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Wirtinger’s Integral Inequality on Time Scale

Tatjana Mirkovic1

Abstract

In this paper, we establish a Wirtinger-type inequality on an ar-
bitrary time scale. We give, as special cases of the time scales, new
Wirtinger-type inequality in the continuous and discrete cases, respec-
tively.
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1 Introduction

A time scale, (we denote it by the symbol T) is an arbitrary nonempty

closed subset of the real numbers. For t ∈ T we define the forward jump

operator σ : T → T by σ (t) := inf {s ∈ T : s > t} . If t < supT and σ (t) = t,

then t is called right-dense, and if t > inf T and ρ (t) = t, then t is called

left-dense. Graininess function µ : T → [0,∞) is defined by µ (t) := σ (t) − t

(see [2], [3], [6]).
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A function f : T → R is called rd-continuous provided it is continuous at

right-dense points in T and its left-sided limits exist (finite) at left-dense points

in T. The set of rd-continuous functions f : T → R will be denoted by Crd =

Crd (T) = Crd (T,R) . The set of functions f : T → R that are differentiable and

whose derivative is rd-continuous is denoted by C1
rd = C1

rd (T) = C1
rd (T,R) .

We define the time scale interval [a, b]T by [a, b]T = [a, b] ∩ T.
In 2000, Hilscher [8] proved a Wirtinger-type inequality on time scales in

the form:

Theorem 1.1. (Discrete Wirtinger Inequality, [8]) If M be positive and

strictly monotone such that M∆ exists and is rd-continuous, then

b∫
a

∣∣M∆ (t)
∣∣ y2 (σ (t)) ∆t ≤ Ψ2

b∫
a

M(t)M(σ(t))
|M∆(t)|

(
y∆ (t)

)2
∆t (1)

for any y with y (a) = y (b) = 0 and such that y∆ exists and is rd-continuous,

where

Ψ =

(
sup

t∈[a,b]∩T

M(t)
M(σ(t))

) 1
2

+

[(
sup

t∈[a,b]∩T

µ(t)|M∆(t)|
M(σ(t))

)
+

(
sup

t∈[a,b]∩T

M(t)
M(σ(t))

)] 1
2

.

(2)

In [4] authors extended the following theorem:

Theorem 1.2. ([4]) Suppose γ ≥ 1 is an odd integer. For a positive M ∈
C1

rd (T) satisfying either M∆ > 0 or M∆ < 0 on T, we have

b∫
a

Mγ(t)M(σ(t))
|M∆(t)|γ

(
y∆ (t)

)γ+1
∆t ≥ 1

Ψγ+1(α,β,γ)

b∫
a

∣∣M∆ (t)
∣∣yγ+1 (t) ∆t (3)

for any y ∈ C1
rd (T) with y (a) = y (b) = 0, where Ψ (α, β, γ) is the largest root

of

xγ+1 − 2γ−1 (γ + 1)αxγ − 2γ−1β = 0, (4)

whereby

α := sup
t∈Tk

(
M (σ (t))

M (t)

) γ
γ+1

, β := sup
t∈Tk

(
µ (t)

∣∣M∆ (t)
∣∣

M (t)

)γ

.



Tatjana Mirkovic 3

2 Main Results

Let us prove the following theorem:

Theorem 2.1. Let M ∈ C1
rd ([a, b]T)k be positive and strictly monotone such

that satisfying either M∆ > 0 or M∆ < 0 on ([a, b]T)k. Then, for some integer

η ≥ 1 we have

b∫
a

∣∣M∆ (t)
∣∣ yη+1 (σ (t)) ∆t ≤ Λη+1 (ω, ξr, ψ)

b∫
a

Mη(t)M(σ(t))
|M∆(t)|η

(
y∆ (t)

)η+1
∆t (5)

for any y ∈ C1
rd ([a, b]T)k , with y (a) = y (b) = 0, where Λ (ω, ξr, ψ) is the

largest root of equality

xη+1 = 2ηωxη +
η−1∑
r=1

2η−(r+1)ξrx
r + 2η−1ψ, (6)

whereby

ω = sup
t∈([a,b]T)

k

(
Mσ

M

) η
η+1 , ψ = sup

t∈([a,b]T)
k

(
µ

1
η |M∆|

M

)η

,

ξr = sup
t∈([a,b]T)

k

(
µ

η+1
r Mσ|M∆|

η(η−(r−1))
r −1

M
η(η−(r−1))

r

) η
η+1

, r = 1, ..., η − 1.

(7)

We denote by

A =
b∫

a

∣∣M∆ (t)
∣∣ yη+1 (σ (t)) ∆t, B =

b∫
a

Mη(t)M(σ(t))
|M∆(t)|η

(
y∆ (t)

)η+1
∆t. (8)

Using the integration by parts, whereby y (a) = y (b) = 0, left side of inequality

(2.1) become

A =
b∫

a

∣∣M∆ (t)
∣∣ yη+1 (t) ∆t = ±

b∫
a

M∆ (t) yη+1 (t) ∆t

= ±
{

[M (t) yη+1 (t)]
b
a −

b∫
a

Mσ (t) (yη+1 (t))
∆

∆t

}
≤

b∫
a

Mσ (t) |yη+1|∆ (t) ∆t =
b∫

a

Mσ

∣∣∣∣ η∑
r=0

yr (yσ)η−r

∣∣∣∣ ∣∣y∆
∣∣∆t

=
b∫

a

Mσ
∣∣(yσ)η + y (yσ)η−1 + y2 (yσ)η−2 + ...+ yη−1 (yσ) + yη

∣∣ ∣∣y∆
∣∣∆t
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=
b∫

a

Mσ
∣∣∣(y + µy∆

)η
+ y

(
y + µy∆

)η−1
+ ...+ yη−1

(
y + µy∆

)
+ yη

∣∣∣ ∣∣y∆
∣∣∆t

≤
b∫

a

Mσ{2η−1 |y|η
∣∣y∆
∣∣+ 2η−1µ

∣∣y∆
∣∣η+1

+ 2η−2 |y|η
∣∣y∆
∣∣+ 2η−2µ |y|

∣∣y∆
∣∣η + ...+

+ |y|η
∣∣y∆
∣∣+ µ |y|η−1

∣∣y∆
∣∣2 + |y|η

∣∣y∆
∣∣}∆t

=
b∫

a

{2ηMσ |y|η
∣∣y∆
∣∣+ 2η−2Mσµ |y|

∣∣y∆
∣∣η + 2η−3Mσµ |y|2

∣∣y∆
∣∣η−1

+

...+Mσµ |y|η−1
∣∣y∆
∣∣2 + 2η−1Mσµ

∣∣y∆
∣∣η+1}∆t

= 2η
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

) 1
η+1 (MηMσ

M
|y|η+1) η

η+1 ∆t+

2η−2
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

) η
η+1

(
µη+1Mσ|M∆|η

2−1|M∆|
Mη2 |y|η+1

) 1
η+1

∆t

+2η−3
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

) η−1
η+1

(
µ

η+1
2 Mσ|M∆|

η(η−1)
2 −1|M∆|

M
η(η−1)

2

|y|η+1

) 2
η+1

∆t+ ...

+2
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

) 3
η+1

(
µ

η+1
η−2 Mσ|M∆|

3η
η−2−1|M∆|

M
3η

η−2
|y|η+1

) η−2
η+1

∆t

+
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

) 2
η+1

(
µ

η+1
η−1 Mσ|M∆|

2η
η−1−1|M∆|

M
2η

η−1
|y|η+1

) η−1
η+1

∆t

+2η−1
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

)(
µ|M∆|η

Mη

)
∆t.

Applying Hölder inequality on each summand of the above inequality, except

the last one, it follows

A ≤ 2η

{
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

)
∆t

} 1
η+1
{

b∫
a

(
MηMσ

M
|y|η+1)∆t

} η
η+1

+2η−2

{
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

)
∆t

} η
η+1

{
b∫

a

(
µη+1Mσ|M∆|η

2−1|M∆|
Mη2 |y|η+1

)
∆t

} 1
η+1

+...+

{
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

)
∆t

} 2
η+1

{
b∫

a

(
µ

η+1
η−1 Mσ|M∆|

2η
η−1−1|M∆|

M
2η

η−1
|y|η+1

)
∆t

} η−1
η+1

+2η−1
b∫

a

(
MηMσ

|M∆|η
∣∣y∆
∣∣η+1

)(
µ|M∆|η

Mη

)
∆t

= 2ηωB
1

η+1A
η

η+1 + 2η−2ξ1B
η

η+1A
1

η+1 + 2η−3ξ2B
η−1
η+1A

2
η+1 + ...

+2ξη−2B
3

η+1A
η−2
η+1 + ξη−1B

2
η+1A

η−1
η+1 + 2η−1ψB,

(9)
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i.e.

A ≤ 2ηωB
1

η+1A
η

η+1 +
η−1∑
r=1

2η−(r+1)ξrB
η−(r−1)

η+1 A
r

η+1 + 2η−1ψB. (10)

After some calculations one obtains it holds the following inequality(
A
B

) 1
η+1 ≤ 2ηω + 2η−2ξ1

(
B
A

) η−1
η+1 + 2η−3ξ2

(
B
A

) η−2
η+1 + ...

+2ξη−2

(
B
A

) 2
η+1 + ξη−1

(
B
A

) 1
η+1 + 2η−1ψ

(
B
A

) η
η+1 ,

(
A

B

) 1
η+1

≤ 2ηω +

η−1∑
r=1

2η−(r+1)ξr

(
B

A

) η−r
η+1

+ 2η−1ψ

(
B

A

) η
η+1

.

By introducing C =
(

A
B

) 1
η+1 , we get

C ≤ 2ηω +

η−1∑
r=1

2η−(r+1)ξrC
r−η + 2η−1ψ

(
B

A

)−η

,

i.e.

Cη+1 ≤ 2ηωCη +
η−1∑
r=1

2η−(r+1)ξrC
r + 2η−1ψ, (11)

whence follows the desired inequality,

A ≤ Λη+1 (ω, ξr, γ) ≤ B.

3 Application

Corollary 3.1. In the case of T = R, the inequality (1.3) reduces to

b∫
a

|M ′ (t)| yη+1 (t) dt ≤ (2η)η+1
b∫

a

Mη+1(t)
|M ′(t)|η (y′ (t))η+1 dt. (12)

Proof: In the case of T = R it is f∆ (t) = f ′ (t) , σ (t) = t and µ (t) = 0, so

ω = 1, ξr = 0 and ψ = 0. By substitute this values in the equalities (2.2) we

obtain xη+1 = 2ηxη. i.e. xη (x− 2η) = 0. Since
b∫

a

f (t) ∆t =
b∫

a

f (t) dt, follows

inequality (3.1).
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Remark 3.2. Specially, in the case of η = 1, the largest root of the (1.3) is

2, so the inequality (1.3) becomes

b∫
a

|M ′ (t)| y2 ((t)) dt ≤ 4
b∫

a

M2(t)
|M ′(t)| (y

′ (t))2 dt, (13)

what was proved in [6].

Theorem 3.3. Let T = hZ. For a positive sequence {Mn}0≤n≤N+1 satisfying

either ∆M > 0 or ∆M < 0 on [0, N ] ∩ hZ, we have

N∑
n=0

|∆hMn| yη+1
n ≤ Ωη (ω, ξr, ψ)

N∑
n=0

Mη
nMn+1

|∆hMn|η
(∆hyn)η+1,

for any sequence {yn}0≤n≤N+1 with y0 = yN+1 = 0, where Ω (ω, ξr, ψ) is the

smallest root of the inequality

(1 + 2ω) 2η−1xη =
η−1∑
r=1

2η−(r+1)ξrx
r + 2η−1ψ, (14)

when

ω = sup
0≤n≤N

(
Mn+h

Mn

) η
η+1

,

ξr = sup
0≤n≤N

(
h

η+1
r Mn+h|∆hMn|

η(η−(r−1))
r −1

Mn

) η
η+1

, r = 1, ..., η − 1,

ψ = sup
0≤n≤N

(
h

1
η |∆hMn|

Mn

)η

.

(15)

Proof. Starting from the inequality

(1 + C)η+1 ≤ Cη+1 + (η + 1)Cη + 2η−1Cη

it is obtained

Cη+1 ≥ (1 + C)η+1 − (η + 1)Cη − 2η−1Cη.

Involving this result in (1.2) proves it holds

(1 + C)η+1 − (η + 1)Cη − 2η−1Cη − 2ηωCη −
η−1∑
r=1

2η−(r+1)ξrC
r − 2η−1ψ ≤ 0.

Since

(1 + C)η+1 ≥ (η + 1)Cη,
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last inequality becomes

(1 + 2ω) 2η−1Cη ≥
η−1∑
r=1

2η−(r+1)ξrC
r + 2η−1ψ.

Since, for T = hZ = {hk : k ∈ Z} is σ (t) = t+h, µ (t) = h, f∆ (t) = ∆hf (t) =

f(t+h)−f(t)
h

,
b∫

a

f (t) ∆t =
∑

t∈[0,N ]∩hZ
µ (t) f (t), so that

A =
N∑

n=0

|∆hMn| yη+1
n , B =

N∑
n=0

Mη
nMn+1

|∆hMn|η (∆hyn)η+1,

whence follows the desired inequality.

4 Conclusion

In this paper, we present some new Wirtinger-type inequalities on time

scales for function fk. As special cases, some new continuous and discrete

Wirtinger-type inequalities are given.
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