Degree of Approximation of Fourier Series by Hausdörff and Nörlund Product Means

Sunita Sarangi ${ }^{1}$, S.K. Paikray ${ }^{2}$, Minakshi Dash ${ }^{3}$ and U.K. Misra ${ }^{4}$

Abstract

In this paper a theorem on degree of approximation of a function $f \in \operatorname{Lip}(\alpha, r)$ by product summability $(E, q)\left(N, p_{n}\right)$ of Fourier series associated with f has been established.

Mathematics Subject Classification: 42B05, 42B08
Keywords: Degree of Approximation; Lipo class of function; (E, q) mean; $\left(N, p_{n}\right)$ mean; $(E, q)\left(N, p_{n}\right)$ product mean; Fourier series, Lebesgue integral

1 Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$.

[^0]Let $\left\{p_{n}\right\}$ be a sequence of positive real numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \longrightarrow \infty, \text { as } n \longrightarrow \infty,\left(P_{-i}=p_{-i}=0, i \geq 0\right)
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left(N, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficient $\left\{p_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \longrightarrow s, \text { as } n \longrightarrow \infty, \tag{2}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be $\left(N, p_{n}\right)$ summable to s.
The conditions for regularity of Nörlund summability (N, p_{n}) are easily seen to be [1]

$$
\begin{align*}
\text { (i) } \frac{p_{n}}{P_{n}} & \rightarrow 0 \text { as } n \rightarrow \infty, \tag{3}\\
\text { (ii) } \sum_{k=0}^{n} p_{k} & =0\left(P_{n}\right) \text { as } n \rightarrow \infty . \tag{4}
\end{align*}
$$

The sequence-to-sequence transformation [1]

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v} \tag{5}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
T_{n} \rightarrow s, \quad \text { as } \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

then the series Σa_{n} is said to be (E, q) summable to s. Clearly (E, q) method is regular [1]. Further, the (E, q) transformation of the $\left(N, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{gather*}
\tau_{n}=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} T_{k} \\
=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \Sigma_{v=0}^{k} p_{k-v} s_{v}\right\} \tag{7}
\end{gather*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s, \text { as } n \rightarrow \infty, \tag{8}
\end{equation*}
$$

then $\sum a_{n}$ is said to be $(E, q)\left(N, p_{n}\right)$-summable to s.
Let $f(t)$ be a periodic function with period $2 \pi, L$-integrable over $(-\pi, \pi)$. The Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{9}
\end{equation*}
$$

Let $s_{n}(f: x)$ be the n-th partial sum of (9). The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{10}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{11}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|\cdot\|$ is defined by

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \epsilon R\right\} \tag{12}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ a function $f \epsilon L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{13}
\end{equation*}
$$

This method of approximation is called Trigonometric Fourier approximation.
A function $f \in L i p \quad \alpha$ if

$$
\begin{equation*}
|f(x+1)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1 \tag{14}
\end{equation*}
$$

and $f \in \operatorname{Lip}(\alpha, r)$, for $0 \leq x \leq 2 \pi$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=0\left(|t|^{\alpha}\right), 0<\alpha \leq 1, r \geq 1, t>0 \tag{15}
\end{equation*}
$$

We use the following notations throughout this paper:

$$
\begin{equation*}
\phi(t)=f(x+t)+f(x-t)-2 f(x) \tag{16}
\end{equation*}
$$

and

$$
K_{n}(t)=\frac{1}{2 \pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}
$$

Further, the method $(E, q)\left(N, P_{n}\right)$ is assumed to be regular and this case is supposed through out the paper.

2 Known Theorems

Dealing with the degree of approximation by the product $(E, q)(C, 1)$-mean of Fourier series, Nigam et. al [3] proved the following theorem.

Theorem 2.1. If a function f is 2π-periodic and of class Lipa, then its degree of approximation by $(E, q)(C, 1)$ summability mean on its Fourier series $\sum_{n=0}^{\infty} A_{n}(t)$ is given by

$$
\left\|E_{n}^{q} C_{n}^{1}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1
$$

where $E_{n}^{q} C_{n}^{1}$ represents the (E, q) transform of $(C, 1)$ transform of $s_{n}(f: x)$.
Subsequently Misra et. al. [2] have proved the following theorem on degree of approximation by the product mean $(E, q)\left(N, p_{n}\right)$ of Fourier series:

Theorem 2.2. If f is a 2π-Periodic function of class Lipa, then degree of approximation by the product $(E, q)\left(N, p_{n}\right)$ summability means on its Fourier series (defined above) is given by

$$
\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1
$$

where τ_{n} as defined in (7).

3 Main Theorem

In this paper, we have proved a theorem on degree of approximation by the product mean $(E, q)\left(N, p_{n}\right)$ of the Fourier series of a function of class $\operatorname{Lip}(\alpha, r)$. We prove:

Theorem 3.1. If f is a 2π - periodic function of the class $\operatorname{Lip}(\alpha, r)$, then degree of approximation by the product $(E, q)\left(N, p_{n}\right)$ summability means on its Fourier series (9) is given by

$$
\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right), 0<\alpha<1, r \leq 1
$$

where τ_{n} is as defined in (7).

4 Required Lemmas

We require the following Lemmas for the proof the theorem.

Lemma 4.1.

$$
\left|K_{n}(t)\right|=O(n), 0 \leq t \leq \frac{1}{n+1} .
$$

Proof For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$ then

$$
\begin{aligned}
\left|K_{n}(t)\right| & =\frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{(2 v+1) \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}(2 k+1)\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\right\}\right| \\
& \leq \frac{(2 n+1)}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =O(n) .
\end{aligned}
$$

This proves the lemma.

Lemma 4.2.

$$
\left|K_{n}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi
$$

Proof For $\frac{1}{n+1} \leq t \leq \pi$, we have by Jordan's lemma, $\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}$, $\sin n t \leq 1$. Then

$$
\begin{aligned}
\left|K_{n}(t)\right| & =\frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} \frac{\pi p_{k-v}}{t}\right\}\right| \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\right\}\right| \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =O\left(\frac{1}{t}\right)
\end{aligned}
$$

This proves the lemma.

5 Proof of theorem 3.1

Using Riemann-Lebesgue theorem, for the n-th partial sum $s_{n}(f: x)$ of the Fourier series (9) of $f(x)$ and following Titchmarch [4], we have

$$
s_{n}(f: x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Using (1), the $\left(N, p_{n}\right)$ transform of $s_{n}(f: x)$ is given by

$$
t_{n}-f(x)=\frac{1}{2 \pi P_{n}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} p_{n-k} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Denoting the $(E, q)\left(N, p_{n}\right)$ transform of $s_{n}(f: x)$ by τ_{n}, we have

$$
\begin{align*}
\left\|\tau_{n}-f\right\| & =\frac{1}{2 \pi(1+q)^{n}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} d t \\
& =\int_{0}^{\pi} \phi(t) K_{n}(t) d t=\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \phi(t) K_{n}(t) d t \\
& =I_{1}+I_{2} \tag{17}
\end{align*}
$$

Now

$$
\begin{aligned}
\left|I_{1}\right| & =\frac{1}{2 \pi(1+q)^{n}}\left|\int_{0}^{\frac{1}{n+1}} \phi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} d t\right| \\
& =\left|\int_{0}^{\frac{1}{n+1}} \phi(t) K(t) d t\right| \\
& =\left(\int_{0}^{\frac{1}{n+1}}(\phi(t))^{r} d t\right)^{\frac{1}{r}}\left(\int_{0}^{\frac{1}{n+1}}\left(K_{n}(t)\right)^{s} d t\right)^{\frac{1}{s}}, \text { using Holder's inequality } \\
& =O\left(\frac{1}{(n+1)^{\alpha}}\right)\left(\frac{n^{s}}{n+1}\right)^{\frac{1}{s}} \\
& =O\left(\frac{1}{(n+1)^{\frac{1}{s}-1+\alpha}}\right)=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)
\end{aligned}
$$

Next

$$
\begin{aligned}
\left|I_{2}\right| & \leq\left(\int_{\frac{1}{n+1}}^{\pi}(\phi(t))^{r} d t\right)^{\frac{1}{r}}\left(\int_{\frac{1}{n+1}}^{\pi}\left(K_{n}(t)\right)^{s} d t\right)^{\frac{1}{s}}, \quad \text { using Holder's inequality } \\
& =O\left(\frac{1}{(n+1)^{\alpha}}\right)\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{1}{t}\right)^{s} d t\right)^{\frac{1}{s}}, \quad \text { using Lemma 4.2 } \\
& =O\left(\frac{1}{(n+1)^{\alpha}}\right)\left(\left[t^{-s+1}\right]_{\frac{1}{n+1}}^{\pi}\right)^{\frac{1}{s}} \\
& =O\left(\frac{1}{(n+1)^{\alpha}}\right)\left(\frac{1}{n+1}\right)^{\frac{1-s}{s}}=O\left(\frac{1}{(n+1)^{\alpha-1+\frac{1}{s}}}\right)=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)
\end{aligned}
$$

Then from (17) and the above inequalities, we have

$$
\begin{aligned}
\left|\tau_{n}-f(x)\right| & =O\left(\frac{1}{n+1^{\alpha-\frac{1}{r}}}\right), \quad \text { for } \quad 0<\alpha<1, r \geq 1 \\
\left\|\tau_{n}-f(x)\right\|_{\infty} & =\sup _{-\pi<x<\pi}\left|\tau_{n}-f(x)\right|=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right), 0<\alpha<1, r \geq 1
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] G.H. Hardy, Divergent Series, First Edition, Oxford University Press, 70,(19).
[2] U.K. Misra, M. Misra, B.P. Padhy and M.K. Muduli, On degree of approximation by product mean $(E, q)\left(N, p_{n}\right)$ of Fourier Series, Gen. Math. Notes, 6(2), (2011).
[3] H.K.Nigam and Ajay Sharma, On degree of Approximation by Product Means, Ultra Scientist of Physical Science, 22(3), (2010), 88-89.
[4] E.C. Titchmarch, The Theory of Functions, Oxford University Press, pp. 402-403, 1939.
[5] A. Zygmund, Trigonometric Series, Second Edition, Cambridge University Press, Cambridge, 1959.

[^0]: ${ }^{1}$ P.G. Department of Mathematics, Ravenshaw University, Cuttack, Odisha, India
 ${ }^{2}$ P.G. Department of Mathematics, Ravenshaw University, Cuttack, Odisha, India
 ${ }^{3}$ P.G. Department of Mathematics, Ravenshaw University, Cuttack, Odisha, India
 ${ }^{4}$ Department of Mathematics, National Institute of Science and Technology, Palur Hills, Golanthara-761008, Brahmapur, Odisha, India, e-mail: umakanta_misra@yahoo.com

