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Abstract

This article was presented in Cryptography Conference 2012 of the
Hellenic Military Academy. The article consists of two parts. In the
first part is presented a short overview of group-based cryptography. In
the second part the notions of group-based cryptography are used to
present a secret sharing scheme.
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1 Introduction

In 1975 Diffie, Hellman and Merkle introduced public key cryptography.

The basic idea is to use for encryption a so-called one way function, a function

such that it is easy to compute f(x) but difficult, in general, to compute f−1(y).
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In 1976 Diffie and Hellman presented the Discrete Logarithm Key agree-

ment protocol [7]. This protocol uses a finite cyclic group with generator g

(the original implementation used the multiplicative group of integers modulo

p as the basis group and a primitive root for g). A brief description of the

scheme is given bellow.

Discrete Logarithm scheme

1. Alice and Bob agree, publicly, on a finite cyclic group G and a generating

element g of G.

2. Alice randomly chooses an integer α and sends gα to Bob.

3. Bob randomly chooses an integer β and sends gβ to Alice.

4. Bob computes gαβ = (gα)β.

5. Alice computes gβα = (gβ)α.

Since K = gαβ = gβα, K may serve as a common key. The Discrete Log-

arithm Key agreement protocol is considered secure because it is, supposedly,

difficult for an eavesdropper to compute gαβ from gα, gβ. A problem that is

connected (although not equivalent) to the discrete logarithm problem, i.e.

the problem of recovering α from g and gα [13, p. 6-7]. Koblitz [9] and Miller

[12] independently suggested the use of the group of rational points of elliptic

curves as a platform in 1985.

The most famous public key encryption protocol is RSA which was pro-

posed by Rivest, Shamir and Adleman in 1977 [15].

RSA scheme

1. Alice chooses two primes p, q, calculates n = pq and selects an integer

1 < e < φ(n) = (p − 1)(q − 1) with g.c.d(e, g) = 1. She publishes n, e.

Her secret key is an integer d such that ed = 1 mod φ(n).

2. Bob encodes his message using integers 0 ≤ m ≤ n−1. For every integer

m, Bob sends me mod n to Alice.

3. Alice computes m = med = (me)d mod n.
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The basic mathematical tool behind RSA is Euler’s theorem which states

that for every integers n and a with 0 ≤ a ≤ n − 1, aφ(n) = 1 mod n. RSA

is considered secure because it is related to the integer factorization problem

since the only known way to recover m mod n from me mod n is to calculate

med = (me)d mod n. And finding d, supposedly, requires knowledge of φ(n) =

(p− 1)(q − 1) and hence the factorization of n.

Most common public key cryptosystems in use, such as presented above,

are based on abelian groups. However, since computing power expands every

day and new innovative lines of attack are invented, the security of many of

them is questioned. For example, there exists a wide bibliography concerning

attacks to the RSA cryptosystem [5]. And it is not wise to place all of one’s

eggs in the same basket. The wide use of only a few cryptosystems means that

should a line of attack proved successful, the consequences would reach a huge

number of people and certainly, the news would attract a great deal of media

attention. This was the case for an announcement made by A. Shamir back in

1999 which proposed a way to break RSA [11, 19].

Therefore, research in new cryptographic methods is in demand. One

such method uses the foundations of group theory, especially non-commutati-

ve structures as platforms. In section 2, after a brief overview of some basic

definitions of group theory, we present a few cryptographic methods based on

non-commutative groups. In section 3, we present a secret sharing scheme

which was proposed by the second author [14] and it is based on group pre-

sentations and the word problem.

2 Non-commutative Algebraic Cryptography

2.1 Group presentations and normal forms

Some prerequisites for the use of a group as a platform, are the presentation

of a group and the possibility to obtain a normal form for an element of the

group with a specific presentation.

A generator g of a group G is any element of a subset S ⊂ G, called

generating set, such that any other element of the group can be expressed in

terms of S. The generators of a group G could be connected by some relations.
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For example, the cyclic group of order 2 C2 could be defined by an element g,

as the generator of C2, which is related to the identity element of G by the

relation g2 = e. A presentation of a group G consists of a generating set

and some relations between those generators. Of course, for any group there

is not a unique presentation. For example the next two presentations define

the cyclic group of order 6:

(a : a6 = 1)

(a, b : a2 = 1, b3 = 1, aba−1b−1 = 1)

Although there is a way to pass from one presentation to another for isomor-

phic groups, using the Tietze transformations for example, this is not always

trivial. A useful property of a group is the possibility of writing any element

in a standard way that becomes easy for us to choose and manipulate ele-

ments. This is the notion of normal form. The existence of a normal form

is a characteristic of free groups for example [16]. There are two necessary

principles that need to be held by a normal form. The first one is uniqueness;

every object must have exactly one normal form of a given type, as the second

principle states that two objects of the same normal form have to be equal.

For instance, in the additive group of integers it is known that every integer

has a unique decomposition as a product of prime numbers, not taking in con-

sideration the order of the product. This is a good way for representing an

integer, with all the advantages described above.

Another extra, useful property of a group is the capability of effectively

rewriting an element in normal form. In Thompson’s Group, for example,

there is such a rewriting system, that converts a given word to its normal

form. Another such example is the braid group where there is not only one

type of normal form, but different types of normal forms, each one useful for

another reason. The early use of braid groups in cryptography is partly due

to the development of different types of normal forms. Thus, the existence of

a normal form is crucial for a platform group in cryptosystems. But what are

other useful properties for a group to be chosen as the base of a cryptosystem?

We will discuss this question in section 2.4. Let us see first the underlying

problems in group-based cryptography.
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2.2 Decision and Search problems in Group Theory

Fundamental decision problems formulated by Max Dehn [6] in 1911, being

used for implementing a one-way function are presented below [10]. Let G be

a group which presentation is given. Then:

• The Word Problem: for a word W given in terms of generators of G,

find in a finite number of steps whether W = 1 or not.

• The Conjugacy Problem: for two given words W1,W2 on the gener-

ators of G, decide in a finite number of steps whether

W1 = g−1W2g, for g ∈ G.

• The Isomorphism Problem: for two presentations G,G′, decide in a

finite number of steps whether the groups G,G′ are isomorphic or not.

These problems are not solvable in general. The word problem is solvable

in the following classes of groups: finite, polycyclic, one relator negative cur-

vature, Coxeter, Braid, residually finite, finitely generated groups and others.

The conjugacy problem expands the word problem, as the latter comes from

the first one, just by substituting the word W1 = 1. The isomorphism problem

is believed to be the most difficult of Dehn’s problems.

The important fact is that even though in some cases one od the problems

stated above can be solved in a finite number of steps, it might be a difficult

problem from a cryptographic point of view. So, one should know whether the

problem could be solved in polynomial or subexponential time. In this way

search problems emerge: Given a property P , known that there are objects

with this property, try to find such an object.

2.3 Key Agreement Protocols based on non commuta-

tive groups

An analogue of Discrete Logarithm Problem (DLP) in group theory is the

Conjugacy Search Problem (CSP): If G is a non-abelian group and g, h ∈ G

such that g and h are conjugate, find an element y ∈ G so that the next

equality occurs: h = y−1gy. The CSP seems to be a really hard problem given
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an appropriate choice of a platform group. This choice is going to be discussed

later on.

2.3.1 Ko et al. Key Agreement Protocol [8]

Suppose G is a non-abelian group chosen and A,B ≤ G commuting sub-

groups and let g ∈ G be an element, all the above publicly known. A secret

common key is developed by Alice and Bob, procceding as follows:

1. Alice selects a ∈ A, calculates ga = a−1ga and sends ga to Bob.

2. Bob selects b ∈ B, calculates gb = b−1gb and sends gb to Alice.

3. Each one computes Ka = (gb)a, Kb = (ga)b = K which stands for the

common secret key, as ab = ba and hence Ka = gab = gba = Kb.

The platform group G chosen in this scheme is a very critical point. The

authors Ko et al. used for instance the Braid group Bn. The real reason about

that is that a good normal form for the elements of Braid groups exists.

2.3.2 Anshel et al. Key Agreement Protocol [1]

A non-abelian group G is used for this protocol too, but the need of any

commuting subgroups is overtaken. So, except the group G, also elements

a1, . . . , ak, b1, . . . , bm ∈ G are made publicly known. The key establishment

comes as follows:

1. Alice computes a private word x = x(a1, . . . , ak) on a1, . . . , ak and sends

Bob bx
1 , . . . , b

x
m, where bx

i stands for the conjugate x−1bix.

2. Bob computes a private word y = y(b1, . . . , bm) on b1, . . . , bm and sends

Alice ay
1, . . . , a

y
k.

3. Then Alice computes x(ay
1, . . . , a

y
k) = xy = y−1xy and Bob computes

y(bx
1 , . . . , b

x
m) = yx = x−1yx. The commutator [x, y] stands for the

common secret key K, as: [x, y] = x−1xy and [x, y] = (y−1yx)
−1

=

(y−1x−1yx)
−1

= x−1y−1xy respectively.
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Figure 1: A 5-braid

Figure 2: A n-braid b

Figure 3: The inverse n-braid b−1

An interesting implementation involves the braid groups. In particular, the

n-braid group Bn is defined by the following group presentation.

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣∣
σiσjσi = σjσiσj, if |i− j| = 1

σiσj = σjσi, if |i− j| ≥ 2

〉

Each element of Bn is called an n-braid. A n-braid can be displayed as a

set of disjoint n strands all of which are attached to two horizontal bars at
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the top and at the bottom, so as each strand always heads downwards as one

”walks” along the strand from the top to the bottom. The braid index is the

number of strings. The multiplication ab of two braids σ1 and σ2 is the braid

obtained by positioning σ1 on top of σ2. The identity e is the braid consisting

of n straight vertical strands and the inverse of a is the reflection of a with

respect to a horizontal line.

Let us see why braid groups are a good candidate as a platform groups.

First of all, a braid group has solvable word problem and there exists a canoni-

cal form (in fact there exist more than one [3]) for its elements such that braids

are easily compared. Also the best known algorithm to solve the conjugacy

problem is of exponential time. Finally, the membership decision problem in

a braid group Bn, n > 6 is algorithmically unsolvable, because such a group

contains subgroups isomorphic to the free group product F2 × F2, where the

membership decision problem (determining whether or not a given x ∈ G be-

longs to a subgroup of G generated by given a1, a2, . . . an) is algorithmically

unsolvable [13, p.48]. This is important because an adversary would have to

know the x, y elements above not simply as a word in G, but as a word in

public elements used a1, a2, . . . an or b1, b2, . . . bm in order to reveal the secret

key K [13].

2.3.3 Other protocols

There is an easy way to implement other protocols not based on the con-

jugacy search problem. Besides, the first naive scheme on group based cryp-

tography by Wagner and Magyarik (1985) [18], was depended on the word

problem, although it was not really a cryptosystem [2]. The basic idea is that

we could have a defining relation anything like:

ga = f(a)ga, f : G → G

where f is a function in group G. In the case of conjugacy search problem f

is defined as:
f : G → G

x 7→ f(x) = x−1

On the other hand f could be also the identity map, inducing the decompo-

sition problem protocols. An extended reference on such themes can be

found in [13].
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2.4 Choosing the group and the problem

As noted above the construction of a group-based cryptosystem has two

parts. The first one is choosing the platform group and the second one is

the underlying problem. Concerning the group-based underlying problem it

is not really clear, at the present, which is the best choice. For example, the

conjugacy search problem may not provide a sufficient security level in braid

groups, although it could be adopted in special cases [13].

On the other hand the choice of the platform group is believed that has to

meet specific standards, such as mentioned below. The first one is the existence

of an effective normal form, so that the word problem is solvable in real time.

The normal form is also useful in hiding the message parts that could be

obvious to recover; i.e. the part elements x, y ∈ G in the product xy. Another,

high priority, requirement is the size of the group. It is needed to be of super-

polynomial growth, that means the elements of length n, growing faster than

any polynomial in n so that a direct attack could not be implemented. Finally,

all the above contribute to the choice of a well known group. Among groups

meeting the above criteria and used so far are: braid groups, Thompson’s

group, Artin groups, solvable groups and others. Research in this context is

open and has many potential.

3 Secret sharing

3.1 General description

A secret sharing scheme answers to the problem of distributing a secret

among a group of n persons in such a way that it can be reconstructed only

if at least t of them combine their shares. Such a scheme is called a (n, t)

threshold scheme. This problem was first solved independently by A. Shamir

[17] and G. Blakley [4] in 1979. In what follows we, briefly, present Shamir’s

scheme for creating a (n, t) threshold scheme.
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Shamir’s secret sharing scheme

Suppose that the secret is encoded by a number D.

1. Choose at random t− 1 coefficients a1, . . . , at−1 and calculate the values

Di = p(i) for i = 1, . . . , n of the polynomial p(x) = D + a1x + · · · +
at−1x

t−1. Di are the distributed pieces of the key.

2. Given any subset of t of these Di values we can find the coefficients of

p(x) by interpolation, and then evaluate D = p(0). Knowledge of t − 1

(or fewer) of these values, on the other hand, does not suffice to calculate

D. Knowing t− 1 (or fewer) shares provide no advantage over knowing

no pieces (i.e. this is a perfect threshold scheme).

Shamir’s solution to the secret sharing problem (as well as several other solu-

tions) has some interesting properties. For example:

• its security is theoretical, it is not based on the hardness of a specific

problem. Not knowing at least t− 1 pieces makes it not hard but impos-

sible to find D,

• the keys are easy to change without changing the original secret infor-

mation D,

• we can have a hierarchial scheme in which important persons have more

pieces of the key,

• if t is fixed, then any of the pieces Di can be dynamically added or deleted

without this affecting the other pieces.

In the following subsection we present a secret sharing scheme which was

proposed by the second author [14] and it is based on group presentations and

the word problem.

3.2 A secret sharing scheme

3.2.1 Description of the scheme

Suppose that a binary sequence must be distributed among n persons in

such a way that at least t of them must cooperate in order to obtain the whole

sequence. The secret sharing scheme consists of the following steps:
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1. A group G with finite presentation G =< x1, x2, . . . , xk/ r1, . . . , rm >

and soluble word problem is chosen. We require that m =

(
n

t− 1

)
.

2. Let A1, . . . , Am be an enumeration of the subsets of {1, . . . , n} with t-1

elements. Let R1, . . . , Rn be n subsets of the relators set {r1, . . . , rm}
where rj ∈ Ri if and only if i /∈ Aj, j = 1, . . . , m, i = 1, . . . , n.

Another way of viewing the sets R1, . . . , Rn is the following: each set Ri

is created from the relators set {r1, . . . , rm} after deleting the relations

rk for those k for which i belongs to Ak.

Thus, for every j = 1, . . . ,m, rj is not contained in exactly t-1 of the

subsets R1, . . . , Rn. It follows that rj is contained in any union of t of

them whereas if we take any t-1 of the R1, . . . , Rn there exists a j such

that rj is not contained in their union.

3. Distribute to each of the n persons one of the sets R1, . . . , Rn. The set

{x1, . . . , xk} is known to all of them.

4. If the binary sequence to be distributed is a1 · · · al construct and dis-

tribute a sequence of elements w1, . . . , wl of G such that wi =G 1 if and

only if ai = 1, i = 1, . . . , l. The word wi must involve most of the rela-

tions r1, . . . , rm if wi = 1. Furthermore, all of the relations must be used

at some point in the construction of some element.

Any t of the n persons can obtain the sequence a1 · · · al by taking the

union of the subsets of the relations of G that they possess and thus obtaining

the presentation G =< x1, x2, . . . , xk/r1, r2, . . . , rm > and solving the word

problem wi =G 1 in G for i = 1, . . . , l.

A coalition of fewer than t persons cannot decode correctly the message

since the union of fewer than t of the sets R1, . . . , Rn contains some but not

all of the relations r1, . . . , rm. Thus, such a coalition can only obtain a group

presentation G′ =< x1, . . . , xk/ rj1 , . . . , rjp > with p < m and G 6= G′, where

wi =G 1 is not equivalent to wi =G′ 1 in general.

For example, suppose that we would like to share a secret to three persons

in such a way that at least two of them should combine their pieces in order

to reconstruct the secret. We could use the Coxeter group

G =< x1, x2, x3/x
2
1 = x2

2 = x2
3 = 1, (x1x2)

2 = 1, (x1x3)
2 = 1, (x2x3)

3 = 1 > .
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Note that here, since it is known that all the generators of a Coxeter group

have order two the relations x2
1 = x2

2 = x2
3 = 1 are considered public. An

enumeration of the one element subsets of {1, 2, 3} is {1}, {2}, {3}. Hence we

would set

R1 = {x2
1 = x2

2 = x2
3 = 1, (x1x3)

2 = 1, (x2x3)
3 = 1}

R2 = {x2
1 = x2

2 = x2
3 = 1, (x1x2)

2 = 1, (x2x3)
3 = 1}

R3 = {x2
1 = x2

2 = x2
3 = 1, (x1x2)

2 = 1, (x1x3)
2 = 1}.

If we would like to share the binary digit 1, then could send the word

w = (x1x2)
2(x2x3)

2(x1x3)
2(x2x3).

Any two of the three persons could combine their pieces, thus obtaining the

whole relator set of G and then finding out whether w = 1 or not.

In [14] it was proposed that Coxeter or polycyclic groups could be used

for the implementation of the scheme. In the same article some more remarks

were made on possible attacks to the scheme and ways to protect from them.

3.2.2 Some interesting remarks

The aforementioned scheme has several interesting properties. For exam-

ple, contrary to other schemes (e.g. Shamir’s, Blakley’s scheme), the secret

sequence to be shared is not needed until the final step. It is possible for

someone to distribute the sets R1, . . . , Rn and decide at a later time what the

sequence will be. In that way the scheme can also be used so that t of the n per-

sons can verify the authenticity of a message. In particular the binary sequence

in step 4 could contain a predetermined subsequence (signature) along with

the normal message. Then t persons may check whether this predetermined

sequence is contained in the encoded message thus validating it.

It should be mentioned here that the signature mentioned above can be

created in such a way that only a certain subset of n persons can verify it.

This can be done by using only the relations that appear in the pieces of this

particular subset of key holders. In general it can be arranged that only a

specific subset of the key holders will be able to correctly decrypt a message.

It can even be arranged that two different subsets of key holders will end up
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with entirely different messages after decryption. Properties like this will be

studied in a forthcoming paper.

Like Shamir’s scheme the security is theoretical. Any of the pieces can be

added or deleted without this affecting the others and we can have a hierarchial

scheme in which important persons have more pieces of the key. On the other

hand, contrary to Shamir’s scheme, it is not obvious how to add a share. It

is not clear, also, if a key can be changed. For example, we could use Tietze

transformations to change a relation in a set Ri but that might affect our

ability to solve the word problem.

4 Conclusion

This ends our brief encounter of group-based cryptography. We would like

to stress that the use of group theory to cryptography is a very active multi-

disciplinary research area. Group-based cryptography is a relatively new field

with many interesting, far reaching open problems. The authors hope that the

article gives a glimpse in this exciting field.
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