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Abstract 
 

 

Time series analysis and forecasting is an important tool which can be used to 

improve water resources management. Iraq is facing a severe water shortage 

problem. The use of rainwater harvesting is one of the techniques to overcome this 

problem. To put this into practice, it is of prime importance to forecast future 

rainfall events on a weekly basis. 

Box-Jenkins methodology has been used in this research to build Autoregressive 

Integrated Moving Average (ARIMA) models for weekly rainfall data from four 

rainfall stations in the North West of Iraq: Sinjar, Mosul, Rabeaa and Talafar for 

the period 1990-2011. Four ARIMA models were developed for the above stations 

as follow: (3,0,2)x(2,1,1)30, (1,0,1)x(1,1,3)30, (1,1,2)x(3,0,1)30 and (1,1,1)x(0,0,1)30 

respectively. The performance of the resulting successful ARIMA models were 

evaluated using the data year (2011).These models were used to forecast the 

weekly rainfall data for the up-coming years (2012 to 2016). The results supported 

previous work that had been carried out on the same area recommending the use 

of water harvesting in agricultural practices. 
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1 Introduction  

Iraq is facing a serious water shortage problem [1]. This implies the need to use 

new techniques to overcome this problem. Among these methods is the water 

harvesting technique. The Sinjar area was chosen to evaluate the possibility of 

using this technique [2; 3; and 4]. To ensure optimal use of the technique, decision 

makers and farmers require prediction of the future rainfall expected in their 

locality. 

There are several methods dealing with time series forecasting, the most relevant 

is Box-Jenkins methodology which used in this study. It is discussed in several 

publications [e.g. 5; 6; 7; 8; and 9].  

Chiew et al., [10] conducted a comparison of six rainfall-runoff modeling 

approaches to simulate daily, monthly and annual flows in eight unregulated 

catchments in Australia. They concluded that a time-series approach can provide 

adequate estimates of monthly and annual yields in the water resources of the 

catchments.  

Kuo and Sun, [11] employed an intervention model for a 10 day average of stream 

flow forecast and synthesis which was investigated to deal with the extraordinary 

phenomena caused by typhoons and other serious abnormalities of the weather of 

the Tanshui River basin in Taiwan. 

Langu, [12] used time series analysis to detect changes in rainfall and runoff 

patterns to search for significant changes in the components of a number of 

rainfall time series. 

Al-Ansari et.al [13, 14] and Al-Ansari and Baban [15], examined the rainfall 

record of all the Jordanian Badia stations, for the period 1967-1998 to determine 

periodicity and interrelations between stations using power spectral, harmonic 

analysis, and correlation coefficient techniques. They used an ARIMA model to 

forecast rainfall trends in individual stations up to 2020. Their results showed that 

the rainfall intensity has been decreasing with time for most of the stations. 
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Al-Hajji, [16] used an ARIMA model to forecast time series of monthly rainfall. 

His results show good sequence of correlation and suitable ARIMA models for the 

monthly rainfall time series for nine rainfall stations in the north of Iraq. 

 Al-Dabbagh, [17] used two time series in order to represent and forecast the data 

using ARIMA methodology. The first was the inflow series to the three reservoirs 

dams (Mosul, Dokan, and Derbendikhan) in the north of Iraq. The second was a 

rainfall series for rain falling on the above reservoirs. The results showed that a 

seasonal ARIMA model is suitable to describe the monthly rainfall and inflow 

series to the three reservoirs.   

Weesakul and Lowanichchai [18] used both of ARMA and ARIMA models to fit 

the time series of annual rainfall during 1951 to 1990 at 3l rainfall stations in 

Thailand. They concluded that the ARIMA model is more suitable to predict 

inter-annual variation of annual rainfall.  

Somvanshi et al. [19] made a comparative study of rainfall behaviour as obtained 

by ARIMA and the artificial neural network (ANN) techniques, using mean 

annual rainfall data from year 1901 to 2003 in India. Their research established 

that the ANN method should be favored as an appropriate forecasting tool to 

model and predict annual rainfall rathar than that using an ARIMA model. 

The ARIMA model has been used by various authors to forecast rainfall and other 

meteorological variables [20, 21, 22, 23 and 24].  

Previous work carried out on the Sinjar area [2, 3 and 4] indicated that water 

harvesting techniques can be successfully used in this area. In order to put these 

techniques into practice, decision makers and farmers should have an idea about 

likely future rainfall events in the area. 

ARIMA models, included in this research, could be harnessed with management 

of water resources by estimating future amounts of runoff to be obtained from 

weekly forecasting rainfall. These weekly runoff data can support supplemental 

irrigation for the rain-fed farms of wheat crop in the Sinjar district to overcome the 

problem of water scarcity.  
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It will also lead to an increase of the efficiency of the irrigation process and 

consequently the crop yield.   

 

2 Study Area and Rainfall Data 

The rainfall stations of Sinjar, Mosul, Rabeaa and Talafar are located within the 

vicinity of the Sinjar district in the North West of Iraq (Fig.1). The data were 

provided by Iraqi Meteorological and Seismology Organization for the period 

1990-2011, assuming no missing data for all stations except the Talafar station, 

where data for several years was missing, the inverse distance method [25] was 

used to estimate the missing data. 

Sinjar district is characterized by its semi-arid climate, where rainfall totals are 

low and there is an uneven distribution. The rainy season extends from November 

to May [4].  

Rainfall on weekly basis of these 4 rainfall stations has been used to develop the 

ARIMA models. The mean weekly rainfall for the above stations was as follow: 

10.2, 11.3, 9.9, and 10.3 (mm) respectively for the period 1990-2011.     

The data of these stations, fluctuate greatly with wide variation where its value 

may ranged between zero to maximum value (more than 100 mm) in addition the 

maximum value rarely repeated, so it is not easy to find suitable ARIMA models 

to represent them unless enough trials have been applied. The complexity may be 

increased due to using weekly period to represent a seasonal period (S). 

In general there are about 30 rainy weeks every year for the Sinjar district, which 

represent the S term in the general form of ARIMA model of (p,d,q)x(P,D,Q)S.  

Seasonal differencing was applied on all the time series from the 4 stations after 

taking a log transformation function, and then applying ARIMA models using 

Minitab software Release 14.1, the ARIMA model describes the seasonal 

differencing time series. 
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Fig. 1: (A) Map of Iraq shows the Sinjar District, (source: lonelyplanet.com).  

 (B) Meteorological stations: Rabeaa, Sinjar, Talafar and Mosul, (source: 

Google map). 

 

 

 

 

 



30                                                      ARIMA Models for weekly...  

 

The time series was divided into three periods: 

The first period, from 1990 to 2010, where the data were used to analyze the 

characteristics of the rainfall and selecting the most appropriate rainfall forecast 

models. The second period, is the final year, 2011, that was used for evaluating the 

performance of the selected models. The third period, the selected model was used 

to forecast rainfall time series for the up-coming 5 years (2012-2016).  

 

3 ARIMA Model  

The multiplicative ARIMA model, as a short term, stands for Autoregressive 

Integrated Moving Average. 

The acronyms AR (p) is known for an Autoregressive model of order (p), and 

represented by: 

 


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ttjt xx
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        (1) 

 

Where x = observation at time=t, =j
th

 autoregressive parameter. 

 t =independent random variable represent the error term at time t,  

          1tx = time series at the time (t-1), p= order of autoregressive process. 

The acronyms MA (q) is known for a moving average model of the order q and is 

represented by:  
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Where:  =j
th

 moving average parameter, q= order of moving average process. 

The combination between AR (p) and MA (q) models is called the ARMA (p, q) 

model, and is represented by: 
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To achieve stationary case in the time series, it may be differenced ARMA model 

for d times to obtain ARIMA (p,d,q), similarly an ARMA model may be seasonal 

differenced for D times to obtain seasonal ARIMA (P,D,Q)S  for S seasonal 

period. So when they are coupled together that will give ARIMA (p,d,q)x(P,D,Q)S  

The regular difference is written as  

 

t

d xB)1(                                                        (4) 

 

B=backward operator, d=the non-seasonal order of differences. 

The seasonal difference of order D with period S is written as   

 

t

DS xB )1(                                                      (5) 

 

In general, the differencing operation may be done several times but in practice 

only one or two differencing operation are used [8]. 

 Box and Jenkins, generalized the above model and obtained the multiplicative 

Autoregressive Integrated Moving Average where the general form is {seasonal 

ARIMA (p,d,q) x (P,D,Q)s } which is written as: 
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The residuals t  are in turn is represented by an ARIMA (p,d,q) model  
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The general multiplicative ARIMA (p,d,q) x (P,D,Q)S model is obtained by 

solving Eq.7 for t  and replacing in Eq.6 as: 

 

t

S

t

dDSS BBxBBBB )()()1()1)(()( 
               

 (8) 

 

4 Box-Jenkins ARIMA Model, Methodology 

In 1976, Box and Jenkins, give a methodology (Fig. 2) in time series analysis to 

find the best fit of time series to past values in order to make future forecasts.  

The methodology consists of four steps: 

1) Model identification. 2) Estimation of model parameters. 3) Diagnostic 

checking for the identified model appropriateness for modeling and 4) Application 

of the model (i.e. forecasting). 

The most important analytical tools used with time series analysis and forecasting 

are the Autocorrelation Function (ACF) and the Partial Autocorrelation Function 

(PACF). They measure the statistical relationships between observations in a 

single data series. Using ACF gives big advantage of measuring the amount of 

linear dependence between observations in a time series that are separated by a lag 

k. The PACF plot is used to decide how many auto regressive terms are necessary 

to expose one or more of the time lags where high correlations appear, seasonality 

of the series, trend either in the mean level or in the variance of the series [7]. 
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Fig. 2: Outline of Box-Jenkins methodology. 

 

In order to identify the model (step 1), ACF and PACF have to be estimated. They 

are used not only to help guess the form of the model, but also to obtain 

approximate estimates of the parameters [26]. 

As identifying a tentative model is completed. The next step is to estimate the 

parameters in the model (step 2) using maximum likelihood estimation. Finding 

the parameters that maximize the probability of observations is main goal of 

maximum likelihood. 

The next, is checking on the adequacy of the model for the series (step 3). The 

assumption is the residual is a white noise process and that the process is 

stationary and independent.  

Model diagnostic checking is accomplished, in this work, through careful analysis 

of the residual series, the histogram of the residual, sample correlation and a 

diagnosis test [27].  

Ljung-Box, Q-test, is used to check the assumptions of model residuals and could 

be written as: 
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Where:  

h= the maximum lag being considered, n=the number of observations in the series 

and rk =the autocorrelation at lag k.  

The statistic Q has a chi-square ( x 2
) distribution with degrees of freedom (h-m) 

where m is the number of parameters in the model which has been fitted to the 

data, the chi square value has been compared with the tabulated values; in order to 

evaluate the valid model otherwise the model will be rejected. 

For successful models, it should be noted that a model with the less number of 

variables gives the best forecasting results, i.e. for a time series having more than 

one successful ARIMA model, in this case it should be consider the model with 

less variables (number of AR and/or MA), this is achieved by using Akaike's 

Information Criterion (AIC) [28], in order to select the best ARIMA model among 

successful models. The smallest value of AIC should be chosen.  

Akaike's Information Criterion (AIC) may be written as:  

 

AIC = ─2 loge (L) + 2(p + q + P + Q + C)                             (10) 

 

Where:    

L= Maximum likelihood, p= non-seasonal Autoregressive order,  

q= non-seasonal Moving average order, P= seasonal Autoregressive order,   

Q= seasonal Moving average order, C= constant of the model. 

 

5 Results and Discussion 

The data of Sinjar station was chosen as a sample of calculations. The first step in 

the application of the methodology is to cheek whether the time series (weekly 

rainfall) is stationary and has seasonality.  

The weekly rainfall data (Fig. 3) shows that there is a seasonal cycle of the series 

and it is not stationary. The plots of ACF and PACF of the original data (Fig. 4) 

show also that the rainfall data is not stationary, where both ACF and PACF have 
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Fig. 3: Weekly rainfall data for Sinjar station for the period (1990-2011). 

 
A stationary time series has a constant mean and has no trend over time. However 

it could satisfy stationary in variance by having log transformation and satisfy 

stationary in the mean by having differencing of the original data in order to fit an 

ARIMA model.  

Seasonal trend could be removed by having seasonal differencing (D) through 

subtracting the current observation from the previous thirtieth observation, as 

described before that rainfall in Sinjar district, it nearly extend for 30 weeks 

annually. In general the seasonality in a time series is a regular pattern of changes 

that repeats over time periods (S). 
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Fig. 4: ACF and PACF for original Sinjar weekly rainfall data. 
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However, if differenced transformation is applied only once to a series, that means  

data has been "first differenced" (D=1). This process essentially eliminates the 

trend for a time series growing at a fairly constant rate. If it is growing at an 

increasing rate, the same procedure (difference the data) can be applied again, then 

the data would be "second differenced" (D=2). If a trend is present in the data, 

then non-seasonal (regular) differencing (d) is required. 

The weekly rainfall data, of Sinjar station, required to have a first seasonal 

difference of the original data in order to have stationary series. Then, the ACF 

and PACF for the differenced series should be tested to check stationary.  

From all of the above, an ARIMA model of (p, 0, q) x (P, 1, Q)30 could be 

identified. 

In the Box-Jenkins methodology, the estimated model will be depending on the 

ACF and PACF (Fig. 5). After ARIMA model was identified, the p, q, P and Q 

parameters need to be identified for Sinjar weekly rainfall time series. 

The data were tested to check the constraction of the ARIMA model by selecting 

the required order of the D that making the series stationary, as well as specifying 

the necessary order of the p,P,q and Q to adequately represent the time series 

model.      

It should be noted that, even if the ARIMA model has been correctly identified 

and gives good results, this will not mean that it is the only model that can be 

considered where most documentations of time series dealing with ARIMA 

models [7, 8 and 26] indicated that other ARIMA models with values of AR 

and/or  MA less than same parameters of the considered ARIMA (for the 

seasonal or nonseasonal varaibels) might be available. In this case these models 

should be identified and tested. Then apply AIC to select the best ARIMA model.   

After selecting the most appropriate model (step 1), it was found that ARIMA 

model (3,0,2)x(2,1,1)30 is among several models that passed all statistic tests 

required in the Box-Jenkins methodology. 

The model parameters are estimated (step 2) using Minitab software.  
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Fig. 5: ACF and PACF after taking difference and Log  

of Sinjar rainfall data. 
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Table 1 shows the estimated Parameters for the successful Sinjar ARIMA model 

(3,0,2)x(2,1,1)30.  

 

Table 1: ARIMA Coefficients for Sinjar model (3, 0, 2)x(2, 1, 1)30. 

No. Type Coefficients Probability 

1 AR   1 0.9672 0.001 

2 AR   2 -0.6016 0.009 

3 AR   3 0.1638 0.014 

4 SAR  30 -0.7191 0.000 

5 SAR  60 -0.4307 0.000 

6 MA   1 0.8013 0.004 

7 MA   2 -0.5505 0.004 

8 SMA  30 0.8676 0.000 

Not: AR and MA represent non-seasonal coefficients and  

SAR and SMA represent seasonal coefficients. 

 

The residuals from the fitted model are examined for the adequacy (step 3). This is 

done by testing the residual ACF and PACF plots that shows all the 

autocorrelation and partial autocorrelations of the residuals at different lags are 

within the 95 % confidence limits. 

Table 2 shows the Ljung-Box Q-test of the residuals for the successful Sinjar 

ARIMA model (3,0,2)x(2,1,1)30 .This model appears to fit the Sinjar data. 

Only the model with no significant residuals should be considered to indicate that 

the model is adequate to represent the considered time series. Figure 6 shows the 

residual ACF and PACF plots.  

Figure 7 represents four graphical measures for the adequacy of the model.  
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Table 2: Ljung-Box Q test of the residuals for Sinjar  

ARIMA model (3, 0, 2)x(2, 1, 1)30. 

No. Details     Values 

1. Lag 12 24 36 48 

2 Chi-Square 6.1 22.9 34.5 48.5 

3 Degree of Freedom 4.0 16.0 28.0 40.0 

4 Probability –Value 0.189 0.116 0.185 0.168 

 

The first measure is the normal probability plot of the residuals (top-left of Fig.7) 

which is good as required for an adequate model and most of the residuals are on 

the straight line.  

The second measure for adequacy of model is the histogram of the residuals 

(bottom-left of Fig.7) which shows good normality of the residuals.  

The third measure is the plot of residuals against fitted values (top-right of fig.7).  

The variance of the error terms must be constant, and they must have a mean of 

zero. If this is not the case, the model may not be valid.  

To check these assumptions, the plot (Fig. 7 top-right) of the residuals versus 

fitted values of the Sinjar ARIMA model (302)x(211)30, showed that the errors 

have constant variance, with the residuals scattered randomly around zero. If, for 

example, the residuals decrease or increase with the fitted values in a pattern , then 

that means the errors may not have constant variance. The points on the plot (same 

figure) appear to be randomly scattered around zero, indicating that the error terms 

have a mean of zero which is reasonable. The vertical width of the scatter doesn't 

appear to increase or decrease across the fitted values, this suggests that the 

variance in the error terms is constant.  

The fourth measure is the plot of residuals against fitted order of the data 

(bottom-right of fig.7). 
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Fig. 6: ACF and PACF of residuals of Sinjar ARIMA model (302)x(211)30 . 
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Fig .7: Residual plots of Sinjar ARIMA model (3,0,2)x(2,1,1)30 . 

In this plot the data does not follow any symmetric pattern with the run order 

value. It shows almost randon behaviour of residuals with the increasing run order 

which indicates that the model is a good fit.    

Almost all of the residuals are within acceptable limits which indicate the 

adequacy of the recommended model. 

Although some other ARIMA models have been applied on the Sinjar data such as  

(0,0,1)x(3,1,1)30 
, 
(1,0,0)x(3,1,1)30 and (0,0,3)x(1,1,1)30 that pass the probability 

and Ljung-Box Q-tests but they still contain little residuals which might not be 

significant and occur at late or delayed lag (60). These were not considered as the 

successful models. On the basis of the above, the selected ARIMA 

(3,0,2)x(2,1,1)30 model is adequate to represent the Sinjar data and could be used 

to forecast the future rainfall data. After finding a valid model, weekly rainfall 

depth for the Sinjar station is forecast (step 4).  
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The performance of the Sinjar ARIMA model (3,0,2)x(2,1,1)30 is evaluated by 

forecasting the data for the year 2011. Both the forecasted and real weekly rainfall 

depth of the Sinjar station for the year 2011 were fitted on the same plot to 

indicate the model adequacy, performance and comparison purposes (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Real and forecasting Sinjar rainfall depth for the year 2011. 

 

The similarity and matching between the forecasted and real rainfall depth were 

good. The above comparison increases confidence with the ARIMA 

(3,0,2)x(2,1,1)30 to represent the rainfall data at Sinjar station and can be use for 

forecasting the future rainfall data. Fig. 9 shows the forecasting rainfall depth for 

the years 2012-2016 using ARIMA (3,0,2)x(2,1,1)30.   

The same procedures of the Box-Jenkins methodology were followed for the other 

three stations (Mosul, Rabeaa and Talafar) to forecast future rainfall.  
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Fig. 9: Sinjar forecast rainfall depth for the years 2012-2016  

using ARIMA (3,0,2)x(2,1,1)30. 

 

For all three stations, it was found that some ARIMA models passed all the 

statistical tests required in the Box-Jenkins methodology without significant 

residuals for ACF and PACF plots. These models are the following. 

For Mosul data the ARIMA model (1,0,1)x(1,1,3)30
 
, for Rabeaa data the ARIMA 

model (1,1,1)x(3,0,1)30 and for Talafar data the ARIMA model (1,1,1)x(0,0,1)30. 

Table 3 shows the ARIMA coefficients for the above models. 

Table 4 shows the results of the Ljung-Box Q-test of the residuals for the ARIMA 

models according to the stations.  

The selected ARIMA models for the three stations (Mosul, Rabeaa and Talafar) 

have the smallest values of AIC (Table 5) among other successful ARIMA models. 

Thus, these models can represent rainfall data and can be used with confidence to 

forecast future rainfall data. 
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Table 3: ARIMA Coefficients for the selected models  

according to the stations. 

No. Type Coefficients Probability 

Mosul station ARIMA model (101) (113)30 

1 AR   1 0.6085 0.000 

2 SAR  30 -0.9061 0.000 

3 MA   1 0.4513 0.012 

4 SMA  30 -0.6892 0.000 

5 SMA  60 0.6137 0.000 

6 SMA  90 -0.4534 0.000 

Rabeaa station ARIMA model (112) (301)30 

1 AR   1 -0.5882 0.000 

2 SAR  30 -0.4542 0.000 

3 SAR  60 -0.4280 0.000 

4 SAR  90 -0.3972 0.000 

5 MA   1 0.3057 0.020 

6 MA   2 0.6353 0.000 

7 SMA  30 0.5569 0.000 

Talafar station ARIMA model (111) (001)30 

1 AR   1 0.1305 0.004 

2 MA   1 0.9540 0.000 

3 SMA  30 0.9007 0.000 
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Table 4: Ljung-Box Q test of the residuals for the ARIMA models  

according to the stations 

No. Details Location and Model 

Mosul station ARIMA model (1,0,1) x (1,1,3)30 

1 Lag 12 24 36 48 

2 Chi-Square 9.9 26.8 36.2 44.4 

3 DF 6 18 30 42 

4 P-Value 0.129 0.083 0.201 0.370 

Rabeaa station ARIMA model (1,1,2) x (3,0,1)30 

1 Lag 12 24 36 48 

2 Chi-Square 10.6 27.4 36.9 54.4 

3 DF 5 17 29  41 

4 P-Value 0.061 0.052 0.148 0.078 

Talafar station ARIMA model (1,1,1) x (0,0,1)30 

1 Lag 12 24 36 48 

2 Chi-Square 9.6 26.1 34.3 50.4 

3 DF 9 21 33  45 

4 P-Value 0.386 0.203 0.406 0.268 

 

 

Table 5: Akaike's Information Criterion (AIC) values for the successful 

ARIMA models according to the stations. 

No. Station Model          AIC Value 

1 Sinjar (3,0,2)x (2,1,1)30 17.44 

2 Mosul (1,0,1)x(1,1,3)30 13.03 

3 Rabeaa (1,1,2)x(3,0,1)30 16.31 

4 Talafar (1,1,1)x(0,0,1)30 8.3 
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Figures 10,13 and 16 show the four graphical measures for the adequacy of the 

selected ARIMA models for the three stations (Mosul, Rabeaa and Talafar) 

respectivly. The normal probability plots of the residuals show that most of the 

residuals are on the straight line having a good histograms shape. Follow-up the 

plots of residuals vs. fitted values and order of the data respectively, show that the 

errors have constant variance, the points on the plot appear to be randomly 

scattered around zero. 

Almost all of the residuals are within acceptable limits which indicate the 

adequacy of the recommended models.   

The performance of ARIMA models for the above three stations are evaluated by 

forecasting the data for the year 2011 to indicate the models adequacy, 

performance and comparison purposes (figures 11, 14 and 17). 

Figures 12, 15 and 18 show forecast rainfall depth for the years 2012-2016 for 

three stations data Mosul, Rabeaa and Talafar, respectively. 

 

Fig. 10: Residual plots of Mosul ARIMA model (1,0,1)x(1,1,3)30. 
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Fig. 11: Real and forecasting Mosul rainfall depth for the year 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Mosul forecast rainfall depth for the years 2012-2016 using 

RIMA(1,0,1)x(1,1,3)30. 
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Fig. 13: Residual plots of Rabeaa ARIMA model (1,1,2)x(3,0,1)30 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Real and forecasting Rabeaa rainfall depth for the year 2011. 
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Fig. 15: Rabeaa forecast rainfall depth for the years 2012-2016  

using RIMA(1,1,2)x(3,0,1)30. 

Fig. 16: The residual plots of Talafar ARIMA model (1,1,1)x(0,0,1)30 . 
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Fig. 17: Real and forecasting Talafar rainfall depth for the year 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: Talafar forecast rainfall depth for the years 2012-2016 using 

RIMA(1,1,1)x(0,0,1)30. 
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6 Conclusions 

The weekly rainfall record in the Sinjar semi-arid region has been studied using 

the Box-Jenkins (ARIMA) model methodology. A weekly rainfall record spanning 

the period of 1990-2011 for four stations (Sinjar, Mosul, Rabeaa and Talafar) at 

Sinjar district of North Western Iraq has been used to develop and test the models.  

The performance of the resulting successful ARIMA models was evaluated by 

using the data for the year 2011 through graphical comparison between the 

forecast and actually recorded data. The forecasted rainfall data showed very good 

agreement with the actual recorded data. This gave an increasing confidence of the 

selected ARIMA models.  

The study reveals that the Box-Jenkins (ARIMA) model methodology could be 

used as an appropriate tool to forecast the weekly rainfall in semi-arid region like 

North West of Iraq for the up-coming 5 years (2012-2016). 

The results achieved for rainfall forecasting will help to estimate hydraulic events 

such as runoff, then water harvesting techniques can be used in planning the 

agricultural activities in that region. Predicted excess rain can be stored in 

reservoirs and used in a later stage. 

The modeling techniques demonstrated in this contribution can help farmers in the 

area to enlarge the areas of land to be cultivated using supplemental irrigation. 
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