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Optimal Steady Motions for Oriented Vehicles

William Holderbaum1 and James Biggs2

Abstract

Motivated by the motion planning problem for oriented vehicles trav-
elling in a 3-Dimensional space; Euclidean space E3, the sphere S3 and
Hyperboloid H3. For such problems the orientation of the vehicle is nat-
urally represented by an orthonormal frame over a point in the under-
lying manifold. The orthonormal frame bundles of the space forms R3,
S3 and H3 correspond with their isometry groups and are the Euclidean
group of motion SE(3), the rotation group SO(4) and the Lorentzian
group SO(1, 3) respectively. Orthonormal frame bundles of space forms
coincide with their isometry groups and therefore the focus shifts to
left-invariant control systems defined on Lie groups. In this paper a
method for integrating these systems is given where the controls are
time-independent. For constant twist motions or helical motions, the
corresponding curves g(t) ∈ SE(3) are given in closed form by using the
well known Rodrigues’ formula. However, this formula is only applica-
ble to the Euclidean case. This paper gives a method for computing the
non-Euclidean screw/helical motions in closed form. This involves de-
coupling the system into two lower dimensional systems using the double
cover properties of Lie groups, then the lower dimensional systems are
solved explicitly in closed form.
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1 Introduction

This paper is motivated by the problem of motion planning for oriented

vehicles travelling in a 3-Dimensional (3-D) space, such as the airplane landing

problem [1], multi-vehicle formation control of Unmanned Air Vehicles (UAV)

[2] and the underactuated Autonomous Underwater Vehicle (AUV) [3]. In each

of these cases the oriented vehicles trace paths in Euclidean space R3. In this

paper we generalize the Euclidean frame, simultaneously studying oriented

vehicles travelling in either of the non-Euclidean 3-D space forms; spherical

space S3 and Minkowski space H3, as in [4]. For such problems the orientation

of the vehicle is naturally represented by an orthonormal frame over a point in

the underlying manifold, that is, the configuration space of the vehicle can be

taken as the orthonormal frame bundle of the manifold, and the motions of the

vehicle are described by curves in this bundle. The orthonormal frame bundles

of the space forms S3 and H3 correspond with their isometry groups and are

the rotation group SO(4) and the Lorentzian group SO(1, 3) respectively [5].

This generalization to framed curves in non-Euclidean space has applications

in relativistic physics [6] and quantum control [7].

For the specific problem of oriented vehicles travelling at unit speed in a 3-

D space, see [4], the authors illustrate that for a specific set of optimal controls

(at singularities) the corresponding motions are helical motions. It is the aim of

this paper to provide closed form expressions for these optimal steady motions.

This problem amounts to integrating the left-invariant differential system:

ġ(t) = g(t)A (1)

where A is a constant element of the Lie algebra g. The solution g(t) : R →
R4×4 ∈ G of the differential equation (1) is given by g(t) = g0 exp(At) where

g(0) = g0. In the Euclidean case i.e. when A ∈ se(3) the system (1) can

be integrated using the well know Rodrigues’ Formula [8], to obtain the
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motions g(t) ∈ SE(3). However, this formula does not extend to the non-

Euclidean cases. In this paper we describe a method for deriving closed form

solutions of (1) when A ∈ so(4) and A ∈ so(1, 3), and the corresponding

motions are curves g(t) ∈ SO(4) and g(t) ∈ SO(1, 3) respectively.

This method uses a natural isomorphism (described in [9]) to decouple

the kinematic systems defined on them, into two trivial lower dimensional

systems. These lower dimensional systems can then be solved in closed form

using a similar procedure to that described in [5]. Finally, the solutions to

the decoupled systems are projected back onto the original system to obtain

the closed form solutions on SO(4) and SO(1, 3). The method avoids using

the computationally expensive methods of diagonalization [10] and the SN

decomposition [11].

Finally, these explicit expressions are used to derive parametric expressions

for helical motions for oriented vehicles travelling in a 3-D non-Euclidean space

form.

2 Helical motions for oriented vehicles

In this section we state the kinematic equations of motion for oriented ve-

hicles and relate these to the Serret-Frenet frame. Following this, controls that

induce steady motions are identified and the problem of explicitly computing

these motions is described.

2.1 Kinematics of oriented vehicles

The differential equations describing an oriented vehicle travelling at unit

speed in a three dimensional space are described by the left-invariant differen-

tial system, see [4]:

dg

dt
(t) = g(t)




0 −ε 0 0

1 0 −u3 u2

0 u3 0 −u1

0 −u2 u1 0


 (2)
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such that g(t) ∈ G where G depends on ε and is SE(3) for ε = 0, SO(4) for

ε = 1 and SO(1, 3) for ε = −1 and the controls ui relate to the components

of angular velocity of the vehicle. It follows that (2) describes the kinematic

equations of the vehicle such that the vehicle traces out a trajectory γ(t) ∈ M ,

where M is the ambient space, and are related to g(t) ∈ G via the projection

γ(t) = g(t)~e1 where ~e1 is a basis element in a standard orthonormal frame

~e1, ~e2, ~e3, ~e4 ∈ R4. The projected curves γ(t) ∈ M describe the path that the

vehicle traces in 3-D space, where M = R3 when g(t) ∈ SE(3), M = S3

when g(t) ∈ SO(4) and M = H3 when g(t) ∈ SO(1, 3). It follows from (2)

that this particular vehicle is restricted to travel at unit speed
∥∥∥dγ(t)

dt

∥∥∥ = 1 in

a forward direction such that dγ(t)
dt

coincides with the first leg of the moving

frame. To understand the path that the vehicle will trace in the ambient space

the general frame (2) can be explicitly related to the Serret-Frenet Frame lifted

to a left-invariant differential system [5]. The Serret-Frenet frame lifted to a

left-invariant system on G is:

dḡ(t)

dt
= ḡ(t)Λ = ḡ(t)




0 −ε 0 0

1 0 −κ 0

0 κ 0 −τ

0 0 τ 0


 (3)

with γ(t) = ḡ(t)~e1, ~T (t) = ḡ(t)~e2, ~N(t) = ḡ(t)~e3 and ~B(t) = ḡ(t)~e4, where ~ei

is the standard basis in R4 and ~T (t), ~N(t), ~B(t) are the tangent, normal and

binormal vectors of the Serret-Frenet Frame [5]. Note that γ(t) ∈ M where the

associated base space is M = R3 when G = SE(3), M = S3 when G = SO(4)

and M = H3 when G = SO(1, 3), see [5]. Assume that the vehicle described

by the general frame (2) has attached to it a moving frame {M} = {x′, y′, z′},
then the general frame and Serret-Frenet frame are related by the following

theorem:

Theorem 2.1. The curvature κ and torsion τ of a path that the oriented

vehicle traces are related to the steering controls u1, u2, u3 by the following

equations:

κ = u3 cos β − u2 sin β

τ =
dβ

dt
+ u1

tan β = −u2

u3

(4)
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where β is the angle between the normal vector ~N of the Serret-Frenet frame

and the vector y′ of the moving frame {M}.
Proof. See [5].

2.2 Helical Motions

In this paper the motions of interest are helical motions of oriented vehicles,

which have been used to plan global manoeuvres for AUVs [12]. These steady

motions provide feasible reference trajectories for oriented vehicles to track.

Translating, circular and helical motions of oriented vehicles correspond to

curves of constant curvature κ and constant torsion τ . Therefore, from the

equations in (4) it is easily shown that kinematic controls that induce steady

motions of the vehicle are of the form:

u1 = c1

u2 = c2

u3 = c3

(5)

where c1, c2, c3 are arbitrary constants or alternatively the controls can take

the form:
u1 = c1

u2 = r sin θ(t)

u3 = r cos θ(t)

(6)

where r is constant and θ(t) is linear in t will induce steady motions. Explicitly

the constant angular velocity controls c1, c2, c3 induce motions of the vehicle

along curves of constant curvature and torsion. From equations (4) and (5)

the curvature and torsion are given explicitly as:

κ =
√

c2
2 + c2

3

τ = c1

(7)

and the angular velocity controls (6) induce motions of the vehicle along curves

of constant curvature and torsion. From equations (4) and (6) the curvature

and torsion are given explicitly as:

κ = r

τ = −θ̇ + c1

(8)
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where θ̇ is constant and corresponds to the time differential of θ(t). The form

of the controls (5) and (6) are of particular interest as they are shown to be

optimal in [4].

2.3 Parametric equations for helical motions

In order to provide feasible and usable reference trajectories it is necessary

to yield parametric expressions for the helical motions γ(t) ∈ M . The term

global is used as the paths will be derived independently of a local coordinate

chart. In the case of steady motions, the entries of Serret-Frenet frame (3) are

constant and therefore the steady motions are described by

γ(t) = ḡ(t)~e1 = ḡ(0) exp(Λt)~e1.

The problem of computing these steady motions is generalized in the fol-

lowing problem statement.

Problem Statement 1. Explicitly compute the solution g(t) ∈ G of the

following left-invariant differential equation:

dḡ(t)

dt
= ḡ(t)A (9)

where

A =




0 −εb1 −εb2 −εb3

b1 0 −a3 a2

b2 a3 0 −a1

b3 −a2 a1 0


 (10)

a1, a2, a3, b1, b2, b3 ∈ R are piecewise constant and where A ∈ se(3) when ε = 0,

A ∈ so(4) when ε = −1, and A ∈ so(1, 3) when ε = 1.

This paper describes methods to obtain the solution g(t) : R → R4×4 ∈ G

of the differential equation (9). In general the solution is given by

g(t) = g0 exp(At),

where g(0) = g0, where the matrix exponential exp(At) is (see [11] for detail):

exp(At) =
+∞∑

k=0

tkAk

k!
(11)
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Therefore, the solution to (9) amounts to calculating the matrix exponential

(11). In the Euclidean case ε = 0 the system (9) can be solved using the

well know Rodrigues’ Formula to obtain g(t) ∈ SE(3) [8]. However, this

formula does not extend to the non-Euclidean cases. In this paper we describe

a method for deriving closed form solutions of equation (9), where A ∈ so(4)

and A ∈ so(1, 3), and the corresponding solutions are curves g(t) ∈ SO(4)

and g(t) ∈ SO(1, 3) respectively. The method here uses the double cover

properties of these connected Lie Groups to decompose the system into trivial

lower dimensional systems. The solutions of the decoupled systems are then

computed in closed form. These decoupled solutions are then projected back

onto the original system.

3 Decoupling the system

In this section the system described by equations (9) defined on SO(4) and

SO(1, 3) are decoupled into two lower dimensional systems. This decoupling

then allows us to compute the solutions of the decoupled systems using a simple

technique. The solutions of the decoupled systems can then be projected back

onto the original manifold to yield the solution to the original system (9) on

SO(4) and SO(1, 3). We begin here by describing the decoupling of the system

defined on SO(4).

3.1 Decoupling the system on SO(4)

The system defined by the differential equations (9) on SO(4) can be de-

coupled into two lower dimensional systems. The decoupling is possible as the

Lie algebra so(4) is isomorphic to su(2)× su(2) and an element A ∈ so(4) can

be identified with the elements (V1, V2) ∈ su(2) × su(2) using the following

theorem:

Theorem 3.1. so(4) is isomorphic to su(2)× su(2) where an element A ∈
so(4) is associated with the elements (V1, V2) ∈ su(2)× su(2) via the following
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mapping:

A 7→ (V1, V2) =



0 −b1 −b2 −b3

b1 0 −a3 a2

b2 a3 0 −a1

b3 −a2 a1 0




7→ 1

2

(
(a1 + b1)i (a2 + b2) + (a3 + b3)i

−(a2 + b2) + (a3 + b3)i −(a1 + b1)i

)

,
1

2

(
(a1 − b1)i (a2 − b2) + (a3 − b3)i

−(a2 − b2) + (a3 − b3)i −(a1 − b1)i

)

(12)

where a1, a2, a3, b1, b2, b3 ∈ R
Proof. See [13].

Using Theorem 3.1, the system (9) on SO(4) can be decoupled into a system

on SU(2)× SU(2):

ġ1(t) = g1(t)V1

ġ2(t) = g2(t)V2

(13)

it follows that the solutions of these differential equations are:

g1(t) = g1(0) exp(tV1)

g2(t) = g2(0) exp(tV2)
(14)

This is useful as the exponential of an element in su(2) can be expressed in

closed form, which is detailed in Section 4.

3.2 Decoupling systems on SO(1, 3)

In this section the system described by equation (9) is decoupled into two lower

dimensional systems when ε = −1, where the corresponding frame bundle is

SO(1, 3). Therefore, elements of the Lie algebra are of the form:

A =




0 b1 b2 b3

b1 0 −a3 a2

b2 a3 0 −a1

b3 −a2 a1 0


 (15)
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In a similar manner to Section 3.1 the system described by equation (9) on

SO(1, 3) is decoupled into two lower dimensional systems. This decoupling is

performed by using the following theorem:

Theorem 3.2. so(1, 3) is isomorphic to sl2(C) × sl2(C) where an element

A ∈ so(1, 3) is identified with the elements (U,U∗) where U,U∗ ∈ sl2(C) via

the following mapping:

A 7→ (U,U∗) =



0 b1 b2 b3

b1 0 −a3 a2

b2 a3 0 −a1

b3 −a2 a1 0




7→ 1

2

(
(ia1 + b1) (a2 + b3) + i(a3 − b2)

(b3 − a2) + i(a3 + b2) − (ia1 + b1)

)

,
1

2

(
(b1 − ia1) (b3 − a2)− i(a3 + b2)

(b3 + a2)− i(a3 − b2) − (b1 − ia1)

)

(16)

where a1, a2, a3, b1, b2, b3 ∈ R and the ∗ notation denotes the conjugate trans-

pose.

Proof. See [13].

Following Theorem 3.2 the differential system (9) with A ∈ so(1, 3) can be

written as a decoupled system:

ġ1(t) = g1(t)U

ġ∗1(t) = g∗1(t)U
∗ (17)

where g1(t), g
∗
1(t) ∈ SL2(C) and the solutions to differential equations (17) are:

g1(t) = g1(0) exp(tU)

g∗1(t) = g∗1(0) exp(tU∗)
(18)

the solutions g1(t), g
∗
1(t) ∈ SL2(C) in equation (18) can be solved in closed

form as shown in the following section.
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4 Solving the decoupled systems

In the previous section the kinematic system defined on the six dimensional

Lie groups SO(4) and SO(1, 3) were decoupled into two lower dimensional sys-

tems defined on SU(2) and SL2(C). In this section we explicitly solve these

lower dimensional systems. Calculating the solutions g(t) ∈ G amounts to

computing the exponential maps of their Lie algebras. We begin with kine-

matic systems defined on the Lie group SU(2).

4.1 Exponential map of the matrices V1 and V2

It is necessary to calculate the matrix exponentials of the matrices (V1, V2) ∈
su(2)×su(2) to obtain closed form solutions for (g1(t), g2(t)) ∈ SU(2)×SU(2).

Theorem 4.1. The closed form solutions g(t) ∈ SU(2) of the differential

equation ġ(t) = g(t)V where V ∈ su(2) consisting of all complex skew hermi-

tian matrices:

V =

(
α β

−β̄ ᾱ

)
(19)

with α + ᾱ = 0 is given by

g(t) = g0

( (
cos tλ + α

λ
sin tλ

) (
β
λ

sin tλ
)

(
− β̄

λ
sin tλ

) (
cos tλ + ᾱ

λ
sin tλ

)
)

(20)

where λ2 = |α|2 + |β|2

Proof. Note that V 2 = −λ2I where I is the identity element in SU(2).

Then using formula (11) and splitting the power series into odd and even

powers gives:

exp(tV ) =
∞∑

k=0

tk

k!
V k =

∞∑
n=0

t2nV 2n

(2n)!
+

∞∑
n=0

t2n+1V 2n+1

(2n + 1)!
(21)

substituting V 2 into (21) and rearranging yields:

exp(tV ) = I

∞∑
n=0

(−1)n(tλ)2n

(2n)!
+

V

λ

∞∑
n=0

(−1)n (tλ)2n+1

(2n + 1)!
(22)
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simplifying (22) using the Taylor Series for the sine and cosine functions the

matrix exponential is stated in closed form:

exp(tV ) = (cos tλ)I +

(
1

λ
sin tλ

)
V

=

( (
cos tλ + α

λ
sin tλ

) (
β
λ

sin tλ
)

(
− β̄

λ
sin tλ

) (
cos tλ + ᾱ

λ
sin tλ

)
) (23)

then substituting (20) into g(t) = g(0) exp(tV ) yields (20).

Using Theorem 4.1 to evaluate exp(tV1) and exp(tV2) and assuming for

simplicity of exposition that g1(0) = I and g2(0) = I, where I is the identity

matrix, yields g1(t) and g2(t) in closed form as:

g1(t) = exp(V1t) = (cos tλ1)I +

(
1

λ1

sin tλ1

)
V1 (24)

where

λ2
1 =

(a1 + b1)
2

4
+

(a2 + b2)
2

4
+

(a3 + b3)
2

4
(25)

and

g2(t) = exp(V2t) = (cos tλ2)I +

(
1

λ2

sin tλ2

)
V2 (26)

such that

λ2
2 =

(a1 − b1)
2

4
+

(a2 − b2)
2

4
+

(a3 − b3)
2

4
(27)

where V1 and V2 are the matrices defined in (12). Therefore, the solutions of

the decoupled systems (14) can be expressed simply in closed form.

4.2 Exponential map of the matrices U and U ∗

The computation of the matrix exponentials of the matrices U,U∗ ∈ sl2(C)

given in equations (4.2), is analogous to that used for V1, V2 ∈ su(2), therefore

we state the results in the following Theorems:

Theorem 4.2. The closed form solutions g1(t) ∈ SL2(C) of the differential

equation ġ1(t) = g1(t)U where U ∈ sl2(C) consists of all matrices of the form:

U =
1

2

(
(ia1 + b1) (a2 + b3) + i(a3 − b2)

(b3 − a2) + i(a3 + b2) − (ia1 + b1)

)
(28)
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is given by

g1(t) = g0((cos tλ1)I +

(
1

λ1

sin tλ1

)
U) (29)

where

λ2
1 =

(a1 − ib1)
2

4
+

(a2 − ib2)
2

4
+

(a3 − ib3)
2

4
(30)

And the following:

Theorem 4.3. The closed form solutions g∗1(t) ∈ SL2(C) of the differential

equation ġ∗1(t) = g∗1(t)U
∗ where U∗ ∈ sl2(C) consists of all matrices of the

form:

U∗ =
1

2

(
(b1 − ia1) (b3 − a2)− i(a3 + b2)

(b3 + a2)− i(a3 − b2) − (b1 − ia1)

)
(31)

is given by

g∗1(t) = g0((cos tλ2)I +

(
1

λ2

sin tλ2

)
U∗) (32)

where

λ2
2 =

(a1 + ib1)
2

4
+

(a2 + ib2)
2

4
+

(a3 + ib3)
2

4
. (33)

The decoupled systems can be solved explicitly using Theorem 4.1, Theo-

rem 4.2 and Theorem 4.3.

5 Projecting the decoupled system back onto

the original system

The previous section solves the decoupled solutions explicitly in closed

form, however it is necessary to reconstruct the solutions on the original Lie

group SO(4) and SO(1, 3). This projection is performed by using the mapping

described in the following subsection:
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5.1 Projecting back onto SO(4)

Firstly, define the set:

X =

{(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
: x0, x1, x2, x3 ∈ R

}
(34)

then for any element ẑ ∈ R4 associate an element Z ∈ X via the mapping:

ẑ =




z0

z1

z2

z3


 → Z =

(
z0 + iz1 z2 + iz3

−z2 + iz3 z0 − iz1

)
(35)

where z0, z1, z2, z3 ∈ R and define a second element, for simplicity of exposition,

as ŵ ∈ R4 associated to W ∈ X in the same way as equation (35):

ŵ =




w0

w1

w2

w3


 → W =

(
w0 + iw1 w2 + iw3

−w2 + iw3 w0 − iw1

)
(36)

where w0, w1, w2, w3 ∈ R then recall from [9] the homomorphism Φ : SU(2)×
SU(2) → SO(4) is defined through the following equivalent group actions:

gẑ = ŵ (37)

for g ∈ SO(4) if and only if

g1Zg−1
2 = W (38)

where g1, g2 ∈ SU(2). Using the homomorphism Φ we can construct a closed

form solution g ∈ SO(4) from the closed form solutions g1, g2 ∈ SU(2). Firstly,

note that g1, g2 ∈ SU(2) can be projected onto R4 following the equations (38)

and (36).

Expressing these two equations as one projection yields:

g1Zg−1
2 = W 7→ ŵ ∈ R4 (39)

using the projection (39) and the equivalence of the group actions (37) and

(38) implies that the solution g ∈ SO(4) can be constructed by associating the

first column of g ∈ SO(4) defined by

ŵ1 = g ·
[

1 0 0 0
]T
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with

g1

(
1 0

0 1

)
g−1
2 = W1 → ŵ1

it follows that the remaining columns of SO(4) are identified with:

g1

(
i 0

0 −i

)
g−1
2 = W2 → ŵ2

g1

(
0 1

−1 0

)
g−1
2 = W3 → ŵ3

g1

(
0 i

i 0

)
g−1
2 = W3 → ŵ4

(40)

then it follows that

g =
(

ŵ1 ŵ2 ŵ3 ŵ4

)
(41)

The solution (41) is a particular solution of the system (9) for G = SO(4).

However, through the trivial properties of left-invariance of the system (9) and

the existence of a group inverse in G, this can be expressed as a general solution.

Denote the general solution of equation (9) for G = SO(4) as ggen ∈ SO(4)

subject to the initial condition gint ∈ SO(4), then the general solution is:

ggen = gintg(0)−1g (42)

where g is defined by (41) and g(0) is g at t = 0.

5.2 Projecting back onto SO(1, 3)

In a similar manner to Section 5.1 define a set of matrices X such that:

X =

{(
x0 + x1 x3 − ix2

x3 + ix2 x0 − x1

)
: x0, x1, x2, x3 ∈ C

}
(43)

this is the real vector space of Hermitian 2 × 2 matrices, in addition let V−1

denote the real linear space spanned by the basis ie0, e1, e2, e3. For any element

ẑ = z0ie0 + z1e1 + z2e2 + z3e3 in V−1, with z0, z1, z2, z3 ∈ C is associated to
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Z ∈ X via the mapping:

ẑ =




z0

z1

z2

z3


 → Z =

(
z0 + z1 z3 − iz2

z3 + iz2 z0 − z1

)
(44)

and for simplicity of exposition define a second element ŵ ∈ V−1 associated to

W ∈ X via the mapping:

ŵ =




w0

w1

w2

w3


 → W =

(
w0 + w1 w3 − iw2

w3 + iw2 w0 − w1

)
(45)

then the homomorphism Φ : SL2(C) → SO(1, 3), see [9], is defined through

the following equivalent group actions:

gẑ = ŵ (46)

for g ∈ SO(1, 3) whenever

g3Zg∗3 = W (47)

for g3 ∈ SL2(C) and where g∗3 is the conjugate transpose of g3. Therefore, we

can obtain the solution g(t) ∈ SO(1, 3) by using the homomorphism Φ defined

by equations (46) and (47). Then each column of SO(1, 3) is identified with:

g3

(
1 0

0 1

)
g3
∗ = W1 → ŵ1

g3

(
1 0

0 −1

)
g3
∗ = W2 → ŵ2

g3

(
0 −i

i 0

)
g3
∗ = W3 → ŵ3

g3

(
0 1

1 0

)
g3
∗ = W3 → ŵ4

(48)

where g ∈ SO(1, 3) is defined by:

g =
(

ŵ1 ŵ2 ŵ3 ŵ4

)
(49)
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The general solution of equation (9) for G = SO(1, 3) denoted ggen ∈ SO(1, 3)

subject to the initial condition gint ∈ SO(1, 3), is then given by:

ggen = gintg(0)−1g (50)

where g is defined by (49) and g(0) is g at t = 0.

This section has described methods for integrating kinematic systems with

piecewise constant controls defined on the 6-D Lie groups SO(4) and SO(1, 3).

These methods are now applied to integrate the generalized Serret-Frenet

frame that describe steady motions of oriented vehicles. Therefore, we are

able to derive parametric equations describing generalized helical, circular and

geodesic motions of vehicles in 3-D space. The term natural is used as the

equations describing the path that the vehicle traces, are expressed solely in

terms of its curvature and torsion.

6 Analytic expressions for Helical Motions

In this section closed form analytic expressions are derived that describe

the steady motions of an oriented vehicle travelling at unit speed given the

controls (5) or (6). Using the lifted Serret-Frenet Frame (3) and the integration

methods outlined in this paper, we are able to describe this motion in terms

of the paths curvature and torsion.

6.1 Euclidean case

It is well known that when the Lie algebra is se(3) i.e when ε = 0 in equation

(9), the Rodrigues formula can be used to obtain the solutions ḡ(t) ∈ SE(3)

(see [8]). It follows that when the curvature and torsion are constant in (3) the

solutions ḡ(t) ∈ SE(3) of the Serret-Frenet Frame can be given in closed form

and then projected down to R3, the equations for helices through the identity
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(ḡ(0) = I) are given by γ(t) = [x(t), y(t), z(t)]T :

x(t) =
tτ 2

κ2 + τ 2
+

κ2 sin(
√

κ2 + τ 2t)

(κ2 + τ 2)3/2

y(t) =
κ

κ2 + τ 2
− κ cos(

√
κ2 + τ 2t)

κ2 + τ 2

z(t) = κτ

(
t

κ2 + τ 2
− sin(

√
κ2 + τ 2t)

(κ2 + τ 2)3/2

)
(51)

these helices are explicitly defined in terms of the geometric invariants κ and

τ and are therefore in their most natural parametric form, where κ and τ are

dependent on the controls (5) and (6).

6.2 Spherical Case

When ḡ(t) ∈ SO(4), the differential equation describing the vehicles motion

is:

dḡ(t)

dt
= ḡ(t)




0 −1 0 0

1 0 −κ 0

0 κ 0 −τ

0 0 τ 0


 (52)

Following Theorem 3.1, (52) can be decoupled into the differential equations:

ġ1(t) = g1(t)
1

2

(
(τ + 1)i κi

κi −(τ + 1)i

)

ġ2(t) = g2(t)
1

2

(
(τ − 1)i κi

κi −(τ − 1)i

) (53)

where g1(t), g2(t) ∈ SU(2). Assuming that the curves are through the iden-

tity and using equations (24) and (26) obtain the solutions to the differential

equations (53) as:

g1(t) =

(
cos tλ1 0

0 cos tλ1

)

+
sin tλ1

2λ1

(
(τ + 1)i κi

κi −(τ + 1)i

) (54)
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where:

λ2
1 =

(τ + 1)2

4
+

κ2

4
(55)

and

g2(t) =

(
cos tλ2 0

0 cos tλ2

)

+
sin tλ2

2λ2

(
(τ − 1)i κi

κi −(τ − 1)i

) (56)

with

λ2
2 =

(τ − 1)2

4
+

κ2

4
(57)

the projection of (54) and (56) onto the base space S3 is given by:

g1(t)

(
1 0

0 1

)
g−1
2 (t) = W1 → ŵ1 = γ(t) (58)

substituting (54) and (56) into (58) and simplifying we obtain that γ(t) =

[x0, x1, x2, x3]
T :

x0 = cos λ1t cos λ2t + sin λ1t sin λ2t

(
τ 2 + κ2 − 1

4λ1λ2

)

x1 =
(τ + 1)

2λ1

cos λ2t sin λ1t +
(1− τ)

2λ2

cos λ1t sin λ2t

x2 =
κ

2λ1λ2

sin λ1t sin λ2t

x3 =
κ

2λ1

sin λ1t cos λ2t− κ

2λ2

cos λ1t sin λ2t

(59)

this gives an equation for a Helix in S3 through the identity expressed explicitly

in terms of the geometric invariants κ and τ . Then for any initial configuration

g0 ∈ SO(4), g0γ(t) describes all helices in S3.

6.3 Hyperbolic Case

For the hyperbolic case where ḡ(t) ∈ SO(1, 3), we use the method outlined

in Section 5 to derive the equations steady motions for an oriented vehicle

travelling in H3 where the differential equation describing the vehicles motion
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is:

dḡ(t)

dt
= ḡ(t)




0 1 0 0

1 0 −κ 0

0 κ 0 −τ

0 0 τ 0


 (60)

Following Theorem 4.1, this can be decoupled into the differential equa-

tions:

ġ1(t) = g1(t)
1

2

(
iτ + 1 κi

κi −(iτ + 1)

)

ġ∗1(t) = g∗1(t)
1

2

(
1− iτ −κi

−κi −(1− iτ)

) (61)

where g1(t), g
∗
1(t) ∈ SL2(C). Assuming that the curves are through the iden-

tity, then using equations (29) and (32) obtain the solutions:

g1(t) =

(
cos tλ1 0

0 cos tλ1

)

+
sin tλ1

2λ1

(
iτ + 1 κi

κi −(iτ + 1)

)

g∗1(t) =

(
cos tλ2 0

0 cos tλ2

)

+
sin tλ2

2λ2

(
1− iτ −κi

−κi −(1− iτ)

)

(62)

where

λ2
1 =

(τ − i)2

4
+

κ2

4

λ2
2 =

(τ + i)2

4
+

κ2

4

(63)

Then the projection of g1(t), g
∗
1(t) onto H3 ⊂ R4 is given by equation (47)

explicitly expressed as:

g1(t)

(
1 0

0 1

)
g1
∗(t) = W1 → ŵ1 = γ(t) (64)
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substituting (62) into (64), yields γ(t) = [ix0, x1, x2, x3]
T :

x0 = cos λ1t cos λ2t +
(1 + κ2 + τ 2)

4λ1λ2

sin λ1t sin λ2t

x1 =
(1 + iτ)

2λ1

cos λ2t sin λ1t +
(1− iτ)

2λ2

cos λ1t sin λ2t

x2 = −κ sin λ1t sin λ2t

2λ1λ2

x3 =
iκ

2λ1λ2

(λ2 cos λ2t sin λ1t− λ1 cos λ1t sin λ2t)

(65)

Therefore, we have derived parametric equations for helical motions of vehicles

travelling in a 3-D space explicitly in terms of their curvature and torsion.

7 Inducing geodesic and circular motions

The method proposed in this paper has been used to derive analytic steady

helical motions in a 3-dimensional space form. In this section we use these

equations to yield equations for geodesic motions by setting κ = 0 and circular

motions by setting τ = 0.

Definition 7.1. A vehicle travelling at constant speed in a 3-D space form,

is said to trace a geodesic, if the path traced has curvature equal to zero (no

acceleration).

Therefore, using our equations for helical steady motions and setting κ = 0,

we obtain particular unit speed parameterizations through the group identity.

The controls that induce this motion are:

u1 = c1

u2 = u3 = 0
(66)

these controls induce the vehicle to trace the following paths:

Theorem 7.2. A vehicle travelling with unit speed, that traces a geodesic

curve through the group identity id ∈ G embedded in either R3,S3 or H3, traces

a curve that parameterizes R,S or H respectively.
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Proof. Proceeding with the Euclidean case, to obtain a geodesic in R3

through the identity, substitute κ = 0 into the natural parameterization for a

Helix in R3 (51) yields:

x1 = t

x2 = 0

x3 = 0

(67)

which is a straight line (geodesic) in R3 and parameterizes R. In addition a

geodesic in S3 corresponds to a curve of zero curvature, put κ = 0 into (55)

and (57) then

λ1 =
τ + 1

4

λ2 =
τ − 1

4

(68)

it follows on substituting (68) and κ = 0 into (59) and simplifying using well

known trigonometric identities gives:

x0 = cos t

x1 = sin t

x2 = 0

x3 = 0

(69)

equation (69) describes a geodesic in S3 and for this particular case parame-

terizes the unit circle S ⊂ R2 ⊂ R4 for t ∈ [−∞,∞] and satisfy’s the equation:

x2
0 + x2

1 = 1 (70)

To obtain an equation for a geodesic in H3 put κ = 0 into (65) to give

λ1 =
τ − i

2

λ2 =
τ + i

2

(71)

then on substituting (71) and κ = 0 into equations (65) and simplifying using

well known trigonometric identities and hyperbolic properties obtain:

x0 = cosh t

x1 = sinh t

x2 = 0

x3 = 0

(72)
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these equations parameterize a standard hyperbola H ⊂ R2 ⊂ R4 for t ∈
[−∞,∞]:

−(x1)
2 + x2

0 = 1 (73)

As well as geodesic motions the controls can be manipulated to induce cir-

cular motions:

Definition 7.3. A vehicle travelling at constant speed in a 3-D space form

is said to trace a Riemannian circle, if the path traced has constant curvature

and zero torsion.

From (8) and (7) it is easily shown that controls that induce circular motion

can be of the form:

u1 = 0

u2 = c2

u3 = c3

(74)

and additionally

u1 = c1

u2 = r sin (c1t + γ)

u3 = r cos (c1t + γ)

(75)

where γ is a phase constant. These controls induce the vehicle to trace the

following paths:

Theorem 7.4. A vehicle travelling with unit speed tracing a Riemannian

circular path through the group identity id ∈ G embedded in R3,S3 or H3 trace

a path that parameterizes S, S2 or H2 respectively.

Proof. Using the equations for the helices, we derive particular Riemannian

circles through the identity by putting τ = 0 and κ 6= 0. Proceeding with the
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Euclidean case first. When τ = 0 and κ 6= 0 the equations (51) simplify to:

x1 =
sin κt

κ

x2 =
1

κ
− cos κt

κ

x3 = 0

(76)

which parameterize the unit circle S ⊂ R2 ⊂ R3 for t ∈ [−∞,∞] in the plane

of x3 and satisfy the equation:

x2
1 + (x2 − 1

κ
)2 = 1 (77)

Therefore, giving the classic result that a curve of constant curvature and

zero torsion in R3 parameterizes the unit circle S.
For the spherical case Substituting τ = 0 into (55) and (57) gives

λ1 = λ2 =

√
1 + κ2

2
(78)

it follows on substituting (78) and τ = 0 into (59) and simplifying using well

known trigonometric identities gives:

x0 =
κ2 + cos t

√
1 + κ2

1 + κ2

x1 =
sin

(
t
√

1 + κ2
)

√
1 + κ2

x2 =
κ

1 + κ2
− κ cos

(
t
√

1 + κ2
)

1 + κ2

x3 = 0

(79)

these equations parameterize the unit sphere S2 ⊂ R3 ⊂ R4 for t ∈ [−∞,∞]

satisfying the equation:

x2
0 + x2

1 + x2
2 = 1 (80)

Therefore, the vehicle traces a particular Riemannian circle in S3 that pa-

rameterizes the unit sphere S2. For the Hyperbolic case substitute τ = 0 into

equation (63) gives:

λ1 = λ2 =

√
κ2 − 1

2
(81)
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on substituting (81) and τ = 0 into (65) yields the following equations:

x0 =
κ2 − cos t

√
κ2 − 1

κ2 − 1

x1 =
sin t

√
κ2 − 1√

κ2 − 1

x2 =
κ cos t

√
κ2 − 1

κ2 − 1
− κ

κ2 − 1

x3 = 0

(82)

it follows that on substituting
√

κ2 − 1 ≡ i
√

1− κ2 into (82) the equations can

be expressed in terms of hyperbolic functions

x0 =
κ2 − cosh

(
t
√

1− κ2
)

κ2 − 1

x1 =
sinh

(
t
√

1− κ2
)

√
κ2 − 1

x2 =
κ cosh

(
t
√

1− κ2
)

κ2 − 1
− κ

κ2 − 1

x3 = 0

(83)

these equations parameterize the standard unit hyperboloid H2 ⊂ R3 ⊂ R4 for

t ∈ [−∞,∞] that satisfy the equation:

x2
0 − x2

1 − x2
2 = 1 (84)

therefore, the vehicle traces a path in H3 that parameterizes the standard unit

hyperboloid of one surface H2.

8 Conclusion

This paper gives a method for obtaining closed form solutions for control

systems defined on the frame bundles of the 3-dimensional space forms where

the controls are piece-wise constant. The method uses the universal cover

property of connected Lie groups to decouple the system into lower dimensional

systems. These lower dimensional control systems are then solved explicitly

in closed form. These solutions are then projected back onto the original Lie

group to obtain a closed form solution for the original system.
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This method is applied to the problem of controlling oriented vehicles along

steady motion trajectories. The integration method is used to derive closed

form expressions for these steady motions. These closed form expressions are

expressed explicitly in terms of the geometric invariants κ and τ . An extension

of this work to the time-dependent case is an area of current research.
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