced in [7] as a method of knowledge representation and it is ob-
tained by incorporating the concept of labeled graph into an algebraic envi-

ronment given by a tuple of components, which are obtained applying several
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concepts of universal algebra. The existence of this structure is proved in [§]
and various algebraic properties are presented in [8], [9], [10] and [11]. The
inference based on SGs is described in [10]. An application of this structure
in the communication semantics and graphical image generation are presented
n [10]. A special kind of reasoning, hierarchical reasoning and its application
to image synthesis are presented in [11]. In [5], [6] we show that we can gener-
ate formal languages by means of the stratified graphs, thus obtaining a new
mechanism to generate formal languages.

Let M be an arbitrary nonempty set. We consider the set B given by

B:UBn

n>0

where
By=M
Bny1 = B, U{o(xy,22) | (x1,22) € B, X By},n >0

and o(zy, ) is the word ozi25 over the alphabet {o} U M. The pair M =
(B, o) is a Peano o-algebra over M ([1], [2], [3], [4]).

If f and g are two mappings then we write f < g if dom(f) C dom(g) and
f(z) = g(x) for every x € dom(f).

A binary relation p over the set S is a subset p C S x S. The set of all
binary relations is the power set 2%, There is a classical binary operation

for binary relations. This is denoted by
o 2S><S % 2S><S N 2S><S
and is defined as follows:
prope={(x,y) €S xS |Fz€S:(x,2) € p1,(2,y) € pa}
We consider the mapping prods : dom(prods) — 25%%, where

dom(prods) = {(p1, p2) € 2579 x 2575 | py o py # 0}

and prods(p1, p2) = p1 © pa for every (pi, p2) € dom(prods). The pair (2°%7,

prods) becomes a partial algebra. We denote by u € R(prodg) the following
property: u : dom(u) — 2% dom(u) C dom(prods), u(pi,p2) = p1 © pa
for every (pi1, p2) € dom(u). If u € R(prodg) then we denote by Cl,(Tp) the
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closure of Ty in 25%5. This is the least subset of 259 that contains Tj and is
closed with respect to u.

The concept of labeled graph is a basic one for the concept of stratified
graph. By a labeled graph we understand a tuple G = (S, Lo, Ty, fo), where
S is a finite set of nodes, Lg is a set of elements named labels, Ty is a set of
binary relations on S and fy : Ly — Tj is a surjective function.

We denote by £, the set of all labeled graphs. Consider Gy = (5S4, Lo1, To1,
for) € Ly and Gy = (S3, Loz, Toz, fo2) € Liy. We write Gi T Go if S; C Ss,
Lo1 C Loz and fo1(a) C foz(a) for every a € Lg;. The relation C is a partial
order as proved in [13].

Also in [13] we defined the mapping
f01|_|f02 . LOlULOQ —>T()1UT02U{p | 3,u 6T01,(9 € TOQ . p:,uUQ}

as follows:

fgl ((1,) if ac¢ LOl \ L02
(for U fo2)(a) = foz(a) if a€ Lo\ Loy
fOl(CL) U fog(a) if ac L01 N Log

Consider a nonempty set Lo C M. We denote L € Initial(Ly) if the following
two conditions are satisfied:

1. Ly C L C M;

2. ifo(a,B) € L,a € M, 3€ M then a € L and 3 € L.

A labeled stratified graph G over G (shortly, stratified graph or SG) is a
tuple (G, L, T, u, ) where

o G = (S5, Lo, Ty, fo) is a labeled graph
o [ € Initial(Ly)
o u € R(prodg) and T = C1,(Tp)

o f: (L,oy) — (2975 u) is a morphism of partial algebras such that
fo =2 [, J(L) =T and if (f(x), f(y)) € dom(u) then (z,y) € dom(ov)
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2 The join mapping of two stratified graphs

and its properties
We consider the labeled graphs
G1 = (51, Lot, Tor, for) € Lig, G2 = (Sa, Loa, Toz, fo2) € Lig
and the labeled stratified graphs
G = (G17L17T17u1;f1) € Ly, Go = (G2,L2,T2,U2,f2) € Ly,

over (G; and (G respectively.
In what follows we suppose that S; N Sy = (). Without loss of generality

we can suppose that
dom(uy) €Ty x 11, uy : dom(uy) — Ti;
dom(ug) C Ty X Ty, ug : dom(ug) — Ty;

Ty C 251%51 T, C 292%52 gpd 251%51M252%52 — () it follows that T7NT, = 0.

Definition 2.1. Take S = S; U S;. We extend the mapping v, and us as

follows:

u_l . QSXS % 25><S s 25><S

_ u(pi, pr)  if  (pi, pr) € dom(uy)

w1 (pi, pr) = .
0 otherwise

u—2 . 2S><S % QSXS s 25’><S

Ug(wj,wm) if  (wj,wn) € dom(us)

0 otherwise

u_2(wj>wm) = {
We define

TlLL_UTQZ{pUW|p€T1U{®},WETQU{®}}\{®}

Remark 2.2. Obviously we have Ty W Ty, =To UT].
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Proposition 2.3. We consider the set Ny = (fo1U fo2)(Lo1ULg) C TYUTY.

The sequence { Ng}r>1 defined recursively as follows:

N1:N0U{[L€T11@T21|3p1UW1€N0,E|p2UC<}2€N02

w= u_1(p1,02) Uu_2<w17w2) # 0} (1)
Nip1 = Ny U{p € T O TE | 3py Uwy € Ny, Fpa Uws € Ny

= 11(p1, p2) Ul (wi, ws) # 0}
satisfies the following properties:
il) N, CTFEUTE, for every k > 0;
i2) NoCN; C...C Ny C Njyr C ...
i3) There is ko > 0 such that Ng C ... C Ny, = Nggi1 = Nggr2 = - - -

Proof. We have Ny = (for U fo2)(Lor U Loz) = {p | Ja € Los \ Lo2 : p =
fo(@)} U{p | Ja € Loo \ Lot : p = foo(a)} U{p | Ja € Loy N Loz : p =
for(@) U foa(a)} CTY UTY U (TY W TY) C TP WTY. Thus il) is true for k = 0.
Suppose that i1) is true for & = m and we prove the property for k = m + 1.

From (1) we obtain
Npy1 = Ny U{p € TP U T | 3p Uwy € Ny, 3pa Uwy € Ny,

p=T1(p1, p2) UTia(wr, wa) # 0}

therefore N,y C (T W Ty U (T w Tv ) = T w Tyt Thus il) is
true for k =m + 1.

For every k > 0 we have N C Tl’“ w Tz’“ C T, U T, and the last set is
a finite one because S = S; U Sy is finite. Thus there is & > 0 such that
Ny C ... C N = Ngy1. Now, by induction on p > 1 we can verify that
Ny = Njyp. For p =1 this property is true because Nj = Nj41. Suppose that
Ny = Ny, for p =m. We have

Niim+1 = Ngom U {,u | dprUw; € Nk+m73p2 Uwy € N, :

= 1(p1, p2) Utz (wr,wa) # 0} = NpU
{1 | Ip1Uwr € Ni, 3paUws € Ny 1 p =1 (p1, po) Sz (wr,w2) # O} = N1 = Ny
]
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Proposition 2.4. The sequence {M,},>1 defined as follows:

My = {(p1 Uwi, pa Uws) € Ny x Ny | ui(p1, p2) UTg(wr, ws) € Ny}
Mp+1 = {(Pl Uwy, p2 U w2> S Np—l X (Np \ Np—l) U (Np \ Np—l) (2)
XN, 1 w1 (p1, p2) UTg(wr,ws) € Npi1}

satisfies the following property: either My = 0 or there is k > 1 such that
M; # 0 for every j € {1,...,k} and M; =0 for j >k + 1.

Proof. Suppose that Ny = Ny. From the definition of N; we deduce that
{p ] 3p1Uwr € No,3pa Uws € Ny = o =T1(p1, p2) UTa(wy, wa) # 0} =0

therefore M; = (). If Ny # Ny then by Proposition 2.3 we deduce that there is
k > 1 such that Ny C ... C Ny = Ngy1 = Ngyo = .... In this case M; # 0 for
jed{l,....k} and M; =0 for j > k+ 1. O

Remark 2.5. The rule by means of which the sequence {M,},>1 is obtained

can be represented intuitively as in Figure 1.

No N1\ No . Np \ Np-1

No

N1\ No

SLL L L LS

Np\ Np.1

Figure 1: The sequence {M,},>1
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Remark 2.6. The relation (2) can be written also as in (3).

M = {(p1 Uwi, pa Uws) € Ny x Ny | ui(p1, p2) Ula(wi,w2) € N1}
Mp1 = {(prUwi, p2 Uws) € Npo1 X (N \ Np—1) U (N \ Np—1) X (3)
X Np-1 U (N \ Np-1) X (Np \ Np—1) : T1(py, p2) Uliz(wi, w2) € Npya }

Remark 2.7. For every p > 1 we have M, C (T1 U Ty) x (T} U T3).

Definition 2.8. Consider the mappings uy; : dom(uy) — Ty and uy :
dom(ug) — Ty, where dom(uy) C Ty x 11 and dom(ug) C Ty X Ty. Consider
the sequences { Ny } k>0 and {M,},>1 as in Propositions 2.3 and 2.4 respectively.
Consider the number k > 1 such that M; # 0 for j € {1,...,k} and M; =0
for 5 > k+ 1. Define the mapping

k
u1€9u2:UMp—>Nk

p=1

as follows:
k

dom(u1 D Uz) = U Mp

p=1

(U1 B ug)(s1 Uy, S2Ure) =ug(s1, S2) Utz(ry,72)

for every (s1 Uy, s9 UTy) € dom(uy @ uz).

Remark 2.9. The construction from Definition 2.8 can be applied for the
case uy = uy because Sy = Sy and S} N Sy # (). For this reason we agree to

consider u; D u; = uq.
Remark 2.10. As a conclusion we can relieve the following facts:
e u; € R(prodg,), us € R(prodg,)
o 11 = Cly,(Tor), To = Clyy(To2)

° dOm(U1> - T1 X Tl, dom(u2) - T2 X T2

[ dom(u1 D UQ) = UI;:1 Mp - Nk,1 X Nk,1 - (Tl y Tg) X (Tl y Tg)
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o (u; ®us)(01,0) € N, CT1UTy for every (01, 60;) € dom(uy @ us)

Proposition 2.11. The mapping uy @ us is well defined.

Proof. We show that for every (s; U ry, sy Ury) € dom(u; @ uy) we have
(ur Bug)(s1Ury, soUre) € Ni. If (51U, 59 Urs) € dom(uy & ug) = Uizl M,
then (s Uy, soUrg) € M; for some j € {1,...,k}. In this case

U_l(PlaPZ) UU_Q(Wl,WQ) € Nj

But N; C Nj. 0

Proposition 2.12. u; @ us = us & uy

PT’OOf. Consider Ng = (fOl U f()g)(L()l U Log) and denote by (Nz, Mz> for ¢ Z 1
the sets defined as in (1) and (2) for u; & ups. We denote by (P, Q;) the

corresponding sets for us @ uy:

P = NoU{p|3p1 Uw; € Ny,3pa Uwy € Ny :
= z(p1, p2) Uy (wr,wa) # 0}

P =P U{p | IpUwy € Pr,IpaUwy € Py -
= Tz(p1, p2) Ut (wr,ws) # 0}

Q1= {(p1Uwy, p2 Uwy) € Ny x Ny | Wz(p1, p2) UTii(wi,ws) € Pr}
Qp1 = {(p1Uwi, prUws) € Py X (B \ Ppo1) U(Bp\ Bpe1) X By
Uz (p1, p2) Ui (w1, w2) € By }

By induction on i > 1 we can prove that N; = P;. Consider the sets Z; = Ny \
Ny and Wy = Py \ Ny. Suppose that (61,02) € Z;. There are pq, pa, wi,ws € Ny
such that ; = p;Uw; and 0y = paUws and (6, 62) = ui(p1, p2) Utz (wy, ws) # 0.
Obviously 6, = wiUp; and 6 = wyeUp, and (61, 62) = Tz(wr, w2) U1 (p1, p2) # 0.
It follows that Z; C W;.

Similarly we have W; C Z;. As a consequence we have Z; = W; and
Ny = P;. Suppose that N, = P;. Take (61,0) € Ngiq1. If (61,05) € Ny then
(01,603) € Py by the inductive assumption. In this case we have (6, 605) € Pyy1.
It remains to consider the case (61, 02) € Ngi1\Nk. There are py, pa, wy, we such
that (p1 Uwy, poUwsy) € Ni X N, such that (01, 02) = ui(p1, p2) Utz (wr, wz) # 0.
We have (01, 02) = uz(wq,wq)Uur(p1, p2). By the inductive assumption we have
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wiUpy € P, and wy U py € Py. Thus (61,05) € Pyyq \ Pr. This property shows
that N1 € Pry1. The converse implication is proved in a similar manner.
Based on the fact that N; = P; for every ¢« > 1, it is easy to show by
induction on k > 1 that M, = Q). First we have M; = ()1 because N; = P;.
Suppose that M; = P, for every i € {1,...,k} and we verify that My, C Py
and P © M.
Consider (01,02) € My, 1. If (01, 63) € My, then by the inductive assumption we
have (6,02) € Py. Suppose that (01,0) € Myq \ My. There are py, pa, wy, wo
such that (01,602) = (p1 Uwy, pa Uws) € Ni—q X (N \ Ng—1) U (N \ Nk—1) X
Ni—1 U (Ng \ Ni—1) X (Ng \ Ni—1) and @q(p1, p2) U bz(wi,ws) € Nigii. By the

inductive assumption we obtain
(w1Up1,walpy) € Py X (Pr\ Pr1)U(Pr\ Pr1) X Pe 1 U(PR\ Pr1) X (P \ Pr—1)

and
Ug(wi,ws) U (p1, p2) € Prya-
It follows that (61,6s) € Qrr1 \ Qk. The inclusion Py C My, is proved in a

similar manner.
It follows that

dom(uy @ uz) U M, = U Qr = dom(ug ® uyq).

k>1 k>1

Proposition 2.13. Consider G1 = (S1, Lo1, To1, fo1) € Lig, G2 = (52, Loz,
Toa, fo2) € Lig, G1 = (G1, L1, Th,uy, f1) € Ly, and Gy = (Ga, Lo, To, us, f?) €
L. If

No = (for U fo2)(Lo1 U Lo)

then Cly,auy(No) = Nk, where Ny, is given by Proposition 2.3.

Proof. Consider the number kqy given by Proposition 2.3. In order to obtain

Clyyauy (No) we compute the sequence {R,,},,>0 defined as follows:

Ry = Ny
Rn+1 = Rn U {9 | 3(61, 92) € (Rn X Rn) N dom(u1 D Ug) : (4)
0 = (u1 ® us)(01,6-)}
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We verify by induction on ¢ > 0 that R; = N;. For i = 0 we have Ry = Ny,
therefore this property is true for ¢ = 0. Suppose the R, = N,, and we prove
that R,;1 = Npy1. If 6 € R, then we consider the cases # € R, and
0 € R,i1\ R,. If we have the first case then § € N,, C N, ;1. Suppose that we
have the second case. There are (0;,0) € (R, x R,)) Ndom(u; & us) such that
0 = (u; ® ug)(bh,02). But R, = N,, and 0 = uy(p1, p2) U Uz(wy,ws), therefore

(4) can be written as follows:

R[) = NO
Rn+1 = Nn U {9 | 3(91, 92) € (Nn X Nn> N dom(u1 D UQ> .
0 = (u1 © ug)(01,02)}

therefore R, 11 = Np41. [l

In order to relieve these aspects we take the following example.

a

b e ) o]

b

Figure 2: The labeled graph G4

We consider the labeled graph G = (S1, Lo1, To1, fo1) represented in Figure

2 and defined as follows:
L4 Sl = {1'1,1'2,373,1'4,375};
L4 LOl - {(l, b7 c, 6}7

o for(a) = {(z1,22), (w3,25)} = p1; for(b) = {(z1,72), (w2, 23)} = po;
Jor(e) = {(xs,24)} = p3; for(e) = {(z4,25)} = pa;

o Ty = {Phpz,ﬂs,m}

We consider the mapping u; € R(prods,) defined as follows:

ui(p1, p2) = ps = {(x1,3)}; ur(p2, p2) = ps; ur(p2, p3) = ps = { (2, 74) };
ui(p1, ps) = pr = {(x1,24) }; wi(ps, p3) = pr;



N. Tandareanu and I. Tudor (Preda) 141

This mapping is shortly described in Table 1. It follows that

dom(u1) = {(p1, p2), (p2. p2), (p2: p3). (p1, pe); (P5. p3)}

It is not difficult to observe that

Ty = Cly, (Tor) = {p1, P2, p3, P4, P55 P65 P7}

Table 1: The mapping uy
Uy | p1| P2 | P3| P4|P5| P6 | P
P1 Ps P
P2 P5 | Pe
P3
P4
Ps P7
Psé
P17

n SIS C‘J?JS dJ]yzx

Figure 3: The labeled graph G,

Let us consider the labeled graph Gy = (Sq, Loz, Toe, fo2) represented in

Figure 3 and defined as follows:

® S5 = {y1,Y2, Y3, Ya };

o Lo ={b,c,d};
o fo2(b) = {(y1,92)} = wi; foalc) = {(v2,43)} = w; foa(d) = {(y3,94)} =

o Ty = {wi, wy,ws}
We consider the mapping uy € R(prodg,) defined as follows:

g (W, we) = wy = {(Y1,Y3) }; u2(w2,ws) = ws = {(y2,y4) };
Uz (Wi, ws) = we = { (Y1, ya) }5 ua(ws, ws) = we;
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Table 2: The mapping us

Uy | W1 | Wo | W3 | Wq | W5 | We

w1 Wy We

%) Ws

ws

Wy We

Ws

We

The mapping usy is described in Table 2.
We deduce that

dom(ug) = {(w1,w2), (w2, ws), (w1, ws), (W, ws3)}

We consider now the set N() = (f(n (] foQ)(LOl U LOQ). We have L01 U LOQ =

{a,b,c,d, e} and taking into account the mappings fo; and fpo we obtain

(for U fo2)(a) = for(a) = p1; (for U fo2) (D) = for(b) U foz(b) = p2 Uwr;
(for U fo2)(€) = for(e) U foz(c) = ps Uwa; (for U fo2)(d) = foa(d) = ws;
(for U foz2)(e) = for(e) = pa

It follows that

No = {p1, p2 Uw1, p3 U wa, w3, pa}.

Further, the computations can be described as follows:
(Nox No)Ndom(us ®uz) = {(p1, paUwr), (p2Uw1, paUwy ), (paUwy, p3Uws),
(3 U wz,ws)}
N1 = NoU{ps, ps Uwas,ws}

Ny = Ny U{pr,we}; N3 = N,

My = {(p1, p2 Uwr), (p2 Uwr, pa Uwy), (p2 Uwr, p3s Uwa), (p3 Uwa, ws)}

My = {(p1, ps Uwa), (p2 Uwi,ws), (ps, p3 Uws), (ps U wa, ws)}
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M; =10
It follows that

Clyous = {p1, p2 Uwr, p3 Uwa,ws, pa, ps, ps U wa, ws, p7,We }

We obtain the mapping u; @ us from Table 3.

Table 3: The mapping u; @ us

U1 D ug

P1

p2 Uw

p3 U ws

ws

P4

Ps

Pe U wy

Ws

P7

We

P1

Ps

P

p2 Uwy

Ps

Pe U wy

We

p3 U ws Ws

w3
P4

Ps pPr
Ps U wy We

Ws

P7
We

The next proposition proves the associativity of the operation @. First we
need several auxiliary results. We mention that we use the following notations

and results:
e G; = (Si, Loi, Toi, foi) € Ly for i =1,2,3
o G = (Gi, L, T;,u;, f*) € Ly for i =1,2,3

e There is ko such that dom(u; @ uy) = U];O:1 M, where

No = (for U fo2)(Lo1 U Log)
Nip1 = Ny U{p € TFH W TEY | 3py, pr € TF, 3wy, wo € TF

prUwi € Ni, po Uws € Nig; o =i (pr, p2) Uiz (wr, we) # 0}

(5)

My = {(p1 Uwi, ps Uws) € Ny x Ny | ui(p1, p2) Ulz(wr,ws) € Ny}
Mp+1 = {(pl Uwi, p2 UWQ) S prl X (Np \ prl) U (Np \ Np71> X Np |

Ui(p1, p2) Utiz(wy,ws) € Ny}
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where T} = Cl,,(Ty1) and Ty = Cl,,(Ths). We denote by {T%F}1>¢ and
{T¥} >0 the sequences that give T} and Ty respectively.

Denote L12 = LOl U L02 and gi2 = f01 LJ f02 . L12 — TOl Y] TOQ' From (5)
we observe that

Clm@Uz (NO) = Nko

e We consider the following sequences of sets:

Py = (g12 U fo3)(L12 U Loz)
Piy1 = PoU{p € Npyr WTET | 3py, py € Ni, Fwy,wy € T
p1Uwr € Py, pa Uws € P i = uy @ uz(pr, p2) Ulz(wr, ws) # 0}
(6)
where Ty = Cl,,(Tys). We denote by {T%}1>0 the sequence of sets that

are used to obtain T3.

Ry ={(p1Uwi,ps Uws) € Py X By | uy @ uz(p1, p2) UTz(wi,ws) € P}
Rpp1 ={(pr Vw1, p2Uws) € By X (B \ Bpo1) U(F,\ Bpoy) X By |
ur ® uz(p1, p2) Ulz(wi, we) € Py}

There is mq such that P,,; = P41 and dom((u @ u2) S ug) = (U2, Re.
We remark that

Pmo = Cl(m@ﬂz)@us (PO)
e There is 59 such that S, = Ss,41 and dom(uz © uz) = |2, Qp, where

So = (fo2 U fo3)(Loz U Lo3)
Sep1 = S U{p € TV WTE™ | 3py, po € TF, Fwy,wy € TH (7)
prUwy € S, pa Uwsy € S = Ua(p1, p2) UTz(wr, wa) # 0}

Q1= {(p1 Uwr, pa Uws) € Sy x Sy | wz(p1, p2) UTg(w,ws) € Si}
Qp+1 = {(Pl Uwr,ppUws) € Sp—1 X (Sp \ Sp—l) U (Sp \ Sp—l) X Sp |
Uz(p1, p2) Utiz(wr,ws) € Spy1}
Denote L23 = L02 U L03 and go3 = f02 L f03 . L23 — T02 Y] Tog. From (7)
we observe that

CZU2®U3 (SO) = SSO
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e We consider the following sequences of sets

Uo = (for U ga3)(Lor U Lg3)
Uk—l—l = Uk U {/L - leJrl U Sk+1 | E|p1,,02 & Tf,Elwl,wg € Sk :
prUwy € Ug, po Uws € Uy; =i (p1, p2) U ug & ug(w,ws) # 0}
(8)
Vi ={(p1 Uwr, p2 Uwsy) € Uy X Uy | 1 (p1, p2) U ug @ uz(wi,ws) € Uy}
Vor1 ={(pm Uwi,p2 Uws) € Upor X (Up \ Up—1) U(Up \ Up—1) x U, |
ur(p1, p2) Ut & uz(wy,ws) € Upir}
There is jo such that U, = Uj,.1 and dom(u; @ (ug @ ug)) = U, Vi.
We observe that
Ujo = OZU1€B(U2€BU3)(U0)

Lemma 2.14. For every Ay Uy, € Ny, and Ay Uy € Ny, we have
Uy @ ug( A1 Uy, Aa Uye) = 1r(Ar, Ag) UTiz(71,72) 9)
Proof. We have

Uy @ ug(A1 U1, AaUya)  if
(R, u2()\1 U Y1, )\2 U ’}/2) = ()\1 U Y1, )\2 U ’}/2) € dom(u1 D 'LLQ) (10)

® otherwise

We remark that if (A} Uy, A0 U y2) ¢ dom(u; & ug) then uy(Aq, Ag) U
U (1, v2) = 0. Suppose the contrary, uy(Ay, A2) UTiz(v1,72) # 0. But A\ Uy €
Nioy Ao Uy € Ny, and Ny € Ny C N, = Ngy+1- There is k < kg such that
A U7 € Ny and Ay Up € Ng. If this is the case then (A U vy, Ay Ue) €
M, C dom(uy & usg), which is not true. Now, from (10) we obtain

u @ us( A Uvp, AgUng) if

(A U1, A Ung) € dom(uy @ usg)
(A1, Ag) Utiz(y1,72)  if

(A Uy, Ao Us) € dom(uy @ us)

U B uz( A1 Uy, Ag U ) =

(11)

But ui @ ua(A Uy, A Ue) = r(Ar, Ag) U lia(71,72) if (M Uy, AaUe) €
dom(u; @ uz) and thus from (11) we obtain (9). O
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Lemma 2.15. For every A\ Uy € Sy, Ao U2 € Sy, we have
Uy @ ug( A1 Uy, Ao Uye) = z(Ar, Ag) UTiz(71,72) (12)
Proof. Directly from the definition of us & u3 we obtain

Uy B ug(A Uy, Adg Unyg) if
Uy D Ug()\l U, )\2 U ’Yz) = (/\1 U, )\2 U ’72) S dom(uQ © U3) (13)
® otherwise

We remark that if (Ay U y1, Ao U ) ¢ dom(us @ ug) then uz(A, Ay) U
u3(71,72) = 0. Really, let us suppose the contrary, that uz(A1, Ao) Utz (1, 72) #
). But Sp C S; C Ssy = Sso11 and AUy € Sy, AdaU~yg € Sy, There is s < g
such that \y U~ € Sy and Ap Uy € Ss. Tt follows that (A Uy, A Uy) €

Qs C dom(us @ ug), which is not true. Now, from (13) we obtain

uy @ uz(Ar Uy, Ap Uyg) if

(A1 U1, A Une) € dom(us & ug)
Uz(Ar, Ag) Unaz(y,72)  if

(A1 U1, A Ung) € dom(us @ ug)

Uy ® uz(M Uy, A Uyg) = (14)

But ug @ uz(A Ui, A Ua) = Ua(Ai, Ag) Uiz(y1,72) if (A Ui, Ada Une) €
dom(ug @ ugz) and thus from (14) we obtain (12). O

Proposition 2.16.
(u1 @ ug) ®ug = up ® (ug G ug)
Proof. We prove that for every £ > 0 we have
P, = Uy (15)

For k = 0 the relation (15) is true by [12]. Suppose that (15) is true. We verify
that
Pri1 C U (16)

Consider i € Pyy1. We have the following two cases:
1) If p € Py then p € Uy, therefore in this case p € U,y and (16) is true.
2) Suppose that g € Pyyq1 \ Pr. There are ¢; Uw; € Py and 0y Uwy € Py
such that
= uy O ug(01,02) Utz(wr,wa) (17)
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From (6) we have 0,0y € Ny and wy,wy € T. But Ny C TF W Ty, therefore
there are A\, Ao € TF U {0}, 71,72 € To U {0} such that

0 =AM U, O =AU

As a consequence we have 6] Uw; = A\ Uy Uw;. But 0 Uw, € P, and
P, C N, U Tgk. It follows that Ay U~y Uw, € P,. But w, € Tgk and thus we
obtain Ay U~y; € N. Similarly we have Ay Uy € Ni.. Applying Lemma 2.14
we obtain

uy © ua (A Uy, Adg U ) = r(Ar, Ag) Utiz(1,72) (18)
From (17) and (18) we obtain

po=Tr( A1, A2) UTiz(y1,72) U Tg(wi, wa)

We come back to (17). We have 6; = A\ Uy, 01 Uw; € Py, MUy Uw;y € Py =
U, C le WS, and \; € le. It follows that v; Uw; € Si. Similarly we have
Yo Uwy € Sp.

We can apply Lemma 2.15 and obtain

Uy @ uz(y1 Uwr, v Uws) = Uz(1,72) Us(wi, ws)

It follows that
= Uy @ ug( A U1, AaUe) Utz (wy, wa) = Up (A1, Ag) Uiz (71, Y2) Uiz (wr, we) =

= Ur(A1, A2) U (ug @ uz) (11 Uwr, 72 Uws)
Thus p € U1 \ Uy, therefore in this case (16) is true.

The converse inclusion
Uk+1 € Pea (19)
is proved in a similar manner. Consider p € Ui,;. We have the following two
cases:
1) If p € Uy then p € Py, therefore in this case p € Py and (19) is true.
2) Suppose that p € Ugyq \ Ux. There are p; Uw; € Uy, and py Uws € Uy
such that
= "1(p1, p2) U uz @ us(wi, wo) (20)
From (8) we have py,ps € TF and wy,ws € Si. But S, C Ty WTY, therefore
there are A\, \a € T U {0}, 71,72 € T4 U {0} such that

wr =AU, wa =AU
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We have py Uw; = py U\ Uy € U and Uy = Py, therefore py U\ Uy, € P,
But v, € TF, P, € Ny UTE, and TF N Tf = () for i # j. It follows that
p1UA; € Ng. From (20) we have

w="u1(p1, p2) Uug @ usz(Ar U1, Ao Uz) (21)

But \y U~y € Si because wy € Sy and w; = A U ;. Similarly we have
Ao U7y € Sg. We can apply Lemma 2.15 and obtain

Uy B uz(A1 Uy, Ada Uya) = ua( A1, A2) UTz(71,72) (22)

We have wy = MUy, ppUwy =prUN Uy € Uy = P, C ]\kawTiifC and
v € Tx. Tt follows that p; U\, € Ny. Similarly we have py U)Xy € Ny. We can
apply Lemma 2.14 and obtain

up @ uz(pr U A1, p2 U Xg) = 1r(pr, p2) Uiz(A1, A2) (23)

From (21), (22) and (23) we obtain
p="11(p1, p2) Uts @ us(A Uy, Ao U2) = Tg(p1, p2) UTz(A1, A2) Uz (Y2, 72) =

=uy @ uz(p1 U A1, pa Ude) UTz(71,72)

Thus p € Py \ P, therefore in this case (19) is true and finally (15) is true.
It follows that Vj, = Ry for every k£ > 0. But

dom(uy & (us @ ug)) U Vi

k>1

dom((uy ® uz) ® us) U Ry,

k>1
therefore dom(uy @ (us ® u3)) = dom((uy @ uz) @ uz) and the proposition is
proved. O]

3 Conclusion

In this paper we used the concept of stratified graph, introduced for the
first time in [7]. We know by ([9]) that a mapping u can uniquely define a
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stratified graph G over a labeled graph G. We used two mappings u; and us
that define two stratified graphs G; and G,, respectively and we defined the
mapping uy; @ us. This mapping will be used in further research to generate
the least upper bound of stratified graphs G; and G, over the labeled graph
sup{G1, G2} ([12]). We proved a few properties of the operation @, including

the associativity.
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