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Powers of the generalized 2-Fibonacci matrices

Maria Adam1

Abstract

In this paper, we investigate the closed formulas for the entries of
the power of the 2× 2 matrix obtained by generalized 2-step Fibonacci
sequence.
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1 Introduction

Fibonacci numbers are one of the best-known numerical sequences and

have many important applications to a wide variety of research areas such

as mathematics, computer science, physics, biology, and statistics. For the

applications and the theory of Fibonacci numbers see, e.g. [3, 6, 8, 9, 10,

12, 13, 16, 17] and the references given therein. In [3, 12], the well-known

Fibonacci sequence is formulated by the recurrence relation fn = fn−1 + fn−2,

n ≥ 3, with f1 = f2 = 1.
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Many authors have considered and discussed the generalizing of the above

definition as in the following:

- the k-step Fibonacci sequence is derived by the recurrence relation, fn =

fn−1 + fn−2 + · · · + fn−k, n ≥ k + 1, with f1 = f2 = . . . = fk = 1,

[1, 3, 10, 12],

- the generalized k-step Fibonacci sequence is derived by the recurrence

relation, fn = c1fn−1 + c2fn−2 + · · ·+ ckfn−k, n ≥ k + 1, with f1 = f2 =

. . . = fk = 1, and c1, c2, . . . , ck are arbitrary real numbers, [2, 6, 8, 9, 10,

11, 18].

Furthermore, important relations between the k−step Fibonacci numbers

and the special matrices have been investigated; the determinants of the ma-

trices constructed by k−step Fibonacci numbers are obtained in [10] and the

properties of the determinants are discussed in [9], the sums of the generalized

Fibonacci numbers are derived directly using the matrix representation and

method in [2, 4, 5, 11]; some closed formulas for the generalized Fibonacci

sequence are derived by matrix methods [8, 11, 13]. Recently, two limiting

properties concerning the k-step Fibonacci numbers are obtained and related

to the spectral radius of the k-Fibonacci matrices in [3], the powers of the

k-Fibonacci matrices are investigated and closed formulas for their entries are

derived, related to the suitable terms of the k−step Fibonacci sequences as

well as the properties of the irreducibility and the primitivity of the associated

k-Fibonacci matrices are discussed in [1].

In the present paper, the powers of the generalized 2-Fibonacci matrices

are investigated and closed formulas for their entries are derived, which are

related to the combinatorial representation of the nonnegative constant real

numbers c1, c2 defined the associated generalized 2-step Fibonacci sequence.

2 Generalized k-step Fibonacci sequences and

matrices

In [2], for the integer k = 1, 2, . . ., and the nonnegative constant real num-

bers c1, c2, . . . , ck, where c1 > 0 , the n-th term fn of the generalized k-step
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Fibonacci sequence, (fn(c1, c2, . . . , ck))n=1,2,..., is defined by the recursive for-

mulation

fn = c1fn−1 + c2fn−2 + · · ·+ ckfn−k

=
k∑

j=1

cjfn−j, for every n ≥ k + 1, (1)

with

f1 = f2 = . . . = fk = 1. (2)

From c1 > 0, c2, c3, . . . , ck ≥ 0 and (1)-(2), it is obvious that all the terms

fn of the generalized k-step Fibonacci sequence (fn(c1, c2, . . . , ck))n=1,2,...are

positive real numbers.

Remark 2.1 (i) From (1)-(2) it is evident that for k = 1, the n-th term fn

of the associated generalized Fibonacci sequence (fn(c1))n=1,2,... is equal

to fn = cn−1
1 , c1 > 0. Hereafter consider k ≥ 2, since the case k = 1 is

trivial.

(ii) Moreover, notice that for k ≥ 2, and c1 > 0, c2 = c3 = . . . = ck = 0, the

n-th term fn of the generalized Fibonacci sequence (fn(c1, 0, . . . , 0))n=1,2,...

is equal to fn = cn−k
1 , c1 > 0. Hereafter consider at least two nonzero

coefficients ci, i = 1, 2, . . . , k, in (1) because otherwise we have a trivial

case.

(iii) Using m = 0, the equations (1)-(2) are derived immediately by the defini-

tion of the generalized k,m-step Fibonacci sequence
(
f
{k,m}
n (c1, c2, . . . , ck)

)
n=1,2,...

,

[2].

(iv) For c1 = c2 = . . . = ck = 1, the generalized k-step Fibonacci sequence

(fn(1, 1, . . . , 1))n=1,2,... gives well-known sequences for various values of k.

In particular,

-for k = 2, the equations (1)-(2) give the well-known Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, . . ., [1, 3, 12].

-for k = 3, (1)-(2) give the tribonacci sequence, 1, 1, 1, 3, 5, 9, 17, . . ., [3,

Remark 2(ii)].

-for k = 4, (1)-(2) give the tetranacci sequence, 1, 1, 1, 1, 4, 7, 13, . . ., [3,

Remark 2(iii)].
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The generalized k-Fibonacci matrix has been first introduced in [8] and it

is defined as the nonnegative k × k matrix

Qk(c1, c2, . . . , ck) =




c1 c2 c3 · · · ck

1 0 0 · · · 0

0 1 0 · · · 0
...

. . . . . .
...

0 · · · 0 1 0




, (3)

where the first row of the above matrix has entries the nonnegative real num-

bers c1 > 0, c2, c3, . . . , ck ≥ 0, for k ≥ 2.

Remark 2.2 (i) In [2, 6, 9, 10], the determinant of the generalized k-Fibonacci

matrix in (3) is formulated by

det(Qk(c1, c2, . . . , ck)) = (−1)k+1ck, (4)

and the k−th degree characteristic polynomial xQk(c1,c2,...,ck)(λ) of the

generalized k−Fibonacci matrix Qk(c1, c2, . . . , ck) has been proved in [8]

and it is given by

xQk(c1,c2,...,ck)(λ) = λk −
k∑

i=1

ci λ
k−i. (5)

(ii) From (4) it is obvious that Qk(c1, c2, . . . , ck) is a nonsingular matrix if

and only if ck 6= 0, and then all the eigenvalues of Qk(c1, c2, . . . , ck) are

nonzero.

(iii) The trace of a matrix A is denoted by tr(A). From (3) it is evident that

tr(Qk(c1, c2, . . . , ck)) = c1.

(iv) For c1 = c2 = . . . = ck = 1, the relationships between the Fibonacci

numbers and their associated k-Fibonacci matrices Qk(1, 1, . . . , 1) and

the powers of Qk(1, 1, . . . , 1) have been discussed in [1, 3, 7, 14], as well

as the properties of the irreducibility and primitivity of Qk(1, 1, . . . , 1)

have been investigated in [1].
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(v) The generalized 2-Fibonacci matrix is defined by (3) for k = 2, c1 >

0, c2 ≥ 0 and in the following it is formulated as the nonnegative 2 × 2

matrix

Q2(c1, c2) =

[
c1 c2

1 0

]
. (6)

In the following theorem, the Pascal ’s triangle identity is needed, which is

formulated as

(
n− τ

τ

)
+

(
n− τ

τ − 1

)
=

(
n− τ + 1

τ

)
. (7)

Theorem 2.3 Let the positive real numbers c1, c2 and the associated gener-

alized 2−Fibonacci matrix Q2(c1, c2) in (6). Let n ≥ 2, then the n power of

Q2(c1, c2) is defined as

Qn
2 (c1, c2) = (Q2(c1, c2))

n = (Q2(c1, c2))
n−1 Q2(c1, c2) =




q
(n)
11 q

(n)
12

q
(n)
21 q

(n)
22


 , (8)

where the positive real numbers q
(n)
11 , q

(n)
12 , q

(n)
21 , q

(n)
22 are given by

q
(n)
11 =

bn
2 c∑

r=0

(
n− r

r

)
cn−2r
1 cr

2, (9)

q
(n)
12 =

bn−1
2 c∑

r=0

(
n− 1− r

r

)
cn−1−2r
1 cr+1

2 , (10)

q
(n)
21 =

bn−1
2 c∑

r=0

(
n− 1− r

r

)
cn−1−2r
1 cr

2, (11)

q
(n)
22 =

bn−2
2 c∑

r=0

(
n− 2− r

r

)
cn−2−2r
1 cr+1

2 , (12)

and bnc denotes the floor function of n.

Proof The proof of (9)-(12) is based on the induction method on n.
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For n = 2, the entries of matrix in (8) are trivially verified by the formulas

in (9)-(12), since holds

Q2
2(c1, c2) = (Q2(c1, c2))

2 =

[
c1 c2

1 0

]2

=

[
c2
1 + c2 c1c2

c1 c2

]
=




q
(2)
11 q

(2)
12

q
(2)
21 q

(2)
22


 .(13)

Notice that combining (6) and (8), the (n + 1) power of Q2(c1, c2) is for-

mulated by

Qn+1
2 (c1, c2) = Qn

2 (c1, c2)Q2(c1, c2) =




q
(n)
11 q

(n)
12

q
(n)
21 q

(n)
22




[
c1 c2

1 0

]
=




c1q
(n)
11 + q

(n)
12 c2q

(n)
11

c1q
(n)
21 + q

(n)
22 c2q

(n)
21


 .(14)

Consider that n is an arbitrary even positive number less than 2 and assume

that the formulas in (9)-(10) are true for n = 2m, (m ∈ N), by (14) the q
(n+1)
11

entry of Qn+1
2 (c1, c2) is formulated as

q
(n+1)
11 = c1q

(n)
11 + q

(n)
12

= c1

bn
2 c∑

r=0

(
n− r

r

)
cn−2r
1 cr

2 +

bn−1
2 c∑

r=0

(
n− 1− r

r

)
cn−1−2r
1 cr+1

2

= c1

m∑
r=0

(
n− r

r

)
cn−2r
1 cr

2 +
m−1∑
r=0

(
n− 1− r

r

)
cn−1−2r
1 cr+1

2

= cn+1
1 +

m∑
r=1

(
n− r

r

)
cn+1−2r
1 cr

2 +
m∑

τ=1

(
n− τ

τ − 1

)
c
n−1−2(τ−1)
1 cτ

2

= cn+1
1 +

m∑
τ=1

(
n− τ

τ

)
cn+1−2τ
1 cτ

2 +
m∑

τ=1

(
n− τ

τ − 1

)
cn+1−2τ
1 cτ

2

= cn+1
1 +

m∑
τ=1

{
(

n− τ

τ

)
+

(
n− τ

τ − 1

)
}cn+1−2τ

1 cτ
2.

Using (7) in the above equality, it is formulated as

q
(n+1)
11 = cn+1

1 +
m∑

τ=1

(
n− τ + 1

τ

)
cn+1−2τ
1 cτ

2

=
m∑

τ=0

(
n + 1− τ

τ

)
cn+1−2τ
1 cτ

2

=

bn
2 c∑

τ=0

(
n + 1− τ

τ

)
cn+1−2τ
1 cτ

2 =

bn+1
2 c∑

τ=0

(
n + 1− τ

τ

)
cn+1−2τ
1 cτ

2,
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since n is an even number. Hence, (9) holds also for odd number n + 1, which

completes the induction method for the formula of q
(n)
11 . Similarly, it is proved

the case for n = 2m + 1, m ∈ N.

Moreover, assuming that the formulas in (11)-(12) are true for n = 2ν + 1,

ν ∈ N, and using analogous statements as in the proof of q
(n)
11 , by (14) the

q
(n+1)
21 entry of Qn+1

2 (c1, c2) is given by

q
(n+1)
21 = c1q

(n)
21 + q

(n)
22

= c1

bn−1
2 c∑

r=0

(
n− 1− r

r

)
cn−1−2r
1 cr

2 +

bn−2
2 c∑

r=0

(
n− 2− r

r

)
cn−2−2r
1 cr+1

2

=
ν∑

r=0

(
n− 1− r

r

)
cn−2r
1 cr

2 +
ν−1∑
r=0

(
n− 2− r

r

)
cn−2−2r
1 cr+1

2

= cn
1 +

ν∑
r=1

(
n− 1− r

r

)
cn−2r
1 cr

2 +
ν∑

τ=1

(
n− 2− (τ − 1)

τ − 1

)
c
n−2−2(τ−1)
1 cτ

2

= cn
1 +

ν∑
τ=1

(
n− 1− τ

τ

)
cn−2τ
1 cτ

2 +
ν∑

τ=1

(
n− 1− τ

τ − 1

)
cn−2τ
1 cτ

2

= cn
1 +

ν∑
τ=1

{
(

n− 1− τ

τ

)
+

(
n− 1− τ

τ − 1

)
}cn−2τ

1 cτ
2. (15)

Using the Pascal ’s identity by (7) the equality in (15) can be written as

q
(n+1)
21 = cn

1 +
ν∑

τ=1

(
n− τ

τ

)
cn−2τ
1 cτ

2

=
ν∑

τ=0

(
n− τ

τ

)
cn−2τ
1 cτ

2

=

bn
2 c∑

τ=0

(
n− τ

τ

)
cn−2τ
1 cτ

2.

Hence, (11) holds also for odd number n + 1, which completes the induction

method for the formula of q
(n)
21 . Similarly, it is proved the case for n = 2ν, ν ∈

N.

From (14) it is obvious that multiplying the first column of Qn
2 (c1, c2) with

c2 arises the second column of Qn+1
2 (c1, c2); hence, using the formulas in (9)

and (11), the associated entries of the second column of Qn+1
2 (c1, c2) are given,

which completes the induction method for (10) and (12), respectively. ¤
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Remark 2.4 (i) Consider the special case c1 = c2 = 1 in the formulas (9)-

(12), then the entries of Qn
2 (1, 1) in (8) are formulated as in Theorem 2.3

and the matrix Qn
2 (1, 1) is given by

Qn
2 (1, 1) =




bn
2 c∑

r=0

(
n− r

r

) bn−1
2 c∑

r=0

(
n− 1− r

r

)

bn−1
2 c∑

r=0

(
n− 1− r

r

) bn−2
2 c∑

r=0

(
n− 2− r

r

)




. (16)

Moreover, the entries of Qn
2 (1, 1) can be related to the suitable terms

of the 2-step Fibonacci sequence and the associated formulas have been

proved in [1, Theorem 3.4]. In particular, in [1, Remark 3.1(iii)] the

formula of Qn
2 (1, 1) has been given as

Qn
2 (1, 1) =

[
fn+1 fn

fn fn−1

]
; (17)

recall that fn+1, fn, fn−1 denote the Fibonacci numbers for n ≥ 2, which

are implied by (1)-(2) for c1 = c2 = 1.

Combining the associated formulas in (16) and (17) all the terms of the

well-known 2-Fibonacci sequence in Remark 2.1 (iv) can be expressed as

a sum of suitable binomial coefficients as following;

fn+1 =

bn
2 c∑

r=0

(
n− r

r

)
, for n ≥ 2

(ii) The general idea of the Fibonacci cryptography is based on the ma-

trix Qn
2 (1, 1) in (17) of the above Remark 2.4(i), (see, the associated

metodology in [16, 17]). Now, using in the process of the cryptography

of an initial message the generalized 2-Fibonacci matrix Qn
2 (c1, c2) in (8)

for the arbitrary c1, c2 > 0, one can provide higher security for encryp-

tion and decryption, since Qn
2 (c1, c2) is a nonsingular matrix (see, in the

above Remark 2.2 (ii)) and the closed formulas in (9)-(12) for the entries

of Qn
2 (c1, c2) can be computed a-priori for various values of c1, c2.
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