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1 Introduction

Interest Rate Swaps (IRS) appear to be instruments largely used by market

participants (companies, local governments, financial institutions, traders, . . .)

for many purposes including debt structuring, regulatory requirements and risk

management.

According to the BIS June 2011 statistics, the Interest Rate Swap (IRS)

represents 78.25% of OTC derivatives while the corresponding equity part is

just about 0.97%. After the 2007-2009 crisis, many of the Over-The-Counter

(OTC) products are now traded under collateralization, and the interest rate

practice has moved to multiple curve valuation such that there is a differenti-

ation between discounting and forwarding (see for instance [1]). Nevertheless

the single-curve approach, as developed in many textbooks and used in pre-

crisis practice, remains to be conceptually important and a benchmark under

the conservative hypothesis of tight spread between the LIBOR and OIS. The

work under consideration here still belongs to the classical single-curve frame-

work, though our present approach may open a way for the new interest rate

environment as we will perform in a future project.

Despite this market importance played by IRS, it appears that sounding

analyzes related to the hedging of portfolios made by swaps is not clear in the

financial literature. To partially fill this lack, we provide here the study corre-

sponding to a Parallel Shift ( referred to as (PS) ) of the interest rate. Though

such an underlying assumption is little bit less realistic, both practical and

theoretical reasons lead to grant a consideration to this particular situation.

Some of the arguments are presented in our ( lengthy ) working paper [2],

where we have already analyzed the portfolio hedging using swaps and bonds.

Parts of our findings are summarized and reported here. In our numerical illus-

trations we consider the hedge of a swap portfolio by another swap portfolio,

a case we have not considered before. The suitable swap sensitivities to make

use in hedging and risk management are obtained here as a byproduct of our

analyses. They may be seen as generalizing the well known bond duration and

convexity in the swap framework. These obtained sensitivities are in line with

the bond situation, for which the need to take into account both the passage

of time and horizon hedging are analyzed in [3] and [4].

Our aim in writing this paper is to provide a theoretical support which



H. Jaffal, Y. Rakotondratsimba and A. Yassine 31

sheds light practitioners in their decision-making related to the hedge of a

position sensitive to interest rate and by using a portfolio made by swaps

(and/or bonds). For the time being, there are various broker advertisements

and leaflets about switching to alternative instruments (as VIX futures, inverse

ETF, Swap future . . .) for the hedging purpose instead of just using a classical

bond portfolio. However the arguments used in these leaflets are essentially

based on (particular) numerical situations which are certainly informative but

unfortunately do not reflect all other cases arising in reality. Systematic anal-

ysis of the portfolio hedging mechanism, as performed here, allows to build a

tool to better appreciate and judge the statements conveyed through various

commercial claims.

Our present project is essentially focused on the hedge of a position sensitive

to the interest rate by a portfolio of swaps. The use of a bond portfolio as a

hedging instrument has been investigated in [2]. It may be noted that the hedge

with a bond future was previously studied in [6] and empirically investigated

in [7].

Here we perform systematic analyses of the hedging mechanism in the

sense that they are essentially based on the portfolio instrument characteris-

tics. And, in contrast with various academical papers and commercial leaflets

related to hedging, we do not lean on particular historical data. Our results

provide an approach and formulas which may be directly implemented in order

to get the suitable hedge ratio and corresponding hedging error estimates for

any given portfolio of swaps. However the interest rate curve, at the hedge

horizon, is assumed here to have made a parallel shift belonging to some closed

finite interval. Though this appears to be a restrictive assumption, any realistic

interest rate curve movement is always inside some band which may be deter-

mined based on the market view. It means that we have derived here some

sort of robust hedging approach in the sense that it avoids to use involved

dynamical stochastic model for the interest rate.

The main technical results related to the hedge of a position (sensitive to

the interest rate) by a generic portfolio are introduced in Section 2.

So we start in Subsection 2.1 to present the swap features and analyze

the change values associated with a portfolio of swaps. Next in Subsection

2.2, we explain how the sensitivities associated with the portfolio to hedge and

covering instruments should be combined and interacted in order to realize the
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hedging operation purpose. Here we formulate the expression of Profit&loss

associated with the covered portfolio to consider.

As is seen in Subsection 2.3, this gives rise to some integer and non-linear

optimization problem, for which a standard method of resolution seems not

available. Therefore in Proposition 2.1 of this Subsection 2.3, by exploring a

linearization technique previously introduced in [8], we state that the mini-

mization problem, linked to the hedging issue, is reduced to a Mixed Integer

Linear Problem (MILP). It is well-admitted now that a MILP may be solved

by making use of standard solvers.

In Subsection 2.4, we present the Swap portfolio sensitivities involved in

the hedging operation.

Our numerical application will be presented in Section 3.

First, in Subsection 3.1, we start with the introduction of yield curve used

in the subsequent applications.

Two cases of hedging operation are illustrated. In Subsection ??, we con-

sider the hedge of a portfolio of swaps by another portfolio of the same nature.

In this part, estimates for the portfolio future change value and the remainder

term related to the approximation are numerically considered before the hedg-

ing illustration itself. Next the same topics are also examined in Subsection

3.3 for the case of hedging a bond portfolio by a portfolio of swaps.

2 Results

Our analysis of a swap position is based on the swap features (for a single

swap and a swap portfolio) as presented in Subsection 2.1.

The main idea of the hedging problem is based on interaction between the

portfolio to hedge and the hedging instruments, such that the resulting Profit&

Loss for the covered portfolio is displayed in Subsection 2.2.

Then the optimization problem linked to such an immunization operation

is analyzed in Subsection 2.3.

Finally, we present in Subsection 2.4 the sensitivities and decomposition

both for a swap in single position and for a swap portfolio.
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2.1 Swap features

A plain vanilla Interest Rate Swap (IRS) is an Over-The-Counter (OTC)

contract between two counterparties A and B. The first of them, let us say

A agrees, during a given period of time, to pay to B, regularly a cash flow

equal to the interest rate corresponding to a predetermined fixed rate on the

contractual notional principal. In return, A receives interest at floating rate

on the same notional principal for the same period of time.

To quantitatively explicit this exchange, let us consider

0 ≤ t0 ≤ t < t+ δ ≤ t1 < . . . < ti < . . . < tM (1)

which represent times.

Here t is the current time. The remaining cash-flow times payment of the

considered IRS, with maturity tM , should take place at times t1, . . . , ti, . . . , tM .

The time t-value of the zero-coupon bond P (t, ti), having maturity ti is

defined as

P (t, ti) = exp
[
−y(t, ti)τ(t, ti)

]
(2)

where it is set that P (t, 0) ≡ 1. The nonnegative quantity y(t, ti) is refereed

to as a yield and corresponds to the continuous interest rate which applies at

time t during the time-period

τ(t, ti) = ti − t.

The yield curve at time t is defined by the mapping

τ ∈ (0,∞) 7−→ y(t; τ) ≡ y(t, t+ τ). (3)

In reality y(t; τ) is not completely given for the whole points in the semi-real

axis (0,∞). We have only at our disposal some (discrete) yield-to-maturities

y(t; τ̃1), . . . , y(t; τ̃j), . . . , y(t; τ̃m). Facing to this lack of data, interpolations and

models are very often used. For instance the Nelson-Siegel-Svensson model [9],

(used below in the numerical illustrations in Section 3) is given by

y(t; τ) = βt;1 + βt;2b2(τλ) + βt;3b3(τλ) (4)

with

b2(u) =
1− exp(−u)

u
and b3(u) = b2(u)− exp(−u).
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Here βt;1, βt;2 and βt;3 depend on time t but not on the time-to-maturity τ .

The present time-t shape of the yield curve is driven by expression (4), which

is very often seen by market participants as a suitable interpolation mean of

available rates.

The swap marked-to-market value at time t is defined by

value Swapt ≡ notional×

(
P (t, t1)

{
y(t0, t1)− rate Swap

}
τ(t, t1)

+
M∑
i=2

P (t, ti)
{
F (t; ti−1, ti)− rate Swap

}
τ(ti−1, ti)

)
(5)

By rate Swap we mean the contractual predetermined rate, such that at the

contract time inception t∗, with t∗ ≤ t0, the swap has a zero market value.

That is

value Swapt∗ = 0.

When time passes, the swap market value value Swapt at any time t before

the maturity is given by (5), and there is no reason that it is equal to zero. It

may take positive or negative value.

With expression (5), at time t1 the payments are just related to the reduced

time-period (t, t1), such that the reference floating rate is the yield-to-maturity

y(t0, t1). The value of this last, known from the fixing-time t0 ( and conse-

quently at time t ), is defined by

y(t0, t1) =
1

τ(t0, t1)

( 1

P (t0, t1)
− 1
)
. (6)

For the other times ti, with 2 ≤ i ≤M , the exchange payments are related to

the full period (ti−1, ti) and with respect to the yield y(ti−1, ti). Unfortunately

this last quantity is not known at time t, so for the market valuation it is

common to replace it by the forward rate

F (t; ti−1, ti) ≡
1

τ(ti−1, ti)

(
P (t, ti−1)

P (t, ti)
− 1

)
. (7)

The point here is that this last quantity is deterministically known at time t

under the availability of the interest rate curve ti 7−→ P (t, ti). Therefore using
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(7) then one has

value Swapt =

notional×

(
P (t, t1)

{
y(t0, t1)− rate Swap

}
τ(t, t1)

+
{
P (t, t1)− P (t, tM)

}
− rate Swap×

M∑
i=2

P (t, ti)τ(ti−1, ti)

)
(8)

The swap market value, as in (8) is one-thing but, for the position man-

agement and hedging, the change of the market value matters. Therefore for

the (future) time-period (t, t+ δ) let us set

change value Swapt,t+δ(·) ≡ value Swapt+δ(·)− value Swapt. (9)

It should be emphasized that we have assumed that t + δ < t1 such that no

payment takes place during (t, t+δ). When such an assumption is not satisfied

then at least an effective cash-flow is paid or received, such that the analysis

becomes little bit complicated. The assumption used here relies on the fact

that in practice the horizon under consideration is preferably short enough in

order the associated projected view to be more and less credible. However

the real hedging horizon may be long, and consequently it is usual among the

practitioners to roll their hedging positions. It means that it is important to

have at a disposal an accurate analysis for the single-period hedging. This is

exactly our main focus in this paper.

The explicit value of the change value Swap may be written as

change value Swapt,t+δ(·)

= notional×

{
−
{
y(t0, t1)− rate Swap

}
P (t, t1)δ

+

(
1 +

{
y(t0, t1)− rate Swap

}
τ(t+ δ, t1)

)(
P (t+ δ, t1)(·)− P (t, t1)

)
−
(
P (t+ δ, tM)(·)− P (t, tM)

)
−rate Swap×

M∑
i=2

(
P (t+ δ, ti)(·)− P (t, ti)

)
τ(ti−1, ti)

}
(10)

With this last expression the swap market value change during the time-period

(t, t + δ) arises as a linear combination of changes of zero-coupon bonds with
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various maturities ti’s. It means that any zero-coupon change as

P (t+ δ, ti)(·)− P (t, ti)

has to be analyzed. For such a purpose, a model for the future evolution of the

interest rate is needed. In this paper we will focus on the common hypothesis

of parallel shift (PS) of the yield curve at the future time t+ δ, which can be

translated as

y(t+ δ; τ)(·) = y(t; τ) + ε(·) (11)

where ε(·) ≡ ε(·; t, δ). In this last, we mean that the shift ε depends on the

present time t and horizon δ. The strong fact here (and likely less realistic) is

that the shift does not depend on the maturity τ . Nevertheless, the assumption

(11) has been introduced and used both in literature and practice. It should

be important to note that (11) makes only a sense whenever the shift ε(·) is

not too negative as

−y(t; τ) < ε(·). (12)

Let us denote by St the present time-t value of a portfolio made by fixed

leg payer/receiver swaps. So it is assumed that there are I∗∗ types of payer

swaps S∗∗
·;i∗∗ and I∗ types of receiver swaps S∗

·;i∗ . Of course I∗∗ and I∗ stand for

positive integer numbers.

The swaps

S∗∗
·;i∗∗ and S∗

·;i∗ , for i∗∗ ∈ {1, . . . , I∗∗} and i∗ ∈ {1, . . . , I∗}

are respectively assumed to have notional amounts

notional(i∗∗) and notional(i∗),

fair-rate prices

rate Swap(i∗∗) and rate Swap(i∗)

maturities

t∗∗M∗∗(i∗∗)(i
∗∗) and t∗M∗(i∗)(i

∗)

and having the ordered payment times

T ∗∗
·;i∗∗ =

(
t∗∗1 (i∗∗), . . . , t∗∗j∗∗(i

∗∗), . . . , t∗∗M∗∗(i∗∗)(i
∗∗)
)
, j∗∗ ∈

{
1, 2, · · · ,M∗∗(i∗∗)

}
T ∗
·;i∗ =

(
t∗1(i

∗), . . . , t∗j∗(i
∗), . . . , t∗M∗(i∗)(i

∗)
)
, j∗ ∈

{
1, 2, · · · ,M∗(i∗)

}
.
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The time- t value of such a portfolio may be written as

St =
I∗∗∑

i∗∗=1

n∗∗i∗∗S
∗∗
t;i∗∗ −

I∗∑
i∗=1

n∗i∗S
∗
t;i∗ . (13)

Therefore there are n∗∗i∗∗ swaps of type i∗∗ each worth S∗∗
t;i∗∗ , and n∗i∗ swaps of

type i∗ each worth S∗
t;i∗ . It may be noted that each of the S∗∗

t;i∗∗ and S∗
t;i∗ ’s is

given by an expression as (8).

We consider the perspective of an investor holding such a swap portfolio

and willing to reduce the risk exposure (i.e. negative impact) at the future

time-horizon t+δ, for some nonnegative real number. It should be emphasized

that the point here is to try to maintain the level of the portfolio but not to

make a profit, though the market evolution may be favorable for that.

The future time t+ δ corresponds to the horizon for which she has a more

and less clear view about a possible movement of the market. But another

reason is that it may be consistent with the instruments available for the

hedging.

To ease the study, in this paper we will just focus on the case where δ is

sufficiently close to t such that δ satisfies the restrictions

t < t+ δ < min
{
t∗∗1 (1), . . . , t∗∗1 (i∗∗), . . . , t∗∗1 (I∗∗), t∗1(1), . . . , t

∗
1(i

∗), . . . , t∗1(I
∗)
}

(14)

and

max
{
t∗∗0 (1), . . . , t∗∗0 (i∗∗), . . . , t∗∗0 (I∗∗), t∗0(1), . . . , t∗0(i

∗), . . . , t∗0(I
∗)
}
≤ t. (15)

The restrictions (14) and (15) mean that no payment takes place during

the hedging period (t, t+ δ). The future portfolio value St+δ(·) is unknown at

time t, and depend on the yield curve shape at time t+ δ.

The swap portfolio change during (t, t+ δ) is given by

change value port Swapt,t+δ(·) ≡ St+δ(·)− St

=
I∗∗∑

i∗∗=1

n∗∗i∗∗
{
S∗∗

t+δ;i∗∗(·)− S∗∗
t;i∗∗

}
−

I∗∑
i∗=1

n∗i∗
{
S∗

t+δ;i∗(·)− S∗
t;i∗

}
. (16)

The swap changes S∗∗
t+δ;i∗∗(·)− S∗∗

t;i∗∗ and S∗
t+δ;i∗(·)− S∗

t;i∗ are actually given

by expressions as in (10).
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2.2 The hedging mechanism and sensitivities

Our main purpose in this Subsection is to show how useful are the high

order sensitivities with respect to the parallel shift of the interest rate model

when hedging a portfolio made by swaps and/or bonds.

First we formulate the change expressions linked to both the portfolio to

hedge and the hedging instruments. After presenting the interaction between

the two portfolios, we display the exact Profit&Loss for a covered portfolio

and the cost related to the hedging operation.

Next, the sensitivities associated with the portfolio to hedge and the cover-

ing instruments and their offsetting effects are introduced. Therefore a combi-

nation between these sensitivities enables us to realize the hedging operation

purpose.

Finally, we formulate and analyze the optimization problem to consider

when searching the numbers of hedging instruments.

Let us denote by Vt the present time t-value of a portfolio assumed to be

sensitive to the interest rate which is made by swaps or/and bonds.

At the future time horizon t + δ, with δ is some nonnegative real number,

this portfolio may suffer from a loss, in the sense that Vt+δ(·) < Vt. To try to

maintain the (future) value Vt+δ(·) to be close to Vt, the portfolio manager has

to put in place a hedging technique.

The idea underlying the hedging relies on using another portfolio, referred

to as a hedging portfolio ( or instrument ) in the sequel, such that this last

would lead to a nonnegative profit compensating the loss on the initial port-

folio. Therefore instead of the absolute change

Vt+δ(·)− Vt ≡ P&L naked portfoliot,t+δ(·)

associated with the initial naked portfolio, at the horizon t+ δ, the change for

the covered portfolio is given by

P&L covered portfoliot,t+δ(·)
≡ {Vt+δ(·)− Vt}+ P&L hedging instrumentt,t+δ(·). (17)

The hedging portfolio H is assumed at time-t to have the value

Ht =
I∗∗∑

i∗∗=1

H∗∗
t;i∗∗n

∗∗
i∗∗ −

I∗∑
i∗=1

H∗
t;i∗n

∗
i∗ . (18)



H. Jaffal, Y. Rakotondratsimba and A. Yassine 39

It means that H is made by I∗∗ types of instruments H∗∗
;i∗∗ in long positions

and I∗ types of instruments H∗
;i∗ in short positions. For a given type i∗∗ (

resp. i∗ ), we make use of n∗∗i∗∗ ( resp. n∗i∗ ) number of instruments H∗∗
;i∗∗ ( resp.

H∗
;i∗ ). The Profit&Loss corresponding to the use of the hedging instrument is

(roughly) given by

P&L hedging instrumentt,t+δ(·) =
{
Ht+δ(·)−Ht

}
− cost Ht (19)

such that

P&L covered portfoliot,t+s(·) = Vt+δ(·)− Vt

+
I∗∗∑

i∗∗=1

{
H∗∗

t+δ;i∗∗(·)−H∗∗
t;i∗∗

}
n∗∗i∗∗ −

I∗∑
i∗=1

{
H∗

t+δ;i∗(·)−H∗
t;i∗

}
n∗i∗ − cost Ht

(20)

where

cost Ht =
{ 1

P (t, t+ δ)
− 1
}

×
{ I∗∗∑

i∗∗=1

{
ν∗∗0 + ν∗∗|h∗∗t;i∗∗|

}
N ∗∗

i∗∗n
∗∗
i∗∗ +

I∗∑
i∗=1

{
ν∗0 + ν∗|h∗t;i∗|

}
N ∗

i∗n
∗
i∗

}
(21)

with ν∗∗0 , ν∗∗, ν∗0 and ν∗ are fixed constants such that 0 ≤ ν∗∗0 , ν
∗
0 < 1 and

0 < ν∗∗, ν∗ < 1. The numerical values of these constants depend on the

market practice under consideration. In (21), we have used the fact that the

instrument value H∗∗
t;i∗∗ is the product of its notional N ∗∗

i∗∗ with its one unit

value h∗∗t;i∗∗ . For an instrument satisfying h∗∗u;i∗∗ 6= 0 during its life-time, as in

the case of a (risk credit free) bond for example, the corresponding cost at

time t is very often defined as ν∗∗H∗∗
t;i∗∗ ; so that here one can take ν∗∗0 = 0. The

introduction of ν∗∗0 and ν∗0 relies on the fact that for some instruments as a

swap, one can have that the corresponding market value satisfies H∗∗
t;i∗∗ = 0. In

this case, practitioners [10] take as a base for fees the corresponding notional

N ∗∗
i∗∗ such that the cost is rather ν∗∗0 N ∗∗

i∗∗ since the term ν∗∗0 H
∗∗
t;i∗∗ vanishes.

The hedging problem for the initial portfolio V is reduced to suitably choose

the financial instruments with values

H∗∗
;1 , . . . , H

∗∗
;i∗∗ , . . . , H

∗∗
;I∗∗ and H∗

;1, . . . , H
∗
;i∗ , . . . , H

∗
;I∗
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and the corresponding security numbers

n∗∗1 , . . . , n
∗∗
;i∗∗ , . . . , n

∗∗
;I∗∗ and n∗1, . . . , n

∗
;i∗ , . . . , n

∗
;I∗

such that the value of∣∣∣ P&L covered portfoliot,t+δ(·)
∣∣∣

should be small as possible. The difficulty here is linked to the fact that the

future values of the hedging instruments at time t + δ are unknown at the

present time t where the hedge strategy is built.

The choice of the hedging instruments is dictated by the willing that the

resultant effect of their change variations would roughly offset ( i.e. going in

the opposite direction ) the change of the portfolio V to hedge. Then, the

problem is reduced to a minimization problem of finding suitable allocation

for the security numbers n∗∗1 , . . . , n
∗∗
;i∗∗ , . . . , n

∗∗
;I∗∗ and n∗1, . . . , n

∗
;i∗ , . . . , n

∗
;I∗ .

Under PS or (11) the point is to assume that for any nonnegative integer

p one has the approximation

Vt+δ(·)− Vt ≈ Sens(0; t, δ,V) +

p∑
k=1

(−1)k

k!
Sens(k; t, δ,V)εk(·) (22)

where V is one of V , H∗∗
;i∗∗ and H∗

;i∗ . In (22) the notations

Sens(0; t, δ,V) and Sens(k; t, δ,V)

are used respectively to refer to as the zero and k-th sensitivities order of the

considered financial instrument V , computed at time t and for the horizon δ.

Without further indication, by sensitivity we always mean the sensitivity of

the instrument under consideration with respect to the PS (11) of the yield

curve. A main point on the efficiency of (22) in the hedging operation relies

on the suitable choice of the integer p such that the approximation-error

R(·) =

∣∣∣∣(Vt+δ(·)− Vt

)
−
(
Sens(0; t, δ,V) +

p∑
k=1

(−1)k

k!
Sens(k; t, δ,V)εk(·)

)∣∣∣∣
(23)

is small from the perspective of the hedger, as R(·) ≤ 10−12 for example. Such

a strong requirement may be useful since very often in practice one has to deal

with positions having large notional size as nVt with n = 107.
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Making use of the exact version of (22) for V = V , V = H∗∗ and V = H∗,

and taking (20) and (21) into account, then it arises that

P&L covered portfoliot,t+s(·) =(
ΘV

0 +
I∗∗∑

i∗∗=1

Θ∗∗
0;i∗∗n

∗∗
i∗∗ −

I∗∑
i∗=1

Θ∗
0;i∗n

∗
i∗

)

+

p∑
k=1

(−1)k

k!

[
ΘV

k +
I∗∗∑

i∗∗=1

Θ∗∗
k;i∗∗n

∗∗
i∗∗ −

I∗∑
i∗=1

Θ∗
k;i∗n

∗
i∗

]
εk(·)

+
1

(p+ 1)!

[
ΘV

p+1 +
I∗∗∑

i∗∗=1

Θ∗∗
p+1n

∗∗
i∗∗ −

I∗∑
i∗=1

Θ∗∗
p+1n

∗
i∗

]
εp+1(·) (24)

where

ΘV
0 ≡ Sens(0; t, δ, V ) (25)

Θ∗∗
0;i∗∗ ≡ Sens(0; t, δ,H∗∗

;i∗∗)−
{
ν∗∗0 + ν∗∗|h∗∗t;i∗∗|

}
N ∗∗

i∗∗ (26)

Θ∗
0;i∗ ≡ Sens(0; t, δ,H∗

;i∗) +
{
ν∗0 + ν∗|h∗t;i∗|

}
N ∗

i∗ (27)

ΘV
k ≡ Sens(k; t, δ, V ), (28)

Θ∗∗
k;i∗∗ ≡ Sens(k; t, δ,H∗∗

;i∗∗), Θ∗
k;i∗ ≡ Sens(k; t, δ,H∗

;i∗) (29)

ΘV
p+1 ≡ Sens(p+ 1; t, δ, V ; ρ), (30)

Θ∗∗
p+1;i∗∗ ≡ Sens(p+ 1; t, δ,H∗∗

;i∗∗ ; ρ), Θ∗
p+1;i∗ ≡ Sens(p+ 1; t, δ,H∗

;i∗ ; ρ) (31)

for all k ∈ {1, . . . , p}, i∗∗ ∈ {1, . . . , I∗∗} and i∗ ∈ {1, . . . , I∗}.
These sensitivities will be fully detailed below in the case of a portfolio of

swaps, and the case for bonds may be seen in [2]. Nevertheless it should be

noted here that ρ is a real number not clearly defined but depends on ε.

In some places of this paper, we refer to as a view on the interest rate shift

ε(·), the hypothesis that there are nonnegative real numbers ε• and ε•• for

which

−ε• ≤ ε(·) ≤ ε••. (32)

Though ε(·) is a random quantity, not known at the present time t, with

historical data on zero-coupon prices, it is not hard for the practitioner to get

the deterministic values of ε• and ε•• corresponding to the available past prices.

But she can also incorporate her view for the situation at the considered future



42 Hedging with a portfolio ofInterest Rate Swaps

horizon δ. Starting from (24), and using the view (32) then an upper bound

of
∣∣∣P&L covered portfoliot,t+s(·)

∣∣∣ is readily given by

F
(
n∗∗1 , . . . , n

∗∗
i∗∗ , . . . , n

∗∗
I∗∗ , n

∗
1, . . . , n

∗
i∗ , . . . , n

∗
I∗ ; ε

•, ε••)

≡
∣∣∣∣ΘV

0 +
I∗∗∑

i∗∗=1

Θ∗∗
0;i∗∗n

∗∗
i∗∗ −

I∗∑
i∗=1

Θ∗
0;i∗n

∗
i∗

∣∣∣∣
+

p∑
k=1

1

k!

∣∣∣∣ΘV
k +

I∗∗∑
i∗∗=1

Θ∗∗
k;i∗∗n

∗∗
i∗∗ −

I∗∑
i∗=1

Θ∗
k;i∗n

∗
i∗

∣∣∣∣max{ε•; ε••}k

+
1

(p+ 1)!

(
ΥV

p+1 +
I∗∗∑

i∗∗=1

Υ∗∗
p+1;i∗∗n

∗∗
i∗∗ +

I∗∑
i∗=1

Υ∗
p+1;i∗n

∗
i∗

)
max{ε•; ε••}p+1

(33)

which may be seen as the objective function associated with a minimization

problem and related to the hedging issue presented above.

The quantities ΘV
0 , Θ∗∗

0 , Θ∗
0, ΘV

k , Θ∗∗
k , Θ∗

k are given as above from (25) to More-

over ΥV
p+1, Υ∗∗

p+1 and Υ∗
p+1 are suitable nonnegative constants which depend

on p, ε• and ε••, whose explicit expressions will be clarified below in the case

of swap portfolio. For a choice of sufficiently large value of the order p, it is

expected that the terms ΥV
p+1, Υ∗∗

p+1 and Υ∗
p+1 would have small sizes ( see our

numerical illustrations below ) and consequently

1

(p+ 1)!

(
ΥV

p+1 +
I∗∗∑

i∗∗=1

Υ∗∗
p+1;i∗∗n

∗∗
i∗∗ +

I∗∑
i∗=1

Υ∗
p+1;i∗n

∗
i∗

)
εp+1

can be removed practically from the function to minimize.

In the common immunization approach, the idea is reduced to match the

sensitivities of the portfolio to hedge with those of the corresponding hedg-

ing instrument. It means that, with (33), one has to consider the following

equations

ΘV
0 +

I∗∗∑
i∗∗=1

Θ∗∗
0;i∗∗n

∗∗
i∗∗ −

I∗∑
i∗=1

Θ∗
0;i∗n

∗
i∗ = 0 (34)

ΘV
k +

I∗∗∑
i∗∗=1

Θ∗∗
k;i∗∗n

∗∗
i∗∗ −

I∗∑
i∗=1

Θ∗
k;i∗n

∗
i∗ = 0 for all k ∈ {1, . . . , p}. (35)

Actually (34) and (35) can be viewed as a linear system of (p + 1)-equations

with (I∗ + I∗∗)-unknowns, which are the n∗∗1 , . . . , n
∗∗
I∗∗ , n

∗
1, . . . , n

∗
I∗ ’s. Typically
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the frequent situation is (p + 1) ≤ (I∗ + I∗∗). Even for the particular case

(p + 1) = (I∗ + I∗∗) and if the system admits a solution, a difficulty arises

since the variables defined by n∗∗ and n∗ are restricted to the integer numbers.

For (p+ 1) < (I∗ + I∗∗) the usual approach is to consider all n∗∗1 , . . . , n
∗∗
I∗∗ and

n∗1, . . . , n
∗
I∗ which minimize the square sum(

ΘV
0 +

I∗∗∑
i∗∗=1

Θ∗∗
0;i∗∗n

∗∗
i∗∗−

I∗∑
i∗=1

Θ∗
0;i∗n

∗
i∗

)2

+

p∑
k=1

(
ΘV

k +
I∗∗∑

i∗∗=1

Θ∗∗
k;i∗∗n

∗∗
i∗∗−

I∗∑
i∗=1

Θ∗
k;i∗n

∗
i∗

)2

.

However this would not the right way to follow. Indeed, by so doing we

loose both the control of the maximum hedging loss size and the attenuator

effect brought by the term 1
k!
εk. Therefore we have to cope directly with the

minimization problem with the objective function presented as in (33).

2.3 Optimization

According to the above Subsection, in a generic form, the hedge of portfolio

V by portfolio H is reduced to the minimization problem

(P0) : (n∗∗,n∗) = argmin
{
F (n∗∗, n∗; ε)| (n∗∗, n∗) ∈ D0

}
(36)

with the constraint D0 defined as the set of n∗∗ = (n∗∗1 , . . . , n
∗∗
I∗∗) and n∗ =

(n∗1, . . . , n
∗
I∗) such that

1

P (t, t+ δ)
− 1
}( I∗∗∑

i∗∗=1

{
ν∗∗0 + ν∗∗|h∗∗t;i∗∗|

}
N ∗∗

i∗∗n
∗∗
i∗∗

+
I∗∑

i∗=1

{
ν∗0 + ν∗|h∗t;i∗|

}
N ∗

i∗n
∗
i∗

)
≤ D (37)

and where D is the amount allowed by the investor not to be exceed in the

hedging operation.

Actually it is taken here that ε = max{ε•; ε••}, and for convenience we can

deal with vectorial notations such that the constraint (37) may be written as

a∗∗ · n∗∗ + a∗ · n∗ ≤ D (38)

where

a∗∗ =
(
{ν∗∗0 +ν∗∗|h∗∗t;1|}N ∗∗

1 , . . . , {ν∗∗0 +ν∗∗|h∗∗t;i∗∗|}N ∗∗
i∗∗ , . . . , {ν∗∗0 +ν∗∗|h∗∗t;I∗∗|}N ∗∗

I∗∗

)
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and

a∗ =
(
{ν∗0 + ν∗|h∗t;1|}N ∗

1 , . . . , {ν∗0 + ν∗|h∗t;i∗|}N ∗
i∗ , . . . , {ν∗0 + ν∗|h∗t;I∗|}N ∗

I∗

)
.

For the function F as defined in (33), (P0) is an integer optimization prob-

lem defined by integer linear constraints. The objective function is both non-

linear, non-convex and non-differentiable at the origin. To overcome these

difficulties we make use of a linearization technique as introduced in [8] and

which consists to replace the initial problem (P0) by an equivalent linear prob-

lem (P1).

Assuming that ε is a fixed given constant, we introduce the following func-

tion

G
(
x, n∗∗, n∗; ε

)
=

p∑
k=0

xk +
1

(p+ 1)!

{
ΥV

p+1 + Υ∗∗
p+1.n

∗∗ + Υ∗
p+1.n

∗
}
εp+1 (39)

where the components xl’s of x are real variables. The point here is to remove

the non-linearity by setting

xk =
1

k!

∣∣∣∣ΘV
k + Θ∗∗

k .n
∗∗ −Θ∗

k.n
∗
∣∣∣∣εk for all k ∈ {0, 1, . . . , p}. (40)

Therefore we obtain the following result.

Lemma 2.1. The problem (P0) is equivalent to the following minimization

problem

(P1) : (x,n∗∗,n∗) = argmin
{
G(x, n∗∗, n∗; ε)

∣∣∣ (x, n∗∗, n∗) ∈ D1

}
(41)

where D1 is defined as the set of triplets (x, n∗∗, n∗) satisfying the constraints

a∗∗.n∗∗ + a∗.n∗ ≤ D (42)

0 ≤ xk +
1

k!

{
ΘV

k + Θ∗∗
k .n

∗∗ −Θ∗
k.n

∗
}
εk for all k ∈ {0, 1, . . . , p} (43)

0 ≤ xk −
1

k!

{
ΘV

k + Θ∗∗
k .n

∗∗ −Θ∗
k.n

∗
}
εk for all k ∈ {0, 1, . . . , p} (44)

with the restrictions that

0 ≤ x = (xk)k, n∗∗ ∈ NI∗∗ and n∗ ∈ NI∗ .
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In this Proposition, by the equivalence between (P0) and (P1), we mean that

if an optimal solution (n∗, n∗∗) to (P0) does exist, then (P1) admits an optimal

solution (x, n∗, n∗∗) 4, and conversely if (x, n∗, n∗∗) is an optimal solution to

(P1) then (P0) admits (n∗, n∗∗) as an optimal solution. Therefore, with the

above result, we are lead to solve problem (P1) instead of (P0).

Observe that both the objective function and constraints associated with

(P1) are given by linear transformations, with mixed integer and real coeffi-

cients. The problem (P1), commonly referred to as a Mixed Integer Linear

Problem (MILP), is recognized as to be an NP-hard problem due to the non-

convexity of the domain and the number of possible combinations of the vari-

ables. For small dimensions, MILP can be solved by exact methods that pro-

vide an exact optimal solutions. In this case the most of available exact meth-

ods are Branch and Bound, Branch and Cut, Branch and Price [11]. However

the complexity of MILP exponentially increases with the number of variables

and these mentioned methods can fail. To overcome this inconvenience, meta-

heuristics methods (see for instance [12]). Usually there are various solvers

which yield exact solution to the MILP for a moderate number of variables

less than 1 500 which is largely enough for our purpose. Therefore we make use

here the commercial CPLEX solver 9.0. Details and references related to this

an application are freely available on the web as www.iro.umontreal.ca/ gen-

dron/IFT6551/CPLEX/HTML/.

2.4 Swap portfolio sensitivities and hedging

In this part, we plan to apply our generic finding related to portfolio hedging

in the previous Subsection 2.3 in the setting of swap portfolio.

To perform an accurate analysis of the swap portfolio change value, as

written in (16), we first introduce the residual term representing the passage

of time by

Res(t, δ,S) ≡
I∗∗∑

i∗∗=1

n∗∗i∗∗Res Swap(t, T ∗∗
·;i∗∗ , δ)−

I∗∑
i∗=1

n∗i∗Res Swap(t, T ∗
·;i∗ , δ)

(45)

4with x = (xl)l and xl defined from n∗ and n∗∗ as in (40)
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where Res Swap(t, T ∗∗
·;i∗∗ , δ) is defined by

Res Swap(t, T ∗∗
·;i∗∗ ; δ) ≡ Res Swap

(
t, T ∗∗

·;i∗∗ ; δ;notional(i∗∗); rate Swap(i∗∗)
)

= notional(i∗∗)×

{
−
{
y
(
t∗∗0 (i∗∗), t∗∗1 (i∗∗)

)
− rate Swap(i∗∗)

}
P
(
t, t∗∗1 (i∗∗)

)
δ

+
[
1 +

{
y
(
t∗∗0 (i∗∗), t∗∗1 (i∗∗)

)
− rate Swap(i∗∗)

}
τ
(
t+ δ, t∗∗1 (i∗∗)

)]
×Res ZC

(
t, t∗∗1 (i∗∗); δ

)
−Res ZC

(
t, t∗∗M∗∗(i∗∗)(i

∗∗); δ
)

− rate Swap(i∗∗)×
M∗∗(i∗∗)∑

j∗∗=2

Res ZC(t, t∗∗j∗∗(i
∗∗); δ)τ

(
t∗∗j∗∗−1(i

∗∗), tj∗∗(i
∗∗)
)}
.

(46)

The term Res Swap
(
t, T ∗

·;i∗δ
)

is symmetrically given as Res Swap(t, T ∗∗
·;i∗∗ , δ).

In (46) we make use of the residual term Res ZC for the zero-coupon which

is defined by

Res ZC(t, T ; δ) = exp
[
−y
(
t; τ(t+δ, T )

)
τ(t+δ, T )

]
−exp

[
−y
(
t; τ(t, T )

)
τ(t, T )

]
(47)

for any t, δ > 0 and T with t+ δ < T .

Before planing to hedge a given swap portfolio it would be natural first

to ask whether such an operation makes a sense to be performed. Indeed

the hedge is only justified whenever the holder of position thinks that the

potential loss linked to the interest rate movement would be significantly high

when compared with the cost involved when putting in place the hedge. It

may be emphasized that a loss may be occurred though a hedging operation is

used. However the point is that the magnitude of this loss should be very small

in comparison to the potential loss or gain obtained with the naked position.

The hedging operation is not intended to get any profit but rather to try to

maintain the position roughly as its initial level.

Now to provide some elements allowing the investor/hedger to take the

decision to hedge or not, the simple idea we explore is just to determine the

extreme effect of the interest rate PS on the portfolio change value.

The corresponding analysis can be done under the particular view that the

shift is contained in some given interval [−ε•, ε••] as considered in (32).

Actually we can state the following:
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Theorem 2.2. Let us consider the present time t and horizon δ, such that

the swap portfolio under consideration satisfies the restrictions (14) and (15).

Assume the interest rate has done a PS movement following the view (32)

for some nonnegative ε• and ε•• such that ε• is sufficiently small in the sense

that

ε• < min
{
y
(
t; τ
(
t+ δ, t∗j∗(i∗)(i

∗)
))

; y
(
t; τ
(
t+ δ, t∗∗j∗∗(i∗∗)(i

∗∗)
))}

(48)

where the minimum is done for i∗ ∈ {1, . . . , I∗}, i∗∗ ∈ {1, . . . , I∗∗}, j∗(i∗) ∈
{1, . . . ,M∗(i∗)} and j∗∗(i∗∗) ∈ {1, . . . ,M∗∗(i∗∗)}.

Suppose all the swap rates satisfy the conditions

0 ≤

(
1 +

{
y
(
t∗∗0 (i∗∗), t∗∗1 (i∗∗)

)
− rate Swap(i∗∗)

}
τ
(
t+ δ, t∗∗1 (i∗∗)

))

and 0 ≤

(
1 +

{
y
(
t∗0(i

∗), t∗1(i
∗)
)
− rate Swap(i∗)

}
τ
(
t+ δ, t∗1(i

∗)
))

(49)

for all i∗∗ ∈ {1, . . . , I∗∗} and i∗ ∈ {1, . . . , I∗}.

Then the swap portfolio change value during the time-period (t, t + δ) is

deterministically bounded below and above as follows

change value port Swapmin(ε•, ε••)

≤ change value port Swapt,t+δ(·) ≤
change value port Swapmax(ε

•, ε••) (50)

where

change value port Swapmin(ε•, ε••) ≡
Res(t, δ,S) + min

{
ω(ε)

∣∣−ε• ≤ ε ≤ ε••
}

(51)

and

change value port Swapmax(ε
•, ε••) ≡

Res(t, δ,S) + max
{
ω(ε)

∣∣−ε• ≤ ε ≤ ε••
}
. (52)

The function ε 7−→ ω(ε) is defined by

ω(ε) =
I∗∗∑

i∗∗=1

n∗∗i∗∗ϑ
∗∗
i∗∗(ε)−

I∗∑
i∗=1

n∗i∗ϑ
∗
i∗(ε) (53)
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and where

ϑ∗∗i∗∗(ε) = N∗∗
i∗∗

{
(
1 + {y∗∗01(i

∗∗)− r∗∗i∗∗}τ̃ ∗∗1 (i∗∗)
)

exp
[
−ỹ∗∗1 (i∗∗)τ̃ ∗∗1 (i∗∗)

]{
exp
[
−ετ̃ ∗∗1 (i∗∗)

]
− 1
}

− exp
[
−ỹ∗∗M∗∗

i∗∗
(i∗∗)(τ̃ ∗∗M∗∗(i∗∗)(i

∗∗))
]{

exp
[
−ετ̃ ∗∗M∗∗(i∗∗)(i

∗∗)
]
− 1
}

− r∗∗i∗∗

M∗∗(i∗∗)∑
j∗∗=2

exp
[
−ỹ∗∗j∗∗(i

∗∗)τ̃ ∗∗j∗∗(i
∗∗)
]{

exp
[
−ετ̃ ∗∗j∗∗(i

∗∗)
]
− 1
}
τ ∗∗j∗∗(i

∗∗)

}
.

(54)

For convenience we have used the following short notations

N∗∗
i∗∗ ≡ notional(i∗∗), , r∗∗i∗∗ ≡ rate Swap(i∗∗),

τ̃ ∗∗j∗∗(i
∗∗) ≡ τ

(
t+ δ, t∗∗j∗∗(i

∗∗)
)
, τ ∗∗j∗∗(i

∗∗) ≡ τ
(
t∗∗j∗∗−1(i

∗∗), t∗∗j∗∗(i
∗∗)
)

ỹ∗∗j∗∗(i
∗∗) ≡ y

(
t, τ̃ ∗∗j∗∗(i

∗∗)
)
, y∗∗01(i

∗∗) ≡ y
(
t∗∗0 (i∗∗), t∗∗1 (i∗∗)

)
.

The definition of ϑ∗i∗(ε) is similarly defined by taking one star instead of

double star in the above notations.

In order to decide to hedge or not, the holder of a swap portfolio posi-

tion having a PS view of the interest rate as (32) has to take care about the

maximum loss magnitude

max
{
−change value port Swapmin(ε•, ε••); 0

}
or the maximum profit

max
{
change value port Swapmax(ε

•, ε••); 0
}
.

It may be emphasized that this last Proposition goes in the direction of

the swap portfolio position stress-testing. In general people make use of a well

defined interest rate PS (as 1% for instance) and re-compute the corresponding

value of portfolio. Here we extend this usual approach by being able to measure

the effect of a PS inside any interval [−ε•, ε••].
Assumption (48) is useful as it says that the interest rate shift size should

not more than the yield with lowest level. To simplify, the hypothesis (49)

is chosen since it is empirically satisfied for many practical situations. It is
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also possible to derive estimates results in case where such a hypothesis is not

satisfied, but we have not included here the statement for shortness.

From now it is assumed the need to put in place some hedge operations.

Recall that a common market practice is to roll over one-period hedging po-

sitions. Therefore our focus in this paper is to consider and analyze a given

one-period portfolio hedging by a portfolio of swaps.

The suitable k-th order sensitivity for the swap portfolio change value is

defined as

Sens(k; t, δ,S) ≡
I∗∗∑

i∗∗=1

n∗∗i∗∗Sens Swap(k; t, T ∗∗
·;i∗∗ , δ)−

I∗∑
i∗=1

n∗i∗Sens Swap(k; t, T ∗
·;i∗δ) (55)

for all nonnegative integers k, such that Sens Swap(k; t, T ∗∗
·;i∗∗ ; δ) is given by

Sens Swap
(
k; t, T ∗∗

·;i∗∗ ; δ
)
≡ Sens Swap

(
k; t, T ∗∗

·;i∗∗ ; δ;N
∗∗
i∗∗ ; r

∗∗
i∗∗

)
= N∗∗

i∗∗×

{(
1 + {y∗∗01(i

∗∗)− r∗∗i∗∗}τ̃ ∗∗1 (i∗∗)
)
× Sens ZC

(
k; t, t∗∗1 (i∗∗); δ

)
− Sens ZC

(
k; t, t∗∗M∗∗(i∗∗)(i

∗∗); δ
)

− r∗∗i∗∗

M∗∗(i∗∗)∑
j∗∗=2

Sens ZC
(
k; t, t∗∗j∗∗(i

∗∗); δ
)
τ ∗∗j∗∗(i

∗∗)

}
. (56)

where

Sens ZC(k; t, T ; δ) =
{
τ(t+ δ, T )

}k
exp
[
−y
(
t; τ(t+ δ, T )

)
τ(t+ δ, T )

]
. (57)

The expression for Sens Swap(k; t, T ∗
·;i∗ ; δ) is similarly defined. There is

also the need to introduce the swap portfolio remainder term as

Rem
(
p+ 1; t, δ,S; ρ

)
≡

I∗∗∑
i∗∗=1

n∗∗i∗∗Rem Swap
(
p+ 1; t, T ∗∗

·;i∗∗ , δ; ρ
)

−
I∗∑

i∗=1

n∗i∗Rem Swap
(
p+ 1; t, T ∗

·;i∗ , δ; ρ
)
. (58)

For shortness, the expressions for

Rem Swap
(
p+ 1; t, T ∗∗

·;i∗∗ , δ; ρ
)

and Rem Swap
(
p+ 1; t, T ∗

·;i∗ , δ; ρ
)
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are not reported since it is sufficient to mimic things from those of

Res Swap
(
t, T ∗∗

·;i∗∗ ; δ
)

and Sens Swap
(
k; t, T ∗∗

·;i∗∗ ; δ
)

by introducing for all ma-

turities t∗∗j∗∗(i
∗∗) and t∗j∗(i

∗) the following expressions :

Rem ZC(p+ 1; t, t∗∗j∗∗(i
∗∗); δ)

=
(−1)p+1

(p+ 1)!
exp
[
−ρτ̃ ∗∗j∗∗(i

∗∗)
]
Sens ZC(p+ 1; t, t∗∗j∗∗(i

∗∗); δ) (59)

and

Rem ZC(p+ 1; t, t∗j∗(i
∗); δ)

=
(−1)p+1

(p+ 1)!
exp
[
−ρτ̃ ∗j∗(i∗)

]
Sens ZC(p+ 1; t, t∗j∗(i

∗); δ) (60)

From the above expressions, it appears that to get Res(t, δ,S), Sens(k, t, δ,S)

and Rem(p+ 1; t, δ,S; ρ) we need to compute all zero-coupon sensitivities as

Res ZC
(
t, t∗∗j∗∗(i

∗∗); δ
)
, Res ZC

(
t, t∗j∗(i

∗); δ
)

Sens ZC
(
k; t, t∗∗j∗∗(i

∗∗); δ
)
, Sens ZC

(
k; t, t∗j∗(i

∗); δ
)

for all j∗∗ ∈ {1, . . . ,M∗∗(i∗∗)}, j∗ ∈ {1, . . . ,M∗(i∗)}, i∗∗ ∈ {1, . . . , I∗∗}, i∗ ∈
{1, . . . , I∗} and k ∈ {1, . . . , p}.

In the case of a single swap, we have emphasized in (12) the care to grant

when a negative PS of the interest rate is considered. Similarly for a portfolio

of swaps, we need to consider an analogous restriction which takes the form

max
{(
−y
(
t; τ̃ ∗∗j∗∗(i

∗∗)
))

j∗∗∈{1,...,M∗∗(i∗∗)}, i∗∗∈{1,...,I∗∗}
;(

−y
(
t; τ̃ ∗j∗(i

∗)
))

j∗∈{1,...,M∗(i∗)}, i∗∈{1,...,I∗}

}
< ε (61)

Our result related to the three-parts decomposition of the swap portfolio

change (16) can be now stated.

Theorem 2.3. Assume that the interest rate curve has done a PS at time-

(t + δ), as described in (11) for some ε(·) 6= 0 satisfying the restriction (61).

Let p be a nonnegative integer. Then a real number ρ = ρ(ε, p) satisfying

0 < ρ < ε or ε < ρ < 0, does exist such that the change value Swapt,t+δ(·)
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during the time-period (t, t+δ) is given by the sum of the following three terms

change port value Swapt,t+δ =

Res(t, δ;S)

+

p∑
l=1

(−1)l

l!
Sens

(
l; t, δ;S

)
εk(·)

+ Rem
(
p+ 1; t, δ;S, ρ(·)

)
εp+1(·) (62)

where Res(t, δ;S), Sens
(
l; t, δ;S

)
and Rem

(
p+1; t, δ;S, ρ(·)

)
are respectively

defined in (45), (55) and (58).

According to this last Proposition, the swap portfolio change value St+δ(·)−
St may be decomposed into three parts. The first term Res(t, δ,S) corresponds

to the passage of time, as

change value port Swapt,t+δ

∣∣∣
ε=0

= Res(t, δ,B).

It means that if at the future time horizon t + δ, the interest rate remains as

the same as the one at the present time t, then the portfolio varies due to the

passage of time and its value is exactly given by this residual term.

The second term, written in the right part of (62) is a stochastic term

since it depends on the future shift ε(·) of the interest rate curve, and appears

to be a polynomial expression whose the coefficients are given by the various

sensitivities of the swap portfolio. As our below numerical experiments show,

this second term carries most of the information about the portfolio change at

the considered horizon. With these previous two terms, the following portfolio

change value approximation can be written:

change value port Swapt,t+δ(·) ≈

Res(t, δ;S) +

p∑
k=1

(−1)k

k!
Sens

(
k; t, δ;S

)
εk(·). (63)

So the related error approximation is

error approx port change Swapt,δ(·) ≡ change value port Swapt,t+δ(·)

−
{
Res(t, δ;S) +

p∑
k=1

(−1)k

k!
Sens

(
k; t, δ;S

)
εk(·)

}
≡ Rem

(
p+ 1; t, δ,S, ρ(·)

)
εp+1(·). (64)
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With the expression (58), this error approx port change Swap is a linear

combination of the swaps notional values, which in general has a big size as

107 or more. The coefficients which are involved in this combination depend

on the numbers of considered swaps. It means that some care should be

granted before using an approximation as (63). It is not obvious that the error-

approximation as (64) has actually a size admitted to be small following the

perspective of the investor. This implies that the knowledge of the magnitude

of such error approximation is of importance. The corresponding analysis is

performed under the view (32) about the PS of the interest rate.

Lemma 2.4. Under the hypothesis (49), the view (32) and with the restric-

tion (61) then a deterministic estimates of the swap portfolio remainder Rem

is given by

Rem
(
p+ 1; t, δ, ρ;S

)
≤ max

{∣∣Φ(ρ)
∣∣;−ε• < ρ < ε••

}
≤ max

{∣∣Ψ(ρ)
∣∣;−ε• < ρ < ε••

}
(65)

where

Φ(ρ) =
I∗∗∑

i∗∗=1

n∗∗i∗∗Rem Swap∗∗
i∗∗

(
p+ 1; t, T ∗∗

·;i∗∗ , δ; ρ
)

−
I∗∑

i∗=1

n∗i∗Rem Swap∗
i∗

(
p+ 1; t, T ∗

·;i∗ , δ; ρ
)

(66)

and

Ψ(ρ) =
I∗∗∑

i∗∗=1

n∗∗i∗∗
∣∣∣Rem Swap∗∗

i∗∗

(
p+ 1; t, T ∗∗

·;i∗∗ , δ; ρ
)∣∣∣

+
I∗∑

i∗=1

n∗i∗
∣∣∣Rem Swap∗

i∗

(
p+ 1; t, T ∗

·;i∗ , δ; ρ
)∣∣∣. (67)

The terms Rem Swap
(
p+1; t, T ∗∗

·;i∗∗ , δ; ρ
)

and Rem Swap
(
p+1; t, T ∗

·;i∗ , δ; ρ
)

are the remainder of each payer swap S∗∗
.;i∗∗ and receiver swap S∗

.;i∗.

As in the case of a single swap position, the assumption (49) seems to be

satisfied in various practical situations.

According to estimate (65), then the portfolio swap price change decompo-

sition (62) should be performed at some order p, where p is the first nonnegative
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integer for which the right member of this estimate is less than an amount tol-

erance level ψ ( as for instance ψ = 10−8 ) which would be acceptable by the

swap hedger.

3 Numerical Application

Before we present some numerical illustration related to swap hedging, let

us first define the zero-coupon yield curve used in this Section.

3.1 Zero-coupon yield curve

The interest rate curve used here is assumed to be given by the Nelson-

Siegel-Svenson model as defined in (4).

As in Diebold-Li [8], for all τ ≥ 0, the model is calibrated as

βt;1 = 0.0758, βt;2 = −0.02098, βt;2 = −0.00162, λ = 0.609

Features linked to the hedging operation framework is summarized in Table

1.

Table 1: Situation under consideration.

δ ν∗∗0 ν∗0 ε•• −ε• ε p

90 days 20% 20% −3% 3% 3% 12

In this table: δ represents the hedging time-horizon, ν∗∗0 , ν
∗
0 are the deposit

rates linked to holding (either for payer or receiver) the swaps instruments.

Here ε•, ε•• are defined in equation (32) and, p is the maximum order to use

in the computations of sensitivities. The choice p = 12 is chosen in order

to insure the small sizes of the remainder terms, and consequently leading to

efficient approximations. The notations with tilde (̃) are used in the sequel to

refer the portfolio to hedge.

Two cases of hedging operations are considered here:
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• Case1: The portfolio to cover is made by five types of payer swaps and

three types of receiver swaps. The Hedging portfolio is made by one type

of payer swap and three types of receiver swaps.

• Case2: The portfolio to cover is made by five types of bonds in long posi-

tions and three types of bonds in short positions. The Hedging portfolio

is made by five types of payer swaps and three types of receiver swaps.

3.2 Case1:Hedging a swap portfolio by a swap portfolio

In this Subsection, we are interested to cover a swap portfolio by another

swap portfolio.

The portfolio to hedge is made by five types of payer swaps S̃1

∗∗
, S̃2

∗∗
, S̃3

∗∗
,

S̃4

∗∗
and S̃5

∗∗
, and three types of receiver swaps S̃1

∗
, S̃2

∗
and S̃3

∗
. All of their

characteristics are summarized in Table 2.

Table 2: Bounds of the portfolio swap to hedge

type number maturity frequency rate swap

S̃1

∗∗
ñ∗∗1 = 100 3years 6 months 6.6490%

S̃2

∗∗
ñ∗∗2 = 200 4 years 6 months 6.8216%

S̃3

∗∗
ñ∗∗3 = 200 7 years 6 months 7.1124%

S̃4

∗∗
ñ∗∗4 = 100 10 years 6 months 7.2466%

S̃5

∗∗
ñ∗∗5 = 100 5 years 6 months 6.9475%

S̃1

∗
ñ∗1 = 200 4 years 1 year 6.9402%

S̃2

∗
ñ∗2 = 300 6 years 1 year 7.1668%

S̃3

∗
ñ∗3 = 100 7 years 1 year 7.2404%

Names of the types of swaps used are displayed in the first column of

this Table 2. The numbers of swaps used for each type are presented in the

second column. Maturities of the types of swaps considered are given in the

third column. We have written in the fourth column the corresponding swap

payment frequency, as semi-annually or annually frequency-based. Each swap

is assumed to have the notional value of 1 000 000 Euros. The fair rate swap of

each swap, as mentioned in Subsection 2.1, is given in the fifth column. As we
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assume that the present time corresponds to the time-inceptions for all of these

swaps, then the portfolio under consideration has zero value (or portf value =0

Euros).

3.2.1 Bounds for the future change value of the portfolio to hedge

As explained in Subsection 2.4, in order to decide to hedge or not the

considered swap portfolio, it is valuable to have a projection of the low and

high bounds for the portfolio change value at the given horizon and under a

(more and less severe) parallel shift of the interest rate.

By using our Proposition 2.2 then the result is summarized in Table 3.

Table 3: Characteristics of the portfolio swap to hedge

ε∗ change value portf (ε∗)

change value portf swapmin −3% −2.39× 107

change value portf swapmax 3% 1.93× 107

In Table 3, by ε∗ we denote the value of ε ∈ [−3%, 3%] which allows to

attain the minimum or maximum of the portfolio change value. This results

is performed by making use of the MatLab fmincom function.

It is seen here that in the worst case, the potential loss in case of dealing

with just a naked portfolio position can attain the size of 20 Millions of Euros,

which corresponds roughly to 20 swaps. So it might be useful to hedge the

position as we will consider below in subsubsection 3.2.3.

3.2.2 Estimate of the remainder term

Here we would like to grasp the size of the remainder term associated with

the above swap portfolio, when one consider the three parts decomposition of

the portfolio change value, at some order p. The result is summarized in Table

4.

The first column of this last table contains the expansion order p used in

the approximation resulting from our Lemma 2.4. Remind that the Remainder

term depends on ρ, with 0 < ρ < ε(·) ≤ ε•• or −ε• ≤ ε(·) < ρ < 0. It may

be observed in Table 4 that just limiting the expansion to the first or second
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Table 4: Higher bound Remainder portfolio swap for different order case3

order p ρ∗ Bound Remain higher Bound Remain

1 −3% 4.81× 106 9.58× 106

2 −3% 2.86× 105 5.20× 105

5 −3% 9.54 27.04

12 −3% 0.11× 10−9 0.15× 10−9

order leads to approximation errors of order 105 or more. This mean that

in the framework of swap portfolio, just making use sensitivities of order one

and two (similarly to the duration and convexity for the case of a single bond

position) is not enough to expect to get an efficient and acceptable hedging

operation. The particular situation considered here gives credence that at least

an approximation order more than p = 5 is required.

3.2.3 Hedging illustration

To hedge the previous portfolio introduced in Table 2 above, we make use

of another swap portfolio made by one type of payer swap S∗∗
1 , and three types

of receiver swaps S∗
1 , S

∗
2 and S∗

3 . The characteristics of all of these instruments

are summarized in Table 5.

Table 5: Characteristics of the hedging instruments

type number maturity frequency rate swap

S∗∗
1 n∗∗1 2 6 months 6.41%

S∗
1 n∗1 3 1 year 6.76%

S∗
2 n∗2 10 1 year 7.37%

S∗
3 n∗3 8 6 months 7.17%

The amount required for the hedging depends actually on the number of in-

struments used for that purpose, and consequently is not known in advance.

However, it is common among investors/hedgers to keep back a priori some

maximal allowed amount D. Here we determine this last from the relation
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D = γ
{ Ĩ∗∗∑

i∗∗=1

Ñ ∗∗
i∗∗ñ

∗∗
i∗∗ +

Ĩ∗∑
i∗=1

Ñ ∗
i∗ñ

∗
i∗

}
where γ is taken to be equal to 5%. As each notional value Ñ ∗∗

i∗∗ or Ñ ∗
i∗ is equal

to 1 000 000 Euros, then it is clear that D = 65 000 000.

The numbers n∗∗
1 ,n

∗
1,n

∗
2 and n∗

3 of swaps S∗∗
1 , S

∗
1 , S

∗
2 and S∗

3 respectively

required for the hedging, as described in the above in Lemma 2.1 in subsection

2.3, are determined here by using the IBM ILOG CPLEX’ solver. After 0.3

second running time (in our computer processor: AMD Sempron(tm) M120

2.10 GHz)), we obtain the results summarized in Table 6.

Table 6: Result of hedging operation Case1

n∗∗1 n∗1 n∗2 n∗3 Max Profit or Loss proportion

0 122 0 84 883 737.24 1.35%

The real Profits or Losses (PL) corresponding to some shifts ε ∈ [−3%, 3%]

are presented in the second column of Table 7. So by PLport we mean the PL

corresponding to the naked portfolio change value (that is the portfolio PL in

absence of hedging).

Profits and losses for the hedging instruments, denoted here PLinst and

defined in (19) are displayed in the third column. In the fourth column one can

see the PL for the overall portfolio (portfolio to hedge and hedging portfolio).

These last quantities include the hedging costs as defined in (20).

By ret port cov, in the fifth column, we mean the ratio

ret port cov =
PLport cov

D
.

It may be noted that it is not the return linked to the covered portfolio as

we just take as a basis the maximal amount allowed for the hedging operation.

Indeed for swaps whose the initial values may be equal to zero, the notion of

return should be taken with care as it is analyzed by A. Meucci [10]. Observe

that the portfolio to hedge is not assumed to be unwound at the considered

horizon, and the amount D is freezed for the hedge though the cost really

involved in the operation is strictly less than D.
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Table 7: Wealth for any shift ε ∈ [−3%, 3%] after the Hedging operation

ε PLport PLinst PLport cov ret port cov ret port

−3% −23 889 286.01 23 614 943.23 −857 471.72 −1.32% −36.75%

−2.5% −19 631 335.92 19 388 781.40 −825 683.46 −1.27% −30.20%

−2% −15 513 978.52 15 291 407.26 −805 700.19 −1.24% −23.87%

−1.5% −11 530 194.97 11 318 597.12 −794 726.80 −1.22% −17.74%

−1% −7673 324.12 7 466 276.54 −790 176.52 −1.22% −11.81%

−0.5% −3 937 044.78 3 730 514.93 −789 658.79 −1.21% −6.06%

0% −315 358.88 107 520.20 −790 967.62 −1.22% −0.49%

0.5% 3 197 424.50 −3 406 366.24 −792 070.68 −1.22% 4.92%

1% 6 606 704.45 −6 814 674.43 −791 098.92 −1.22% 10.16%

1.5% 9 917 602.67 −10 120 810.52 −786 336.78 −1.21% 15.26%

2% 13 134 977.33 −13 328 061.30 −776 212.91 −1.19% 20.21%

2.5% 16 263 436.15 −16 439 598.58 −759 291.37 −1.17% 25.02%

3% 19 307 348.95 −19 458 483.39 −734 263.37 −1.13% 29.70%

For the last sixth column by ret port we mean the ratio

ret port =
PLport

D
.

The compensation between the loss related to the portfolio to hedge and

the gain associated with the hedging portfolio may be understood from the

alternated signs for the quantities displayed in the second and third columns.

For ε = 0% one has ret port = −0.49%. This an indication that the time-

passage matters in hedging, and consequently should be taken into account

as is the case for the sensitivities we have introduced in this paper. For the

interest rate shift ε = −2% it may be seen, from the last two columns, that

ret port cov = −1.24% and ret port = −23.87%. This means that a loss

appears though the portfolio position is hedged or not. However the magnitude

is clearly more important than the one involved in absence of hedge. Under

the shift ε = 2% one has ret port cov = −1.19% and ret port = 20.21%.

That is, in absence of the hedging operation, the considered portfolio has

lead to an important gain. The hedge has an effect to get at worst a loss,

but the corresponding magnitude (when taking into account D as a reference

basis) is fortunately small.
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The cost of the hedging instruments is about 583 128.94. Here the resulting

loss can be viewed as the price of uncertainty and fear about the interest rate

behavior at the considered horizon. At this point, it may be important to

recall that the hedging operation has mainly as purpose to roughly maintain

the portfolio at its initial level, but not to make any profit.

3.3 Case2: Hedging a bond portfolio by a swap portfolio

The portfolio to cover is made by five types of bonds B̃1

∗∗
, . . . , B̃5

∗∗
in long

positions and three types of bonds B̃1

∗
, . . . , B̃3

∗
in short positions whose the

characteristics are summarized in Table 8.

Table 8: Characteristics of the bond portfolio to hedge.

type number cpn maturity unit value number×unit value

B̃1

∗∗
ñ1

∗∗ = 1 000 3% 3 years 889.82 889 822.50

B̃2

∗∗
ñ2

∗∗ = 1 500 5% 4years 922.08 1 383 119.18

B̃3

∗∗
ñ3

∗∗ = 500 7% 5years 984.24 492 121.75

B̃4

∗∗
ñ4

∗∗ = 750 4% 10 years 754.36 565 770.14

B̃5

∗∗
ñ5

∗∗ = 500 4% 12 years 721.21 360 609.61

B̃1

∗
ñ1

∗ = 1 000 4% 2 years 944.62 944 621.69

B̃2

∗
ñ2

∗ = 900 5% 3 years 942.20 847 988.22

B̃3

∗
ñ3

∗ = 1 000 6% 4 years 955.80 955 807.18

The type of bonds are presented in the first column of Table 8. The number

of each type of bond is displayed in the second column. All of the considered

bonds in the portfolio are assumed to have the same facial value 1 000 Euros.

Their (annual) coupon rates and maturities are displayed respectively in the

third and fourth columns of this Table. Unit market values of the bonds,

computed by making use of the zero yield curve defined in subsection 3.1,

are written in the fifth column. Therefore the portfolio initial value is seen

here to be equal to 943 025 Euros. The bond portfolio sensitivities results and

computations are not detailed in the present work, but they can be consulted

in our working paper [5].

The hedging swap portfolio is assumed to be made by five types of payer
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swaps S∗∗
1 , . . . , S

∗∗
5 , and three types of receiver swaps S∗

1 , . . . , S
∗
3 . The charac-

teristics of these hedging instruments are described in Table 9.

Table 9: Characteristics of the hedging instruments Case2

type number maturity frequency rate swap

S∗∗
1 n∗∗1 3 years 6 months 6.6490%

S∗∗
2 n∗∗2 4 years 6 months 6.8216%

S∗∗
3 n∗∗3 7 years 6 months 7.1124%

S∗∗
4 n∗∗4 10 years 6 months 7.2466%

S∗∗
5 n∗∗5 5 years 6 months 6.9475%

S∗
1 n∗1 4 years 1 year 6.9402%

S∗
2 n∗2 6 years 1 year 7.1668%

S∗
3 n∗3 7 years 1 year 7.2404%

Each considered swap is assumed to have the notional value 1 000 000 Euros.

For the payer swaps the payment dates is done in a semi-annual basis, while

they are annually based for the receiver swaps. To simplify all of the swaps are

at-par, that is they are supposed to be incepted at the current time . So they

have an initial zero market value. The integer numbers n∗∗
1 , . . . ,n

∗∗
5 , n∗

1, . . . ,n
∗
3,

mentioned in the second column two of Table10, are unknown. We seek to find

them in order to perform the hedging in accordance with Proposition 2.1 in

Subsection 2.3 with the maximal amount D calculated here from

D = γ
( Ĩ∗∗∑

i∗∗=1

B̃∗∗
i∗∗ñ

∗∗
i∗∗ +

Ĩ∗∑
i∗=1

B̃∗
i∗ñ

∗
i∗

)
with γ = 5%. It may be seen here that D = 325 962.32.

With the same solver and machine, used in the previous hedging operation

(swap portfolio by swap portfolio) after 0.16 second machine running time, we

obtain the allocation result summarized in Table 10.

Table 10: Result of hedging operation Case2

n1
∗∗ n2

∗∗ n3
∗∗ n4

∗∗ n5
∗∗ n1

∗ n2
∗ n3

∗ Loss proportion

0 0 0 2 1 1 0 1 9619 1%

It seen in this Table10 that the possible maximum profit or loss is here

9 619, which corresponds to 1% of the bond portfolio initial value 95 883.15.
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Next we provide in Table 11 the hedging operation effect after any parallel

shift ε of the yield curve for ε ∈ [−3%; 3%].

Table 11: Wealth associated with the hedging operation Case2

ε PLport PLinst PLport cov ret port cov ret port

−3% 357 230, 52 −366 849, 69 −9 619, 17 −2, 95% 109, 59%

−2, 5% 292 360, 69 −301 025, 82 −8 665, 12 −2, 66% 89, 69%

−2% 230 355, 99 −238 254, 93 −7 898, 94 −2, 42% 70, 67%

−1, 5% 171 082, 34 −178 389, 94 −7 307, 60 −2, 24% 52, 49%

−1% 114 412, 30 −121 290, 84 −6 878, 54 −2, 11% 35, 10%

−0, 5% 60 224, 74 −66 824, 40 −6 599, 66 −2, 02% 18, 48%

0% 8 404, 48 −14 863, 81 −6 459, 33 −1, 98% 2, 58%

0, 5% −41 157, 98 34 711, 63 −6 446, 35 −1, 98% −12, 63%

1% −88 566, 77 82 016, 77 −6 550, 00 −2, 01% −27, 17%

1, 5% −133 920, 93 127 160, 95 −6 759, 98 −2, 07% −41, 08%

2% −177 314, 64 170 248, 21 −7 066, 43 −2, 17% −54, 40%

2, 5% −218 837, 50 211 377, 57 −7 459, 93 −2, 29% −67, 14%

3% −258 574, 72 250 643, 25 −7 931, 47 −2, 43% −79, 33%

Similar comments related to Table 11, as the ones done for Table7, may be

also given, so for shortness we do not provide the details. However if trying

to compare the hedging results for the Case1 (i.e. Swap by Swap) and the

Case2 (i.e. Bond by Swap), we observe that at the shift level −2%, then∣∣∣ ret port
ret port cov

∣∣∣ ≈ 19.25 for the swap Case1, while
∣∣∣ ret port
ret port cov

∣∣∣ ≈ 29.20 for the bond

Case2.

In contrast at the shift level 2%, we obtain then
∣∣∣ ret port
ret port cov

∣∣∣ ≈ 16.98 for the

swap Case1, while
∣∣∣ ret port
ret port cov

∣∣∣ ≈ 25.07 for the bond Case2.

It means that the hedging effect is more important in the case for a bond

portfolio when compared with the one for a swap portfolio.

4 Conclusion

1. Matching the sensitivities of the portfolio to hedge and the hedging in-
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struments is among the various common approaches used by practition-

ers. For the case of a position sensitive to interest rate and under the

assumption of interest rate parallel shift ( PS ), we have seen in Section

2.2 that the hedging operation leads to a nonlinear and integer mini-

mization problem. Actually, this last can be reduced to a Mixed Integer

Linear Problem which may be solved by making use of standard solvers.

2. In contrast with the well-known classical bond duration and convexity,

we have used high order sensitivities taking into account the passage

of time. This is useful in order to reduce the portfolio change approx-

imation whose the quality depends on notional sizes of the considered

instruments. It may be noted that very often bond and swap are seen as

linear instruments with respect to zero-coupons, but they are not with

respect to the one-factor risk/opportunity which is here the interest rate

PS.

3. Before considering the systematic analysis, it seems natural first to raise

the question whether the hedging operation deserves to be performed.

Our answer here is given by providing deterministic bounds of the nude

portfolio change under the projected market situation.

4. In the hedging framework, we are able here to derive deterministic bound

for the hedging error under a view of interest rate PS inside a given inter-

val. This is especially interesting in comparison with standard variance

hedging errors, since here the economical loss/gain resulting from the

hedge operation becomes visible.

5. This work has been done in the framework of a PS of the interest rate

curve at the hedging time horizon. Though the PS assumption deserves

theoretical and practical consideration, it appears that such a situation is

less realistic, since in most of concrete cases the interest rate curve moves

in a non parallel fashion. Nevertheless, the ideas presented in the present

paper can be explored to tackle the issue under the situation driven by

a one factor uncertainty, as in the case of Vasicek or Cox-Ingersoll-Ross

models. This full detail has been recently analyzed by the third author

in [13].
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6. The study performed in this work still belongs to the single-curve pre-

crisis theoretical approach. However the ideas we have introduced here

may be explored to analyze the hedging with swaps under the present in-

terest rate framework, where multiple-curve valuation is now the market

practice. Under the consideration of discounting and forwarding curves

in separate manner, and always in the spirit of interest rate PS, then it

would appear that we are lead to consider a two-factors problem, which

should be more difficult to handle when comparing with the one factor

setting considered in the present paper. Many more details are expected

to be developed in our future next project.
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