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Abstract

We study optimal hedging design for returns on an Italian equity
mutual fund index since 2008. Alternative hedging instruments include
one-month futures contracts for FTSE-MIB, FTSE100 and Xetra DAX.
We use bivariate models of our Italian equity mutual fund index and
each hedging instrument to investigate the performance of optimal static
hedges. Our main model is the Markov-switching vector autoregression
with duration dependence for the conditional mean of returns proposed
by Pegalatti [9]. The hedging performance is then compare with that
of standard Dynamic Conditional Correlation models. Our results are
twofold. First, DAX futures contracts are the best hedge for Italian eq-
uity mutual funds within our class of financial instruments. Second, the
duration-dependent Markov-switching model improves on the hedging
performance of the competing DCC models.
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1 Introduction

The stress in financial markets started in 2008 has waved through all the

asset classes regardless of national boundaries. Since equity markets worldwide

have been hit strongly by the turmoil, it is natural to investigate what financial

instrument could provide a hedge against fluctuations in the value of equity

mutual funds. This note focuses on the performance of equity mutual funds

in Italy.

We consider the hedging properties of three alternative equity futures con-

tracts with different characteristics. These include the FTSE-MIB index fu-

tures contract, which accounts for shocks idiosyncratic to the Italian equity

market. We also use data for the FTSE100 and the Xetra DAX futures that

are affected only indirectly by risk factors related to the Italian equity market.

Standard approaches to hedging modelling consider the role of time-varying

conditional volatility and correlations. Alizadeh and Nomikos [1] use a markov-

switching model to study optimal hedging strategies for stock indices. Brooks,

Henry and Persand [3] investigates the effects of clustering in financial returns

on the design of hedges.

We take a different perspective and employ bivariate models for the the

conditional means of our Italian equity mutual fund index and each hedging

instrument. In particular, our application uses a framework with time variation

in the conditional mean and regime-switching. The regime change is driven

a Markov Chain with transition probabilities that depend on the duration of

the regime itself. This is the so-called duration-dependent Markov-Switching

model of Pelagatti [9], which can capture the persistence in negative returns

that has characterized the recent financial crisis. The idea of duration de-

pendence has been used in the business-cycle literature to study asymmetry

in U.S. macroeconomic time series (e.g., see Diebold and Rudebusch [4]). In

a model comparison exercise, we consider standard versions of the Dynamic

Conditional Correlation (DCC) model of Engle [5].

Our empirical results have clear implications for the measurement of hedg-

ing against fluctuations in returns on Italian equity mutual fund. First of all,
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we show that DAX futures provide the best hedging instruments within the

our class of hedges. Although this type of result is typically model-dependent

in the literature, we find that this is not the case for the purpose of our appli-

cation setup. In our words, our findings suggest that the duration-dependent

Markov-switching model delivers improved hedging performance across our

model range. Since the type of duration persistence is different between

regimes, the use of this type of Markov-switching model captures key fea-

tures that would otherwise not be accounted for by alternative models, and

explains the success of the model.

The outline for the paper is as follows. In section 2, we discuss the specifi-

cation and estimation of the duration-dependent model, along with the com-

peting frameworks. Section 3 deals with the construction of the dataset. In

section 4, we discuss the results. Section 5 proposes some concluding remarks.

2 The DD-MSVAR model

2.1 Model specification

The process of the duration-dependend Markov-switching vector autore-

gression of order p takes the form

yt = µ0 + µ1St + A1 [yt−1 − µ0 − µ1St−1] + . . . Ap [yt−p − µ0 − µ1St−p] + εt (1)

where yt denotes the vector of observable variables. St denotes an unobservable

state variable evolves according to a Markov chain with time-varying transition

probabilities. The error vector εt is a Gaussian white-noise with covariance

matrix

Σ =

(
σ11 σ12

σ21 σ22

)
(2)

To model dependence in regime duration, Pelagatti [9] builds a Markov

chain for the pair (St, Dt), where Dt is defined as

Dt =





1 if St 6= St−1

Dt−1 + 1 if St = St−1, Dt−1 < τ

Dt−1 if St = St−1, Dt−1 = τ

(3)
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where τ denotes the maximum duration. A parsimonious representation of the

transition (finite-dimensional) probability matrix is obtained by specifying a

Probit model for Zt:

Zt = [β1 + β2Dt−1] St−1 + [β3 + β4Dt−1] (1− St−1) + ξt (4)

with ξt ∼ N(0, 1). This implies that

pr(Zt ≥ 0|St−1, Dt−1) = pr(St = 1|St−1, Dt−1)

pr(Zt < 0|St−1, Dt−1) = pr(St = 0|St−1, Dt−1)
(5)

2.2 MCMC estimation algorithm

The model can be estimated jointly using Bayesian Markov Chain Monte

Carlo method through Gibbs sampling. Let us denote the parameter vectors

as θ1 = (µ0, µ1), θ2 = (A1, . . . Ap, Σ), θ3 = (β1, . . . β4), θ4 = {St, Dt}T
t=1, and

θ = (θ1, θ2, θ3, θ4). Let yT = {yt}T
t=1 denote the vector of observable variables.

The conditional distribution of θi while running Gibbs sampling can be written

as f(θi|yT , θj 6=i)i=1,...4.

Given the i-th realization of a parameter θ(i), the Gibbs sampling algorithm

for estimating the model consists of the following (e.g., see Kim [8]):

• Step 1: sampling from f(θ1|yT , θi−1
2 , θi−1

3 , θi−1
4 ) to obtain θ

(i)
1 ;

• Step 2: sampling from f(θ2|yT , θi−1
1 , θi−1

3 , θi−1
4 ) to obtain θ

(i)
2 ;

• Step 3: sampling from f(θ3|yT , θi−1
1 , θi−1

2 , θi−1
4 ) to obtain θ

(i)
3 ;

• Step 4: sampling from f(θ4|yT , θi−1
1 , θi−1

2 , θi−1
3 ) to obtain θ

(i)
4 ;

• Step 5: iterate steps 1-5 until convergence of parameter estimates and

state-space estimation.

In our empirical application, we use the prior distributions proposed by Pela-

gatti [9].
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2.3 Competing models

Given a multivariate model for the conditional mean,

Z(L)yt = c + εt (6)

with Z(L) = INξ(L) and IN is a N ×N identity matrix, and ξ(L) = [1− ξiL]i,

we compare the performance of the DD-MSVAR model with the Dynamic

Conditional Correlation (DCC) model of Engle [5]. Engle and Sheppard [6]

demonstrate that the log-likelihood of the DCC model can be written as the

sum of a mean and volatility part in addition to a correlation part. The

conditional variance-covariance matrix Ht for a DCC models is estimated as

Ht = DtVtDt (7)

Dt = diag(σ
1/2
1,1,t, . . . σ

1/2
N,N,t) (8)

Vt = diag(θt)
−1/2θtdiag(θt)

−1/2 (9)

θt = (1− α− β)θ̄ + αεt−1ε
′
t−1 + βθt−1 (10)

where θt denotes the conditional variance-covariance matrix of residuals satis-

fying α + β < 1, and θ̄ is the unconditional covariance matrix of εt.

The DCC model can be estimated in two steps. In the first step, univariate

models for the conditional mean and GARCH dynamics are estimated. The

transformed residuals are then used to compute conditional correlation esti-

mators, where the standard errors for the first-stage parameters are consistent.

We consider several univariate GARCH models underlying the DCC,.

These can all be estimated using standard maximum likelihood methods. With

the standard GARCH(1,1) model, the conditional variance takes the form

ht = α0 + α1ε
2
t−1 + νht−1 (11)

with α0 > 0, α1 ≥ 0 and ν1 ≥ 0 in order to ensure a positive conditional

variance (see Bollerslev [2]). We call the resulting multivariate model a DCC-

GARCH.

The presence of skewness in financial data has motivated the introduction

of the Exponential GARCH (EGARCH) model:

log(ht) = α0 + α1

∣∣∣∣
εt−1

ht−1

∣∣∣∣ + γ
εt−1

ht−1

+ ν log(ht−1) (12)
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The use of this specification gives rise to a DCC-EGARCH.

The GJR model deals with the asymmetric reaction of the conditional

variance depending on the sign of the shock:

ht = α0 + α1ε
2
t−1

[
1− I{εt−1>0}

]
+ γε2

t−1I{εt−1>0} + νht−1 (13)

In our multivariate application, this model generates a DCC-GJR.

Financial time series are typically characterized by high kurtosis. In order

to model the fat tails of the empirical distribution of the returns, we assume

that the error term εt follows either a Student’s t distribution with v degrees of

freedom or a Generalized Error Distribution. The probability density function

of εt then takes the form

f(εt) =
Γ((v + 1)/2)√

πΓ(v/2)
(v − 2)−1/2 (ht)

−1/2

[
1 +

ε2
t

ht(v − 2)

]− v+1
2

(14)

where Γ(·) indicates the Gamma function with the shape parameter v > 2.

Under the Generalized Error Distribution (G), the model errors follow the pdf

f(εt) =
v exp

(
1/2

∣∣∣ εt

λh
1/2
t

∣∣∣
v)

h
1/2
t λ2(2+1/v)Γ (1/v)

(15)

with λ :=
[(

2−2/vΓ(1/v)
)
/Γ(3/v)

]1/2
. This formulation gives rise to the DCC-

GED model.

3 Dataset

We use daily data for one-month futures contracts on FTSE MIB, FTSE

100 and the XETRA DAX indices for the period January 1 2008-December 31

2011.2 Daily data are employed also for computing an average price index of

Italian equity mutual funds. This index consists of a weighted average of daily

share prices, or net asset values (NAV). The weights are equal to the share of

assets under management within the class of Italian equity mutual funds.

Our data source consists in the newly-developed commercial dataset on

mutual funds provided by Standard & Poor’s. This includes fund-level infor-

mation on daily-updated prices, monthtly-updated assets under management,

2This part of the dataset was obtained from Bloomberg.
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as well as management and sales fees for over 1170 Italian mutual funds. We

clean the dataset from a survivorship bias, and remove the funds that are not

active over the entire sample period. As a result, we choose to include 227

mutual funds for the construction of our sector index.

There are two main issues with our data-handling strategy. The first prob-

lem we encounter in the construction of our average price index is that assets

under management are available only at a monthly frequency. We disregard

this issue and keep the monthly figure constant within the relevant four-week

period. The second issue is related to the role of fund expenses in the determi-

nation of fund returns. Consistently with the daily figures for reported NAV,

we use net returns. As explained by Grande and Panetta [7], the framework

for fees and costs faced by Italian mutual funds is affected by the contractual

agreement between the parties involved. In Italy, a contract is signed among

an investor, the fund’s management company, and a custodian bank. This sug-

gests that our measure of returns disregard both the bank and management

fees paid by the investment managers.

Given a price pt, we estimate our models on the realized returns

yt = log(pt/pt−1) (16)

Table 1 reports the descriptive statistics of our sample returns. We should

stress that the empirical distributions of the data are both left-skewed and

sizeably peaked. These features are consistent with the period of market stress

that characterizes the sample.

4 Results

In the estimation of the DD-MSVAR mode, we set the order of the autore-

gression to one, and the maximum duration Dt to 60. The Gibbs sampling

algorithm is based on 500000 simulated observations, from which we disre-

gard the first 50000. Table 2 reports the results for the estimation of the

DD-MSVAR models, with selected moments and percentiles of the posterior

distributions for each parameter. The Table includes three sections, with the

bivariate model in each of them. For the purpose of parsimony, we do not

include the parameter estimates of the competing DCC models.
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The estimated coefficients β = (β1, β2, β3, β4 provide information on the

duration dependence in state 0 and 1. Indeed, all these parameters have values

higher than 1. This indeed suggests that there is strong dependence effects.

We also find that, for all the bivariate models with different futures indices,

there is a complex structure of duration persistence in the form of asymmetric

dependence across states. In other words, the dependence structure in state

0 is different from that of state 1, as it is characterized by different signs on

the estimated coefficient. For instance, in the model with FTSE-MIB futures

and our mutual fund index returns, β1 is estimated equal to 2.4707, and β3

is given by -1.4755. This feature allows our model to capture the key aspect

of the changing relation between equity mutual fund returns and the relevant

futures contracts.

To study the hedging properties of the futures contracts, we start by com-

puting the optimal hedging ratio consistent with a minimum-variance portfolio

of two assets. This static hedge is equal to the ratio

Φ =
cov(y1, y2)

var(y2)
(17)

In our empirical application, we have

Φ =
σ12

σ22

(18)

Our final aim is to compare the performance of alternative hedges across

models. Hence, we construct the portfolios implied by each optimal static

hedge ratios, and evaluate the variance of the portfolios. Given a series of

returns y1,t and y2,t, the hedge-implied variance is equal to

var. of implied port. = var(y1,t − Φy2,t) (19)

We denote as ‘best’ the hedge that delivers the smallest implied-portfolio vari-

ance.

The variance-minizing hedging ratios are reported in Table 3. Two main

results emerge. The first one is that the DD-MSVAR model delivers the low-

est hedging portfolio variance indipendently from the hedge considered. The

second result is related to the choice of the hedging instrument for the Italian

equity mutual fund index. The findings overwhelmingly suggest that DAX

futures deliver the lowest variance for most of the models except for the DD-

MSVAR.
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What is the ‘most effective’ hedge? For each model, we compute the per-

centage reduction of hedging portfolio variance generated by a hedge as

var reduction = 100× var(unhedged port)− var(hedged port)

var(unhedged port)
(20)

Table 4 shows the change of hedging portfolio variance reduction delivered

by the DD-MSVAR with respect to the other models we consider here. The

DD-MSVAR generates a performance improvement across the entire range

of competing models. The interesting point is that these improvements are

contingent on the hedging instrument. In particular, the reduction of hedging

portfolio variance is larger against competing models that deliver a higher

variance level.

5 Conclusion

This note considers the dynamics of Italian equity mutual fund returns

during the recent period of financial market turmoil since 2008. We investi-

gate the issue of hedging through futures contracts, and compare the hedging

performance of alternative equity index futures. We aggregate daily data from

individual Italian equity funds to compute a capitalization-weighted index of

prices. Relevant hedges we consider include the FTSE-MIB index futures con-

tract, which focuses on the Italian equity market. We also include two index

futures for foreign (non-Italian) markets, namely the FTSE100 and the Xetra

DAX. Our empirical application models the joint dynamics of our Italian eq-

uity mutual fund index and futures contract through the duration-dependent

Markov-Switching model of Pelagatti [9]. With this framework, we would like

to capture the persistence in drawdowns that has characterized the recent cri-

sis. We consider several standard DCC specifications as competing models,

and compute unconditional measures of hedging performance. Our results in-

dicate that the DAX futures provide the best hedging instruments within the

class of contracts we consider. Moreover, we find that the duration-dependent

model delivers a systematic improvement of hedging performance.

The analysis of this paper can be extended along several dimensions. We

consider only the case of an optimal static hedge. It would thus be important
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to compare our models using optimally-dynamic hedges. That would require

us to compute forecasts of moments of returns that can be used in the

calculation of the hedges. When dealing with dynamic portfolio decisions,

the re-allocation of portfolios can be designed to complement or substitute

for hedging through futures contracts. This points to the observation that

we have disregarded the role of transaction costs in the design of a hedging

strategy.
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Table 1: Descriptive statistics

Mean Std. dev. Skewness Kurtosis

Equity mut. fund index 1.6526 0.1187 -2.5272 4.0481

FTSE-MIB futures 1.6541 0.1281 -2.8225 3.8066

FTSE100 futures 1.7122 0.0621 -2.7683 3.9657

DAX futures 1.9848 0.0484 -2.4011 3.7795
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Table 2: Bayesian estimation of the DDMSVAR model for

Mean Std. error 0.05% 50% 99.5%

FTSE-MIB futures/Equity mutual fund index
µ0(y1) -0.10370 0.05717 -0.92539 -0.10211 0.03363
µ0(y2) 0.11003 0.06452 -0.92652 0.11519 0.15022
µ1(y1) 0.19835 0.09473 0.00066 0.19920 0.47492
µ1(y2) -0.07155 0.11143 -0.24767 -0.04080 0.45026
σ11 1.2579 0.05007 1.1056 1.2566 1.3831
σ12 1.2506 0.04994 1.1021 1.2495 1.3814
σ22 1.2791 0.05065 1.1755 1.2780 1.4171
β1 2.4707 0.86514 -0.60552 1.4481 3.9558
β2 -2.1095 0.92546 -5.3560 -2.1142 -0.30329
β3 -1.4755 0.88748 -4.5519 -1.4047 0.71054
β4 2.5502 0.94066 0.18726 2.1038 4.7606

FTSE100 futures/Equity mutual fund index
µ0(y1) -0.00720 0.035555 -0.13365 -0.00554 0.06604
µ0(y2) 0.19230 0.036149 -0.00839 0.13600 0.21722
µ1(y1) 0.04992 0.041511 -0.08442 0.03981 0.19783
µ1(y2) -0.24449 0.050488 -0.39928 -0.25225 -0.07419
σ11 0.75844 0.029613 0.65425 0.75827 0.83939
σ12 0.78877 0.031586 0.54364 0.78800 0.87485
σ22 0.89814 0.035847 0.78963 0.89718 0.99668
β1 1.0205 0.89419 -1.18480 0.93979 3.63810
β2 -1.9381 0.88748 -5.04720 -1.87200 -0.13000
β3 -1.3558 1.10920 -5.21720 -1.14120 0.62538
β4 2.1560 1.10740 0.12995 2.00700 5.33220

DAX futures/Equity mutual fund index
µ0(y1) -0.33241 0.092173 -0.61243 -0.33371 -0.08894
µ0(y2) -0.15540 0.092427 -0.41152 -0.12474 0.11373
µ1(y1) 0.63740 0.15803 0.086541 0.63977 1.02431
µ1(y2) 0.21929 0.15861 -0.31787 0.22100 0.65504
σ11 2.8596 0.12005 2.4911 2.8548 3.1884
σ12 2.7885 0.11560 2.4325 2.7841 3.1047
σ22 2.9224 0.15549 2.5732 2.9180 3.2452
β1 1.40422 0.94686 -1.2253 0.92262 3.52450
β2 -1.9662 0.95784 -4.7720 -1.8307 -0.18548
β3 -2.1043 1.09310 -4.9417 -0.8999 0.76027
β4 2.0496 1.09960 -0.0511 1.8922 5.45050
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Table 3: Hedging portfolio variances

Hedge DD-MSVAR DCC-GARCH DCC-EGARCH DCC-GJR DCC-GED

FTSE-MIB 0.648114 1.868153 0.777610 0.662731 1.212540

FTSE100 0.671115 1.754114 0.726324 0.717541 1.058531

Xetra DAX 0.558113 1.555960 0.771439 0.785556 0.698566

Table 4: Performance improvements of the DD-MSVAR over alternative mod-

els

Competing model

DCC-GARCH DCC-EGARCH DCC-GJR DCC-GED

Hedge

FTSE-MIB 87.43% 41.29% 35.09% 73.79%

FTSE100 89.18% 55.71% 39.37% 78.25%

Xetra DAX 65.92% 29.70% 41.31% 84.33%


