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Abstract

This paper incorporates risk-based margin requirements into portfo-
lio liquidation procedures in a novel fashion. The approach is analytic
and, as a result, more efficient than conventional numerical liquida-
tion methods. The margin requirement calculation is a self-contained
inner optimization problem and is traditionally solved by choosing the
worst scenario amongst a discrete set of scenarios. We address the inner
problem by first generalizing the risk-based haircuts calculation into a
continuous region and then using a trust region optimization algorithm
to derive the closed-form solution. The solution is typically obtained
in less than two iterations and our procedure significantly improves the
efficiency of the main portfolio liquation problem. We implement the
algorithm on example portfolios and show advantages over traditional

approaches.
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1 Background

Many investment portfolios must conform to specific regulatory constraints
regarding the risk-exposure resulting from the portfolio’s allocations. For ex-
ample, the Securities and Exchange Commission (SEC) net capital rule places
risk-based requirements on the assets held by broker-dealers. These require-
ments are meant to ensure broker-dealers have the ability to meet their obli-
gations. Similarly, the SEC recently approved the use of risk-based margin
requirements on customer portfolios in order to limit the leverage in a cus-
tomer’s account based on the underlying assets’ risk profile.

Although the portfolio management approach advocated in this paper is
widely applicable, we choose to focus on margin accounts and the risk-based
margin requirements placed on these accounts. This is perhaps one of the most
complex applications of the methodology and can be altered by individual
portfolio managers given specific requirements.

The CFA Institute — a nonprofit organization of investment professionals —

suggests that

[m]anagers who implement complex and sophisticated investment
strategies should [...] understand the various risks and conduct sta-
tistical analysis (i.e., stress testing) to determine how the strategy
will perform under different conditions. By undertaking adequate
due diligence, Managers can better judge the suitability of invest-

ments for their clients.*

This general suggestion for analysis of portfolio’s exposure to risk provides
motivation for portfolio managers to determine a risk-based constraint on client
portfolios. Once a constraint has been specified, the optimization algorithm

outlined in this paper can be used to efficiently enforce such constraints.

1.1 Margin Account and Meeting Margin Calls

A margin account is typically opened with a broker and involves a loan

from the broker to the client using securities in the portfolio as collateral.

4CFA Institute Program Curriculum, Level III, Volume 1 (Ethical and Professional Stan-
dards), 2012.
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The margin an investor is required to post in order to establish a position
in a security is called the initial margin. After the position is established, a
generally more lenient requirement — called the maintenance margin — is placed
on the collateralization of the account.

When the market value of the securities in the portfolio fall below the reg-
ulatory requirement for the level of collateralization required to hold the loan,
a margin call is issued. The margin call essentially notifies the investor that
their loan is no longer appropriately collateralized and requires the investor
to either deposit additional funds (or securities) into the account or initiates
the partial liquidation of the positions in the portfolio. Liquidation can either
proceed through the direction of the client or at the discretion of the brokerage
firm.

Market value fluctuations effect the ability of the securities to adequately
collateralize the brokerage loan. Overly generous loan collateralization guide-
lines run the risk that investors will obtain excessive levels of leverage in their
portfolios.

The portfolio liquidation literature considers the secondary effects of liqui-
dating a portfolio through large transactions. [1] model the effect of execution
time lags and liquidation discounts when unwinding a position in a risky as-
set with the objective of maximizing the terminal value of the cash position
in the portfolio. [2] determine, within a certain liquidity model, the optimal
liquidation strategy for increasing absolute risk aversion investors and decreas-
ing absolute risk aversion investors. [3] minimize the expected liquidity costs
through the optimal placement of market orders in the liquidation. [4] max-
imize a constant absolute risk aversion investor’s expected utility when the
investor must liquidate a basket of assets within a finite time horizon. For a
recent review of the optimal liquidation literature, see [5].

This paper adapts some of the powerful results of the trust-region litera-
ture to derive the optimal strategy to liquidate a portfolio in order to meet
a margin call.® The main portfolio liquidation problem is a classical portfolio
rebalancing problem embedding a margin requirement constraint which itself
is an optimization problem.

We call the problem to determine the portfolio margin requirement the

5By optimal, we mean the liquidation procedure that alters the positions of the original

portfolio minimally.
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inner problem. It is equivalent to determining the maximum loss a portfolio
would experience within a set of possible scenarios. The traditional way to
solve the inner problem is a brute force search over a finite set of scenarios,
while in our paper, we expand the set of scenarios to be a continuous set. This
continuous extension facilitates the use of option Greeks in the calculation of
margin sensitivities to portfolio allocation changes. As a result, the calculation
of portfolio margin has clear connections to trust-region problems wherein
one tries to find the extreme value of a function within a bounded region.
In order to obtain a fast inner problem solutions whose closed-form solution
can be passed into the main liquidation problem, this paper uses analysis
contained within [6], a modified dog-leg method. A standard method solves the
trust-region problem numerically, but our closed-form solution can be utilized
directly in the main liquidation problem. For example, the margin requirement
criterion’s gradient and Hessian information are derived so that the liquidation
problem is solved in a more efficient manner. For an introduction to the trust
region methods in a more general context with pedagogical discussions, see [7].

We explore the optimal strategy to liquidate a portfolio in order to meet a
margin call. To simplify analysis of portfolio liquidation, we assume that the
securities in the underlying portfolio are sufficiently liquid so that we can ignore
any possible secondary effects on the market price of securities from placing
market orders. For retail investors with relatively small positions in their
margin accounts, these effects should be small. We consider the more direct
problem of determining the set of securities to liquidate within a portfolio to
meet a margin call issued by a brokerage firm that minimally changes the

portfolio.

1.2 History of Margin Requirements

Margin requirements were developed in the Securities Act of 1933, the
Banking Act of 1933 and the Securities Exchange Act of 1934 [8]. The Se-
curities Exchange Act of 1934 gave the Federal Reserve Board the power to
“set initial, maintenance, and short sale margin requirements on all securi-
ties traded on a national exchange for purposes of regulating the securities
credit extended by exchange members” [9]. Regulation T (Reg T) codified

the rules pertaining to the fraction of an exchange-traded security’s current
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market value an agent was allowed to lend. Reg T is a rules-based calculation
methodology. For example, to establish a long position in a stock, one cur-
rently needs to deposit a minimum of 50% net equity (1 - loan value/security
current market value) according to Reg T requirements.® Reg T specifies ini-
tial margin requirements and maintenance margin requirements are specified
by self-regulatory organizations (SROs). The downside of rules-based margin
calculations is that offsetting transactions are not considered as a whole. As a
result, some risky portfolios have the same margin requirement as conservative

portfolios.

Margin calculations that take into account offsetting transactions within a
portfolio are risk-based. In this approach, the portfolio is stressed in several
scenarios wherein the parameters of the underlying assets (asset price and/or
volatility) are varied by prespecified amounts. In general, larger haircuts are
applied to higher risk, less diversified, assets.” For example, a regulatory body
may have determined that asset price changes of up to 15% and asset volatilities
changing by up to 10% are reasonable scenarios to consider for the single day
potential profit-and-loss of a portfolio. Depending on a portfolio’s exposure
to the underlying asset, the portfolio could experience a large loss based upon
these parametric fluctuations. As such, the required margin is determined to
be the maximum loss the portfolio could reasonably expect to experience on
the next trading day. One could also view this portfolio margin requirement

as the largest value-at-risk for the portfolio under the scenarios considered.®

The risk-based haircut methodology may be used to calculate capital charges
based upon theoretical option pricing models.” The Theoretical Intermarket
Margining System (TIMS), developed by The Options Clearing Corporation
(OCC) and approved by the SEC in 2006 following a pilot program, uses a sim-
ilar risk-based calculation methodology for determining the portfolio margin

given the positions in a customer’s portfolio.'® TIMS has since been replaced

6Regulation T: Code of Federal Regulations, Title 12, Chapter II, Subchapter A, Part

220.
TA haircut is simply another term used to describe the margin requirement or the maxi-

mum expected loss within a reasonable set of scenarios for a given position.

8Reg T margin accounts are required to have $2,000 net equity in their account whereas
portfolio margin accounts are required to have $100,000 net equity.

9Securities Exchange Act of 1934, Section 15¢3-1.

Ohttp:/ /www.theocc.com /risk-management /cpm/
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by the System for Theoretical Analysis and Numerical Simulations (STANs)
developed by the OCC utilizing a large-scale Monte Carlo-based risk manage-
ment methodology.'! For a complete introduction to portfolio margining, see
[10]. For a comparative analysis of risk-based and rules/strategy-based margin
methodologies as well as a more complete description of the historical evolu-
tion of margin requirements, see [11]. For the possible effects of the recent

Dodd-Frank Act on portfolio margin utilization, see [12].

Example: The risk-based portfolio margin calculation methodology signifi-
cantly reduces the required margin in many scenarios. Under the Reg T margin
rules, the initial margin requirement for equities is 50% of market value, and for
options 100% of option premium. The following example portfolio illustrates
the margin reduction.'? The put option expires in 90 days and we assume that
Citigroup has a constant, continuously-compounded dividend yield of 1%, that
the risk-free rate is a constant, continuously-compounded, 3% and the implied

volatility is 15%. Table 1 summarizes the results.

Table 1: Comparison of portfolio and Reg T margin requirements

Reg T Margin  Portfolio Mar- Margin Reduc-

gin tion

Long 1,000 shares Citi- $15,000.00 $4.,500.00 $10,500.00
group stock @ $30.00
Long 10 shares Cit- $820.00 $807.46 $12.54
igroup put $30.00 @
$0.82
Portfolio $15,820.00 $969.89 $14,850.11

(94%)

1 The system developed by the Chicago Mercantile Exchange in 1988, known as the
“Standard Portfolio ANalysis of Risk” (SPAN), is another such a risk-based margin cal-
culation methodology. See: http://www.cmegroup.com/clearing/risk-management/span-

overview.html.
12The scenario that gave rise to the largest loss to the portfolio was one in which the stock

price decreased by 15% (largest fluctuation considered) and the implied volatility decreased
by 15%.
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2 Outline of the Problem

2.1 Preliminary Definitions

Consider a portfolio with initial value V' consisting of a set of .J equities
{S;lj =1,2,---,J} and European options on those equities. We denote the
price of the securities in the portfolio by P;; where P, ; denotes the price of
equity j and P ; represents the price of European option ¢ on underlying asset
j. More explicitly, we define

S; =1
Py=1" , (1)
O(SjaaiaKiaraqaﬂao-Pi) P> 2
where {o;, K;,T;, CP;} represent the implied volatility, strike price, time to
expiration and call-put indicator for option ¢ respectively. For simplicity and
analytic tractibility, we use the Black-Scholes model for the valuation of the
options within the portfolio [13, 14]. In particular, we have
C(S,o0,K,r,q,T) CP = Call
O(S,o0,K,r,q, T,CP) = (2)
P(S,o0,K,r,q,T) CP = Put
and explicit formulas for these functions can be found in Appendix A.

The initial value of the portfolio may then be written as
2

where n?’j denote the quantities within the portfolio for each of the underlying
securities: n?’j < 0O reflects a short position and n?’j > 0 reflects a long position.

Consider the situation wherein the investor with the above portfolio is
issued a margin call. In this case, the net liquidation value (NLV) of the

portfolio defined by
NLV(nf;) =Y Pynf; - L
irj

where L is margin loan, has fallen below some specified margin requirement of
either the brokerage house or a regulatory body. As long as the net liquidation
value is greater than zero, the requirement can be satisfied by liquidating the
entire portfolio and decreasing all positions to zero. It is also generally possible

to satisfy the margin requirement by liquidating only a portion of the portfolio.
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2.2 Liquidation Optimization Problem

An optimal strategy to liquidate a portfolio in order to meet a margin call
first needs a definition of the quantity being optimized during the liquidation.
One approach to the optimization problem is simply to minimize transaction

costs incurred during the liquidation. Assume the initial portfolio positions

0
i!j

ng; = ny; —sign(ng ;)An; ;, where An;; > 0. The transaction costs associated

are given by n;. and that the new positions in the portfolio are given by
with liquidating An; ; from the initial position n?,j can be written generally as
fi.j(An; ;). In order to minimize transaction costs, we need to determine
i ; fii(Angj)
such that the margin call is satisfied: NLV(n;;) > Margin(n;;). In order
to make progress in this problem, we first make the simplifying assump-
tion that transaction costs are uniform across securities within the portfolio:
fij(An; ;) = f(An;;). We then assume that transaction costs are roughly
linearly dependent on changes in positions: f(An; ;) oc An, ;.
The optimization problem we address in this paper is therefore given by

min Z An; ; (3)
Z’]

An; ; “—

subject to the constraints:

NLV(’I’L%]) Z Margin(ni,j), (4)
0 S Ani,j S |n?’j s (5)
Nij = ngﬂ- — sign(ngﬂ-)Ani,j. (6)

We leave the study of the efficacy of objective functions different from (3) to
future research.

The altered positions n; ; will be different from the starting positions, n?’j, of
the portfolio, when the initial margin requirement is breached.!®> The changes
Zoﬁj
that changes in the positions are not larger than the initial positions.'* The

in position are An;; = (n;; —n};) - sign(nf;). The constraint in (5) ensures

13Therefore, the starting point An; ; = 0 is not a feasible solution.
14In principle, one could imagine a situation wherein a margin requirement is satisfied

by changing a short position to a long position. Since this alteration would presumably
change the strategy implemented by the account holder, we do not consider such portfolio

alterations.
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constraint in (6) serves to prevent positions in the portfolio from increasing
in magnitude. If n?’j < 0 — representing a short position in security ¢ with
underlying asset j — then the constraint ensures n; ; > ny ;. Similarly, if n{ ; > 0
— representing a long position in security ¢ with underlying asset j — then the
constraint ensures n;; < n?,j.

The net liquidation value of a portfolio does not change as the positions
are changed, so long as transactions only internally alter the portfolio.!> As a

result, the net liquidation value of the portfolio is independent of positions
NLV (n; ;) = NLV(nJ ).

As noted previously, the optimization problem always has at least one feasible

solution: the portfolio is completely liquidated (n; ; = 0 for all securities 7 and
i
The optimization procedure outlined in this paper is more general than

underlying assets 7). In this case, An;; = sign(n};)n

the specific margin liqudiation context. For example, rather than implement-
ing constraints based upon the net liquidation value of a customer’s margin
account, one could implement a similar constraint based upon the SEC net
capital rule and apply the procedures outlined in the paper to the portfolio of
assets held by a broker-dealer.

2.3 Margin Calculation Optimization Inner Problem

The primary constraint — Equation (4) — in the liquidation optimization
problem requires that the net equity in the account is larger than the re-
quired margin. When portfolio margin requirements are implemented the bro-
ker needs to determine the scenario in which the portfolio would experience
the maximum loss. As a result, the calculation of the margin requirement is
in itself an optimization problem. This section explores this requirement and
extends the conventional methodology to facilitate an analytically tractible
approximation. The analytically tractible approximations for the margin re-
quirement developed later in the paper can then be implemented to determine

the optimal liquidation in the face of a margin call.

15This means that no other securities or cash is deposited. The change in position of one

security results in a change in the cash or the position in another security.
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2.3.1 Conventional Discrete Margin Calculation

The calculation of portfolio margin requirements is based upon the “risk-
based haircuts” methodology wherein the profit and loss of the portfolio is
determined within a variety of scenarios. The scenarios typically involve the
underlying assets and/or underlying asset volatilities increasing or decreasing
in value within a reasonable range of their original values.'® For example, a
portfolio consisting of a single short position in a stock would experience the
maximum loss (within the considered scenario range) if the stock increased in
value. The maximum loss a portfolio would incur among a set of scenarios is
defined to be the portfolio margin.

When calculating portfolio margin, typically brokerage houses will stress
the portfolio in class groups — securities with the same underlying asset — and
then aggregate the maximum losses a portfolio would experience into the total
portfolio margin requirement. This procedure makes sense intuitively since
securities with different underlying assets should move independently of one
another (ignoring correlation effects as a first approximation).

If we let S = {1,2,...,S} be the finite set of scenarios with unique param-
A% Agj

T
o ) CIf f;‘ is defined as the scenario under which
J J

eter changes 7; = (

the subportfolio incurs the largest loss, then

T; = arg *minS AV7 (fk|ni,j) (7)
€

J
Ty

where the change in value of a subportfolio is given by,

AV;(Fjlnig) =Y (Pij(&) — Pij(0) niy.

i

As a result, the portfolio margin requirement is given by
Margin(n;;) = — > AV;(Z|n, ) (8)
J

where AV;(Z|n; ;) is the change in the value of the subportfolio corresponding

to asset j, given the positions n;;, due to changes in the parameters of the

16The range of market value fluctuations is approximately 15% for stock baskets and
options. A smaller range of market value fluctuations is required for high-capitalization
broad-based indexes such as the S&P 500. Some brokerage houses consider their own, more

volatile, set of scenarios.
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underlying asset given by the vector Z;.'" See Figure 1 for an illustration of a

discrete set of scenarios considered during the stress-test of a subportfolio.

Figure 1: Scenarios considered in the OCC Risk-Based Haircuts methodology.

A finite set of scenarios is convenient for regulatory bodies and brokerage
houses to compute the portfolio margin. The optimization inner problem thus
defined in (7) is essentially a discrete optimization over a finite set. For each
set of new positions n; j, calculating the portfolio margin requirement involves
solving z} for the optimization inner problem. This requires one to compute the
portfolio changes AV; a total of S times and to then select the maximum loss.
Once w}|n;; is solved, it is plugged back to the main liquidation optimization
problem (3)—(4) to determine optimal liquidation sizes An; j. As a result of the
discretization, there is no analytical form for the solution x7}|n;; and therefore
the portfolio liquidation problem is computationally difficult to solve.

With infinitesimal changes of positions n;j, the worst scenario typically
stays the same, meaning there is little change in the solution Z7 for the inner
problem. Using this fact, we know that the margin surface is piecewise linear

because the portfolio loss linearly changes with positions.

Example: Consider a simple hypothetical portfolio containing a short strad-
dle. See Figure 2.3.1 for the margin surface. The portfolio is short 1,000 Eu-

"By considering subportfolios rather than individual securities, [15] showed how brokers

can set margin levels to increase revenue from lending more money.
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ropean put options and 1,000 European call options linked to the same stock,
both with strike price $60 and both maturing in 3 months. The current stock
price of the underlying asset is S; = $60, the risk-free rate for the options is
3%, the implied volatilities for both options is 15% and the asset’s dividend
yield is 1%. Cash held in the portfolio is $8,000. According to Black-Scholes
European option valuation formulas, each call option costs $1.92 and each put
option costs $1.63. The portfolio’s net liquidation value is therefore $4,444.78.

For the stress test, we consider the following six scenarios

€S = {(15%,0), (—15%,15%), (—15%, —15%),
(15%, 0), (15%,15%), (15%, —15%) }. (9)

At the initial position {ng; = —1000,n3,; = —1000} (Point 1 in the figure),
the worst scenario corresponds to 7 = (15%, 15%) — stock price increases 15%
and volatility increases 15%.'® The portfolio margin requirement is $5,922.83,
larger than the $4,444.78 net equity held in the account and a margin call is

issued.

We have plotted the portfolio margin requirement surface in Figure 2.3.1.
As long as n;; changes within a reasonable range, the margin requirement
changes linearly with n;; — on Plane 1, this is a result of the fact that the
maximum losses correspond to the same risk scenario. When the positions n; ;
change more substantially, the margin surface switches to Plane 2, correspond-

ing to another scenario 7 = (—15%, 15%).

The optimal solution for the main liquidation problem is (Angy, Ang;) =
(175,234) corresponding to the positions (ns1,n31) = (—825, —766) or Point
3 in Figure 2.3.1. In other words, only by liquidating more than one security
simultaneously will the portfolio margin requirement be satisfied. The graph
shows that by first liquidating call options, the margin will be reduced (from
Point 1 to Point 2). Once the portfolio is liquidated to Point 2, buying put
options or call options individually only serves to increase the margin require-
ment. The optimal liquidation involves the simultaneous purchase of call and

put options (from Point 2 to Point 3).

Bnyg = n‘il = 0 since the portfolio does not contain an investment in the underlying

stock.
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Figure 2: Portfolio with a Short Straddle.

2.3.2 Continuous Extension of the Margin Calculation

There are many computational barriers when the inner optimization in-
volves a discrete set of scenarios. One of the main contributions of this paper
is to extend the set of scenarios to a continuous region. This extension is
analytically advantageous and allows practioners to apply results from the
trust-region literature. Furthermore, [16] argue that increased margin preci-
sion — through the consideration of a larger set of scenarios — promotes greater
efficiency of options trading.

The problem of determining the portfolio margin requirement has clear
connections to trust-region problems wherein one tries to find the extreme
value of a function within a bounded region. The analysis of this section, and
indeed this paper, relies heavily on the analysis contained within [6] and the
material contained within [7].

The generalized inner problem that we consider involves determining the

maximum loss a portfolio would experience if the underlying asset price and
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underlying asset volatility were altered in magnitude. In Figure 3, we show
the distinction between the two approaches with our new generalized approach

depicted in the right panel.

Ac

a0,
y

Figure 3: A continuous generalization of the discrete scenarios considered in
the OCC Risk-Based Haircuts methodology.

The region we consider in our calculation of portfolio margin includes an
uncountably infinite set of scenarios for the underlying asset, volatility combi-
nations. Furthermore, if the radius of the circle ¢ bounding the set of scenarios
is equal to max(] 52| x |22]) then the continuous region contains all of the dis-
crete scenarios of the conventional risk-based haircuts analysis. As a result of
this, the analysis we suggest here will give a more stringent portfolio margin

requirement than the conventional risk-based haircuts analysis.

T
Our generalized definition of (8) is given as follows. Let 7; = (ASS_j : %
J J

be constrained such that ||Z;|| < ¢ for some ¢ > 0, where || - || represents

the Euclidean norm.!® The inner problem changes to a similar well defined
problem with Z7 defined by

T = argHr{lHiE AV;(Z|n;, ;). (10)
The generalized portfolio margin requirement (8) with 5 defined in (10).

An important improvement of the new formulation of portfolio liquidation

over the conventional approach is that the solution constrained within the

19 Although we assume c is the same number for all equities in the portfolio, generalization

to non-uniform sensitivities — reflecting more or less risky assets — is straight-forward.
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circle is continuous. Any small variation in the positions n; ; for the main op-
timization problem results in small changes of optimal scenario 7 determining
the portfolio margin. The changes are continuous but may not be smooth since
the scenario corresponding to the maximum loss may move beyond the feasible
region. If analytical solutions of 7} given n; ; are available, then the portfolio
margin can be expressed as a function of n; ;. We may further take the gradi-
ent, or determine the Hessian matrix of the margin function to facilitate the

main liquidation optimization problem.

2.3.3 Alternative Extension of the Margin Calculation

Rather than generalizing the portfolio margin calculation from the discrete
set to the continuous set as in Figure 3, one could choose to consider a box

region (||| < ¢) as depicted in Figure 4. The primary advantage of using

Ac . Ac

Ac Ao

o o oflo o o %" <
C

Figure 4: An alternative continuous generalization of the discrete scenarios
considered in the OCC Risk-Based Haircuts methodology.

this approach is that the portfolio margin estimated using the box region is a
closer proxy to the result of the discrete set. Because there is a larger number
of scenarios considered in the circular region and as a result that approach is
more conservative (placing a larger margin requirement).

The inner optimization problem given the box region is essentially a quadratic
programming problem. After laying out the KKT conditions, the inner prob-

lem is equivilent to solving a 6 dimensional linear programming problem. The
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inner problem becomes numerically simple, but analytically intractible. After
we considered the pros and cons of the two approaches, we concluded that the
circular region depicted in Figure 3 is the most convenient generalization of

the conventional discrete portfolio margin calculation.

3 Margin Calculations

Now that we have discussed our continuous extension of the portfolio mar-
gin requirement, we develop the analytically tractible approximations for the
margin requirement.?’ These approximations will then be implemented to de-
termine the optimal liquidation of a portfolio of securities in the face of a
margin call. The solutions to the main liquidation problem using the approxi-
mate margin requirement will have approximately the same objective value to
the true solution.

In Section 3.1, we use the first order expansion of the change in the portfolio
value to estimate the margin requirement. In Section 3.2, we use the second
order expansion. The second order approach provides a better estimation than
the first order approach; however, the second order approximation also turns

out to be more computationally involved.

3.1 First Order Margin Estimation

Consider the first-order change in value of the portfolio, AV, given by the
changes in the underlying asset values S — S+AS = S(1+ Rs) and underlying
asset implied volatilities 0 — 0+ Ao = o(1+ R,) where we consider scenarios
with (82)% 4+ (82)? = R% + R2 < ¢* where ¢ is some positive real number.?!

The change in the portfolio value (AV') is estimated by the first order change

200bviously having an exact analytic solution is preferable; however this is almost never

possible.
21 Portfolio margin calculations based upon the “risk-based haircuts” methodology of the

Options Clearing Corporation (OCC) have values of ¢ on the order of 0.05 to 0.15 depending

upon the composition of the portfolio.
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in the portfolio value given by,

AV (..., 21lnig) =Y AV (@nig) = > §7 a5, (11)
J J

T
T _ e ) 7= (258 A
where g = (32; Dijnig, 22 Vignig), 5 = ( S; 7 o; and

D, : 0L,

_ ob;
) T asj

;.
J
aO'j

Sj and V;,j =

The partial derivatives in the equations above are the conventional greeks delta
and vega. For a derivation of the first and second order partial derivatives of
option values within the Black-Scholes model, see Appendix A.
To solve this problem of calculating the margin requirement more com-
pletely, we have to determine for a given set of initial asset positions
min AV;(Z:|n; ;) = min ;. 12
i AVililne) = e 57 (12)
Since the objective function for the inner problem is a linear function, the
solution must be parallel with —g (direction of steepest descent) subject to

the constraint ||75|| = ¢ in order to maximize the reduction in portfolio value.

Therefore the solution is simply

. cg;
T = - (13)
! 11951

Figure 5 illustrates this analytic solution.

v g
g
lel

Figure 5: Result of first order minimization of portfolio changes.
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Now that we have found the explicit value of 77, given the holdings {n;;},
we have found an approximation of the generalized margin requirement. We

can use these results to estimate the margin requirement as follows

Margin(n;) &~ AV (&, ..., &lni) = c¢>_ |G- (14)
j

As a result of this first order margin estimation, we replace the portfolio lig-

uidation constraint in (4) by the following constraint

NLV(n;;) > CZ 11G;1]- (15)

j
For regions in which the value of the portfolio does not vary substantially,

the first order margin calculation and resulting portfolio liquidation procedure

outlined above is efficient and accurate. To be more precise, as long as the
following limit holds
‘ 0*V

axax;| < |(ov) (v) (ax) a0

for all {7,7}, where X; € {0}, S;}, and for all ]AX;AX;| < €2X;X; for some

e > 0. For portfolios with values that depend smoothly on the parameter

values, there will always be an ¢ > 0 where this is the case. In cases where
this € is comparable to the parameter ¢ defining the size of the feasible region,
the first-order analysis should be sufficient to determine the portfolio margin
requirement.

In practice, the first-order estimation will not always give an accurate es-
timate of the margin requirement; however, in certain special cases, the first
order approach is quite accurate. 1) When there is a large equity component
dominating the value of the portfolio. Since the equity itself has a margin sur-
face that is linear with respect to changes in the characteristics for the asset,
the first order approximation tends to be more accurate. 2) For broadbased
indices, the sensitivity tests are based upon smaller parameter ranges. The
smaller range of values for the stress test in this case will significantly improve

the accuracy of the first order expansion.

3.2 Second Order Margin Estimation

The change in value of the portfolio, AV, to second order in ff = (ASj ﬂ)

L) .
S; gj
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is estimated by

7= — bd g 1 — —
AV (Zy,...,Z1n;;) = Z <g]ij + §x?Bjxj> , (17)
J
where g, is defined in (11) and the symmetric 2 x 2 matrix B; is defined as
follows

OPij, Py

9s2 "uj 0S; Bo; Vi
Bi=> | 24, T : (18)

) 80']‘85j 2, Bo'j 1,J

This matrix is the Hessian matrix for the subset of portfolio value changes due
to changes in the characteristics of the underlying asset j. This estimation
is more accurate since it includes smaller effects resulting from the changing
characteristics of the underlying asset.

The second order margin estimation is now a quadratic function of the
changes in the underlying assets. The matrix B; is not necessarily positive-
definite.?2 Several approximate approaches to estimate the extreme value of
the function in (17) within the feasible region falter when the matrix B; is
not positive-definite. For example, the single dogleg method of [17] and the
modified double dogleg method of [18], although powerful, are ill-equipped to
handle the case of an indefinite Hessian.

The following theorem sets up the machinery required to solve the portfolio
margin calculation exactly.?> Although we do not use this exact approach due
to its computational complexity, we include the theorem here as a motivation

for the approximate approach that we develop and advocate.

Theorem 3.1. The vector * is a global solution of the trust-region problem

1
min (g T+ xTBx> such that ||Z]| < ¢ (19)
TER™ 2

if and only if T* is feasible and there is a scalar X > 0 such that the following

conditions are satisfied:

(B+ N)Z* = -7, (20)
Ae—=1IZFl) =0, (21)
(B+ ) is positive-semidefinite. (22)

22A real valued n x n matrix A is defined to be positive-definite if Z7 AZ > 0 for all
n-dimensional real vectors ¥ # 0. Similarly, a real valued n x n matrix A is defined to be

positive-semidefinite if ZT AZ > 0 for all n-dimensional real vectors & # 0.
ZFor a proof of the theorem, see, for example, [19].
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where I is the n x n identity matriz.

Additional pedagogical discussion concerning this theorem and related top-
ics can be found in [7].

The theorem is constructive in the sense that the second condition, in
(21), requires that either A = 0 or that the solution to the problem is on the
boundary of the feasible region. Of course if A = 0, then the third condition
requires B to be positive-semidefinite and the first condition gives #* = —B~'§
so long as ||7*|| < ¢. If ||Z*|| = ¢, then ) is only constrained by the fact that it
must be larger in magnitude than the smallest negative eigenvalue of B. If this
condition is satisfied, then (B+ AI) is positive-definite and 7* = —(B+AI) " 'g.

3.3 Computing the Closed-Form Solutions for the Op-

timization Inner Problem

There are numerous algorithms to solve the margin requirement optimiza-
tion inner problem, which is now converted to a standard trust-region sub-
problem. Once the numerical solution is obtained, it can be plugged into the
main liquidation problem to value the degree of the violations of the margin
constraint. However, this is a slow process when the size the portfolio is large
(n > 100) because the liquidation problem has to be solved using a derivative
free method since margin constraint (4) does not have derivative information.

In order to compute the derivative of the margin constraint, we begin by
obtaining an approximate solution to the inner optimization problem. The
solution is then used to analyze the constraint surface. This procedure signifi-
cantly improves the efficiency with which the liquidation problem is solved. In
Section 4, we compare the computational resources used in the two approaches.

First, consider the case when the matrix B is positive-definite. The approx-
imate procedure that we follow in this paper can be seen as a generalization
of the approach found in [17]. In Powell’s approach (known as the Dogleg
Method), the approximate solution to the quadratic problem in (19) is found
by taking a linear combination of the vector corresponding to the direction of
the Cauchy point and the vector corresponding to the direction of the Newton

point subject to the condition that the solution is feasible.?* This approach is

24The Cauchy point is gives the minimum value of the portfolio change in the direction
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only limited by the fact that it requires the matrix B to be positive-definite.

In Figure 6, we give a graphical depiction of the minimization procedure
when the matrix B is positive-definite. The three concentric circles in Figure
6 represent the possible cases for the size of the feasible region. If the Cauchy
point is not within the feasible region, then the approximate solution to the
minimization problem is given by @* = —cg/||g||. If the feasible region contains
the Cauchy point but not the Newton point, then the solution is given by
7(1) = —(|7|1?/(§" B§))§ — TB~'§ where 7 ensures ||7*(7)|| = ¢. Finally, if
the Newton point is within the feasible region, then #* = —B~'7.

Figure 6: Dogleg methodology.

If the matrix B is not positive-definite, we cannot apply the dogleg method
and instead we apply the indefinite dogleg algorithm. Since the matrix B is
a real symmetric 2 X 2 matrix, we can apply the spectral theorem of finite

dimensional vector spaces to decompose the matrix B as

B =QTAQ where A= Ar 0 ,
0 o

where Q@ = (¢1, ¢>) is an orthogonal matrix. For sufficiently large \, the matrix

of steepest descent: — (||4]|?/(§" B7)) §. The Newton point gives the minimum value of the

unconstrained quadratic model (assuming B is positive-definite): —B~1g.
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(B + M) is positive-definite. If Z(\) = —Q(A + \I)~'Q"g, then

ot i~ d ol i~ d
N q1,g — ng —
A) = — + .
() <A1+)\q1 )\2+)\q2>

The norm of the #(\) is given by

N 2 - 2
el = (52575) + ({22
AL+ A A2 + A

due to the orthogonality of the vectors ¢; and ¢.

If the matrix B is not positive-definite, then we must alter the above proce-
dure slightly. Without loss of generality, we assume Ay < Ay. We then consider
the matrix (B + AI) for some A € (—A;, —2)\] such that the matrix (B + \I)
is positive-definite.

In Figure 7, we present a graphical depiction of the indefinite dogleg method-

ology. Once again, we have three concentric circles representing the possible

—(B+A) '8
5.0

~(B+AI)g+EV

Figure 7: Indefinite dogleg methodology

cases for the size of the feasible region. If the Cauchy point of the modified
problem is not within the feasible region, then #* = —cg/||g||. If the Cauchy
point is within the region, but the Newton point is not, then the solution is
given by 7*(7) = —(||7|?/(§" (B + A\I)§)§ — 7(B + AI)~'g where 7 ensures
[|7*(7)|| = ¢.?®° Finally, if the Newton point of the modified problem is within

25For an iterative approach of determining the value of 7 using Newton’s root finding
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the trust region then 7*(§) = —(B + AI)~'g + £¥) such that ||7*(&)|| = .6
The following summarizes the second order algorithm.

Algorithm:
1. If B is positive-definite:

(a) If the unconstrained minimizer satisfies || — B~'g|| < ¢, then &* =

—B~1§, otherwise perform a dogleg search.

(b) If the Cauchy point || — (||g]|?/(GF Bg)gl|| > c is outside the circle
then search along the steepest decent direction —g and determine

Sk

7* = —cg/||g|| on the boundary.

(c) Otherwise look for an interpolation point of the Cauchy point and
the unconstrained minimizer (1) = —(||4]|*/(§" B§)§—7B~"§ such
that ||2*(7)]| = ¢

2. If B is not positive-definite, find a value A in (—=\;,—2\;], such that
B + A is a positive-definite matrix:

(a) If the point —(||g]|?/ (" (B+AI)g)g is outside the circle, then search
along the steepest decent direction —g and determine 7* = —cg/||d||

on the boundary of the region.

(b) If the unconstrained minimizer —(B + AI)~'7 is located inside the
circle, #*(§) = —(B + M) 'g + &0 such that ||Z(£)|] = ¢

(c) Otherwise determine the interpolation point Z(7) = —(||4][*/(g" (B+
M)§)§ — 7(B + M)~ G such that ||Z(7%)]] = .

This algorithm exhausts all possible cases for the second order portfolio
margin estimation. To implement the algorithm, we determine numerically
the case that is appropriate and then proceed to the corresponding closed-
form following the algorithm outlined above. This algorithm can efficiently

compute an analytically tractable solution. Since B is a 2 X 2 symmetric

algorithm, see Appendix B. This algorithm converges quite quickly in most situations. This
method has achieved efficiency in large scale, high dimensional problems, but functional

dependence on the positions is lost when this approach is taken.
26Due to the complexity of this last case in which B is not positive-definite and ||(B +

M) 7Lg|| < e, [20] refer to this as the “hard case”.
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matrix, its eigenvalues A; and A, and corresponding eigenvectors ¢, and ¥, can
be computed analytically. Furthermore, the key solution points used in the
algorithm, such as the Cauchy point and the Newton point can be computed
analytically because the matrix B is easily inverted.?” The parameters 7 and
¢ in the algorithm above are also easily solved in the two-dimensional space.
In each case, we have shown how to determine the value of #* that minimizes
the value of the subportfolio within the feasible region. We can use these results

to estimate the margin requirement as follows
Margin(n; ;) ~ —AV(Z7, ..., &5 |ni ;). (23)

As a result of this second order margin estimation, we replace the portfolio

liquidation constraint in (4) with the following constraint
NIV (ni) > —AV(E, ..., 5 lnes). (24)

The availability of approximate analytic solutions '+ has many benefits.
For example, by replacing the form of * in the margin function —AV', we can
determine the portfolio margin as a function of the positions. This allows us
to compute the value of margin as well as gradient of margin with respect to
M-

To solve the main liquidation problem, we can use any one of the many
standard non-linear optimization algorithms. For example, we have used the
fmincon tool in MATLAB. The tool implements either a trust-region-reflective
algorithm or an active-set algorithm to solve the non-linear programming prob-

lem with non-linear constraints.

4 Example Portfolios

Liquidating a portfolio one security at a time has the disadvantage of not
adequately addressing offsetting positions and, in some cases, can end up leav-
ing the portfolio more exposed to market value fluctuations than before the

liquidation occurred.

2TFor the eigenvalue decomposition and the inverse of a general 2 x 2 symmetric matrix,

see Appendix C.
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4.1 Portfolio 1

The first example is a portfolio containing a long butterfly spread on a
stock with current price of $60. The three call options — all expiring in three
months — in the portfolio have different strike prices and positions:

e Long 500 European call options with strike $55: (n9, = 500)

e Short 1,000 European call options with strike $60: (n3, = —1000)

e Long 500 European call options with strike $65: (nj, = 500)

We assume the three options have the same implied volatility 15%, that the
risk-free rate is a constant, continuously-compounded 3% and that the dividend
yield is a constant, continuously-compounded 1%.

The first method (Figure 8(a)) uses the discrete scenarios based calcula-

tions.?® The six scenarios are given as before:

i e S = {(15%,0), (—=15%, 15%), (—15%, —15%), (15%, 0), (15%, 15%),
(15%, —15%)}.

where 77 = (AS/S,Ac /o). The margin surface is a combination of linear
planes. The second method (Figure 8(b)) uses the first order estimation. As
we can see, because the portfolio does not have a position in the underlying
asset and the range of stock variation is moderate (15%), the first order esti-
mation does not provide a good estimation. The third method (Figure 8(c))
is the second order estimation and is much more precise than the first order
estimation. One feature about the second order estimation is that it smooths
out the margin surface. The smooth interpolation between two nearly planar
surfaces is a general feature of the second order estimation.

Assuming the portfolio is financed with a margin loan of $500, the initial
margin estimated by the second order expansion is $1,742 versus the net lig-
uidation value $505.

The solution to this problem is to liquidate (Ang 1, Ang 1, Any ) = (254,437,0)
resulting in the final positions (ns,1,n3,1,n4,1) = (246, —563, 500).%

28Gince it is not possible to plot the margin surface’s dependence on three independent

variables, we supress the dependence on one independent variable in the figure.
**The portfolio contains no investment in the underlying stock and therefore ny ; = nf ; =

0.
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500 -1000 500 -1000

(a) Discrete stress test scenarios (b) Circle based stress test scenario

range and first order estimation

(c) Circle based stress test scenario

range and second order estimation

Figure 8: Graphical depiction of the margin surfaces estimated in three differ-
ent approaches for a portfolio that is long a butterfly spread. Since there are 3
variables involved, we only consider two of them: the x and y axis are based on
the long call option (with strike $55) position and the short call option (with
strike $60) position.

4.2 Portfolio 2

The second portfolio consists of three options strategies. All option posi-
tions are on the same stock with current price of $60 and with a constant,
continuously-compounded dividend yield of 1%. The options have different

expiration dates and
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e Long collar expiring in two months:

— Long 500 shares of the underlying stock: (n{; = 500)
— Short 500 European call options with strike $63: (n3, = —500)

— Long 500 European put options with strike $59: (n3, = 500)
e Long butterfly spread expiring in three months:

— Long 500 European call options with strike $55: (n}, = 500)
— Short 1,000 European call options with strike $60: (n3, = —1000)
— Long 500 European call options with strike $65: (ng, = 500)

e Long bear call expiring in one month:

— Long 300 European call options with strike $67: (n9; = 300)
— Short 300 European call options with strike $57: (ng, = —300)

We use this complex example to primarily test the efficiency of the opti-
mization problem with/without the gradient information of the contraint (4).
Assuming the initial cash amount is -$30,000, the initial estimated margin is
$2,627 and the net liquidation value is $248. Since the net equity in the ac-
count ($248) is less than the margin requirement ($2,627), a margin call is
issued.

Using an active-set algorithm in conjunction with the analytic margin ap-
proximations presented in this paper, we obtain the liquidation solution of
{Any 1 = 59, Any; = 500, Ans; = 21} and all other positions liquidated en-
tirely. Without using the gradient information of the margin constraint, it
takes a total 344 function valuations to determine the solution. With the gra-
dient information from the margin surface, the number of function valuations
reduces by approximately 67% to 114.

If an investor’s portfolio does not have too many holdings, the main opti-
mization problem is still computationally manageable. In that case, we do not
have to use the gradient information we computed from the analytical solutions
in Section 3.2. When the portfolio is very large, using gradient information
could save significant computational resources — possibly in excess of 67% as

we show in this example.
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5 Discussion

By extending the calculation of risk-based constraints — the inner problem
— from a discrete optimization to a continuous optimization, this paper has
increased the tractability of implementing risk-based constraints at the port-
folio level. Using derivative information of the constraint surface, our approach
to portfolio allocation decisions is more efficient than conventional numerical

approaches.

We show how one could efficiently enforce specific regulatory requirements
on a portfolio under management by determining the securities within the
portfolio to liquidate in the event that a regulatory requirement is not satisfied.
For the specific example of the portfolio management of margin accounts, this
paper developed the optimal liquidation of a portfolio containing equities and

European options on those equities to meet a margin call.

We generalized the conventional definition of portfolio margin requirements
by extending the discrete set of scenarios to a continuous, uncountably infinite,
set of scenarios. Since this generalization considers a larger set of scenarios,
our approach necessarily provides a more stringent margin requirement than
the conventional discrete scenario analysis. Using this generalization, we pro-
posed an algorithm to find approximate analytic expressions for the margin
requirement as a function of the positions in the portfolio. We then imple-
mented a non-linear programming procedure to satisfy the margin call and
minimally alter the underlying portfolio. The objective function used in this
optimization - Equation (3) - can be altered to any other objective function

appropriate for the portfolio management problem being considered.

An important implication of this work specific to the management of margin
accounts is that the margin requirement is rarely satisfied by liquidating a
single security at a time. Often a manager must liquidate several securities
simultaneously to maximally decrease the required margin while minimally

altering the positions in the underlying portfolio.

Although we focused on the optimal liquidation given a risk-based mar-
gin requirement example, the optimization procedure discussed in this paper
is general. For example, a hedge fund manager could use the algorithms de-
veloped here to implement a strategy that fixes the g of a portfolio within a

specified range. Additional applications of this approach are the subject of
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ongoing research.
Appendices

A Option Sensitivities in the Black-Scholes Model

The risk-neutral valuation of European options within the Black-Scholes
model is conventional, but we include the formulas here for convenience and
completeness of presentation. Consider European options with strike price K
and expiring 7" years from now on an underlying asset with spot price S and
volatility . Assume the underlying has a constant, continuously-compounded
dividend yield ¢ and take the risk-free rate r to be constant and continuously-
compounded. The Black-Scholes valuation of a European call option with

these characteristics is
C(S,0,K,r,q,T) = Se " N(d,) — Ke""N(d_)
and the valuation of a European put option with these characteristics is
P(S,0,K,r,q,T) = Ke"""N(—d_) — Se” ™" N(—d,)

where

4. — In(S/K) + (r —q+0?/2)T
+ = T

and N is the standard normal cumulative distribution function.

We need to know how these option valuation formulas depend on the frac-
tional changes in the asset price S — S(1+4 Rg) and volatilities 0 — o(1+R,).

Using the chain rule, we have the identities

2 2 a2
9 (05)3253 g 0 :<as> ” _ 50

Ry \0Rs)dS ~0as oR% ~ \0Rs) 05° 052
0 _(ooNo _ o & _(00\ & _ 0
OR, \OR,) 0o 0o OR2 ~ \OR,) 00> =~ 0o?
The first derivative of the option valuation formulas are given by
oC oP
— = Se'N —— = Se (N(d,) — 1
aRS 56 (d+)7 aRS 56 ( (d+) )7
oC oP
— _qT / —
S Se="aVTN'(d,) TR
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The second derivative of the option valuation formulas are given by

02C Se"N'(d,) P

IR T OR%’

820 —aT , 82P
G—R?, = Se ToVTd.d_N (dy) = a—l%g’
920 0’P
—— = —Se"qd N'(d,)= ———.
OR.0Rs ¢ (d+) OR,0Rs

We use these formulas extensively in evaluating the sensitivity of a portfolio
consisting of European options to fractional changes in underlying asset prices

and volatilities.

B Root-Finding Algorithm

If B is positive-definite (A\; > 0), then either the Newton point — corre-
sponding to the global minimum of the quadratic function — is within the
feasible region (||B~'q|| < ¢), in which case #* = #(0), or the Newton point
is outside the feasible region ||[B~'7|| > ¢, in which case there exists a unique
A = X* such that ||Z(A\*)|| = ¢. In this latter case, * = Z(\*).

If B is not positive-definite then A; < 0. Consider the case in which
¢l G # 0. In this case, one needs to find a value for A > \; such that ||Z(A\)|| = c.
Following [7], one can implement a Newton’s root-finding method to iteratively

determine the zero of the function,

1V

If B is not positive-definite then A; < 0. Consider the case in which

¢l § = 0. The solution to the trust-region problem in this case is given by

— —
Z(r)=— ()\qu—g)q sz) — 70

where v; is the eigenvector corresponding to A;, and the real number 7 is

fixed by the constraint on the norm of the vector .3 Due to the orthogonal

30Tn other words, # solves the eigenvector equation (B — A\ I)# = 0. We are assuming,

without loss of generality, that || || = 1.
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decomposition of B, we have the following equation for 7*

o N\ 2
- 43 9 *
()| = (AQQ—M) + (Y=

The approximate solution to the trust region problem is therefore 7* = Z(7*)

and can be found by determining the zero of the function

using Newton’s root-finding method.3!

C Linear Algebra

Consider a real symmetric 2 X 2 matrix given by

A:<Zi>.

The eigenvalues and corresponding eigenvectors of this matrix are given by

2
a+c a—c¢ b
= j: 2 v = .
At ( 5 > \/( 5 ) +b2 and U (}\i_a>

If A, A_ # 0, then the matrix A is invertible with inverse A~! defined by
e 1 ¢ —b .
)\+)\_ —b a

[1] K. W. Lau and Y. K. Kwok, Optimal execution strategy of liquidation,
Working Paper, (2000).

References

[2] A. Schnied and T. Schéneborn, Risk aversion and the dynamicas of opti-
mal liquidation strategies in illiquid markets, Working Paper, (2008).

31T 7 is orthogonal to both ¢ and @, then § = 0. For a non-trivial portfolio, our analysis

is almost always complete.



152

[10]

[11]

[12]

[13]

[14]

[15]

Optimizing Portfolio Liquidation...

A. Alfonsi, A. Schied, and A. Schulz, Constrained portfolio liquidation in
a limit order book model, Working Paper, (2000).

A. Schied, T. Schoéneborn, and M. Tehranchi, Optimal basket liquida-
tion for cara investors is deterministic, Applied Mathematical Finance,
17, (2010), 471 - 489.

T. Schoneborn, Adaptive basket liquidation, Working Paper, (2011).

R. H. Byrd, R. B. Schnabel, and G. A. Schultz, Approximate solution of
the trust region problem by minimization over two-dimensional subspaces,
Mathematical Programming, 40, (1988), 247 - 263.

J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag,
New York, 1999.

G. Smiley and R. H. Keehn, Margin purchases, brokers’ loans and the bull
market of the twenties, Business and Economic History, 17, (1988).

P. H. Kupiec, Margin requirements, volatility, and market integrity: What
have we learned since the crash?, Journal of Financial Services Research,
13(8), (1998), 231 - 255.

K. M. Rosenzweig, An introduction to portfolio margining, Futures and
Derivatives Law Report, 26, (1983).

E. G. Coffman Jr., D. Matsypura, and V. G. Timkovsky, Portfolio margin-
ing: Strategy versus risk, University of Sydney Working Paper, (2010).

R. H. Filler, Ask the professor - portfolio margining - how will Dodd-
Frank impact its utilitzation, Journal of the Law of Investment € Risk
Management, 30, (2010), 1 - 6.

F. Black and M. Scholes, The pricing of options and corporate liabilities,
Journal of Political Economy, 81, (1973), 637 - 654.

R. Merton, Option pricing when underlying stock returns are discontinu-
ous, Journal of Financial Economics, 3, (1976), 125 - 144.

A. Argiriou, Determining margin levels using risk modelling, Thesis, 2009.



Deng, Dulaney and McCann 153

[16] R. Eldor, S. Hauser, and U. Yaari, Safer margins for options trading: How
accuracy promotes efficiency, Working Paper, (2009).

[17] M. J. D. Powell, A new algorithm for unconstrained optimization, In: J. B.
Rosen, O. L. Mangasarian and K. Ritter, Eds., Nonlinear Programming,
Academic Press, New York, 1970.

[18] J. E. Dennis and H. H. W. Mei, Two new unconstrained optimization al-
gorithms which use function and gradient values, Journal of Optimization
Theory and its Applications, 28, (1979), 453 - 482.

[19] D. C. Sorensen, Newton’s method with a model trust region modification,
SIAM Journal on Numerical Analysis, 19, (1982), 409 - 426.

[20] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM
Journal on Scientific and Statistical Computing, 4, (1983), 553 - 572.



