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Wirtinger’s Integral Inequality on Time Scale

Tatjana Mirkovic!

Abstract

In this paper, we establish a Wirtinger-type inequality on an ar-
bitrary time scale. We give, as special cases of the time scales, new
Wirtinger-type inequality in the continuous and discrete cases, respec-

tively.
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1 Introduction

A time scale, (we denote it by the symbol T) is an arbitrary nonempty
closed subset of the real numbers. For ¢ € T we define the forward jump
operator 0 : T — T by o (t) :=inf{seT:s>t}.lf t <supT and o (t) = t,
then ¢ is called right-dense, and if ¢ > inf T and p(t) = ¢, then ¢ is called
left-dense. Graininess function u : T — [0, 00) is defined by () == o (t) — ¢
(see [2], [3], [6])-
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A function f : T — R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd-continuous functions f : T — R will be denoted by C,4; =
Cyq (T) = C,q (T, R) . The set of functions f : T — R that are differentiable and
whose derivative is rd-continuous is denoted by C}, = C!,(T) = C}, (T,R).
We define the time scale interval [a, b]; by [a, by = [a,b] N T.

In 2000, Hilscher [8] proved a Wirtinger-type inequality on time scales in

the form:

Theorem 1.1. (Discrete Wirtinger Inequality, [8]) If M be positive and

strictly monotone such that M* exists and is rd-continuous, then

b b
M(t)M (o 2
JIMA ()] (o (1) At < w2 [ AEEEED) (42 ()" At (1)
for any y with y (a) = y (b) = 0 and such that y* exists and is rd-continuous,
where
1 1
U = sup M) 2 + sup —M(t)|MA(t)| + sup M) 2
tefapjrr M) tefapjr D) tefapnr D) '
(2)

In [4] authors extended the following theorem:

Theorem 1.2. ([4]) Suppose v > 1 is an odd integer. For a positive M €
CL (T) satisfying either M> >0 or M® < 0 on T, we have

b b
MY)M(o(t v+1
JEREEL (g2 (0) AL > s [ MR O]y () A (3)

for any y € C*, (%) with y (a) =y (b) = 0, where ¥ (av, 3,7) is the largest root
rd

of
2 =27 (y+ 1) e — 27713 =0, (4)

whereby
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2 Main Results

Let us prove the following theorem:

Theorem 2.1. Let M € CL, ([a,b],)" be positive and strictly monotone such
that satisfying either M> > 0 or M* < 0 on ([a, b]T)k. Then, for some integer
n > 1 we have

[ 1M )] 577 (0 (6) At < AT (w6, ) [ HIOMED (4 ()74 Ar - (5)

|MA )"

for any y € CL,([a, b]T)k, with y(a) = y(b) = 0, where A (w,&., ) is the
largest root of equality

n—1
gt = 2t 4 37 21 E g o=y, (6)

r=1

whereby

T 1 A n
w= sup (%)”nl, Y= sup <w‘]\];[ ’),

te(labl:)" te(fably)"
nin=(r=1)) st (7)
T
§& = sup 70— 1)) , r=1.,n—1
te(lably)" M

We denote by
CMAGMT

A:jb“}MA )|y (o (t) At, B= f M(" LA @0)™ Ak (8)

Using the integration by parts, whereby y (a) = y (b) = 0, left side of inequality

(2.1) become
A= fb | M2 ()| y (1) At = j:fbMA (t)y"(t) At
— Ly o - f e ) @ 1) At}

b b
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b
:fMa
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n—=2

b Me|MA | 2 -1 MA n+1
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a Mn=2
-1
b INE— = 1
1 "7 MU M= " MA
+f (%;24'5 | A‘U"‘ )"+1 p | 772"71 |wA] [ At

b - MA n
font [ (ﬁ;’f\”ln \yA{"H) (”'M,,| )At.

Applying Holder inequality on each summand of the above inequality, except

the last one, it follows

n
F1

b 77 b n
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1.e.

77_1 —(r— T
A< 2B AT 43 on-lrig BT AT 4 1B, (10)
r=1

After some calculations one obtains it holds the following inequality

A n+1 " n-! n—(r+1) n+1 -1 #1
(5) " =mer e (7)o (3)
_1
By introducing C' = (%) nthwe get
n—1 (r41) ) B -n
c<a o= {rtle O 4 o~ — ,
<20 Y reg ooy ()
ie.
n—1
CmHl < 21Cn 4 37 21 E O 4 217 e, (11)
r=1

whence follows the desired inequality,

A< A (w,&,7) < B.

3 Application

Corollary 3.1. In the case of T = R, the inequality (1.3) reduces to

b b 1
1M @)y (1) de < (20)7 [ 200 (4 (1)) . (12)

Proof: In the case of T =R it is f2(t) = f'(t), o (t) =t and u(t) =0, so

w=1,& =0 and v = 0. By substitute this values in the equalities (2.2) we
b b
obtain "t = 272", i.e. 2 (x —2") = 0. Since [ f (t) At = [ f(t)dt, follows

inequality (3.1).
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Remark 3.2. Specially, in the case of n = 1, the largest root of the (1.3) is
2, so the inequality (1.3) becomes

IO (0) dt < 4 [ 229y )2, (13)

what was proved in [6].

Theorem 3.3. Let T = hZ. For a positive sequence {Mn}OSnSNJrl satisfying
either AM >0 or AM < 0 on [0, N] N hZ, we have

N

MM,
Z|AhM |3/77Jr1 < Qn W NN Z |A MT; Ahyn)m_l’
n=0

for any sequence {Yn}oc,<nyy With Yo = yny1 = 0, where Q(w, &, ¢) is the
smallest root of the inequality

n—1
(1+2w) 27 tan = 37 21~ (g g 4 2771y, (14)
r=1

when

Ui
M, n+1
w = sup (A}:h> ,

0<n<N
n
n+1 nn=(=1) _;\ 7+1
_ h o Mnyn|ApMn| T _
51” = Sup ( Mnn y = 17 sy 1 — 17 (15)
0<n<N
o 1 n
77Z) = 3 h"lAth|
= up —
0<n<N

Proof. Starting from the inequality
(1+C)™ < O™ 4 (n+1) 07 42771
it is obtained
Cl > 1+ )" = (1) Cn — 217,

Involving this result in (1.2) proves it holds

n—1
(1+C)"™ = (n+1)C" = 21717 = 270" = Y "2 O — 277y < 0.

r=1

Since

1+C)"™ > (n+1)C,
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last inequality becomes

n—1
(1+2w) 27710 > Y " 27 Dg O 4 2771y,

r=1
Since, for T = hZ = {hk : k € Z}is o (t) =t+h, u(t) = h, f2(t) = Apf (t) =
b
ERTQ [ r@yAt= > p(t) f(1), so that

te[0,N]NhZ

N N
M, M, 1
A= nZ::O ’Ath‘ ZJZHa B = nZ::O |AthJ\r7} (Ahyn)n+ )

whence follows the desired inequality.

4 Conclusion

In this paper, we present some new Wirtinger-type inequalities on time
scales for function f*. As special cases, some new continuous and discrete

Wirtinger-type inequalities are given.
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