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Abstract
In this paper, we study the long time behavior of solution to the

stochastic strongly damped wave equation with white noise. We first
prove the wellness of the solutions, then we establish the existence of
global random attractor.
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1 Introduction

In this paper, we consider the large-time behavior of the following initial
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boundary value problem for the stochastic strongly damped wave equation

with white noise in a bounded domain D ⊂ R with smooth boundary

utt −∆u− α∆ut + βut + f(u)− g(x) = qẆ , (x, t) ∈ D × [0, +∞), (1)

u(x, 0) = u0(x); ut(x, 0) = u1(x), x ∈ D, (2)

u(x, t)|∂Ω = 0, (x, t) ∈ ∂D × [0, +∞), (3)

where (u0, u1) ∈ H1
0 (D) × L2(D), and α, β are positive constants, u = u(x, t)

is a real-valued function on D × [0, +∞). Ẇ is a scalar Gaussian white noise,

that is, W (t) is a two-sided wiener process.

The functions f : R → R and g, q : D → R satisfies the following assump-

tions:

(i) g ∈ H1
0 (D), while q ∈ H2(D)×H1

0 (D) is not identically equal to zero.

(ii) The nonlinear term f satisfies

|f ′(u)| ≤ C0, |f(u)| ≤ C1, ∀u ∈ R; (4)

|f ′(u)− f ′(v)| ≤ C2|u− v|, ∀u, v ∈ R, (5)

where C0, C1, C2 are positive constants.

It’s well known that the long time behavior of many dynamical system gen-

erated by evolution equations can be described naturally in term of attractors

of corresponding semigroups. Global attractor is a basic concept in the study

of the asymptotic behavior of solutions for the nonlinear evolution equations

with various dissipation . There have been many researches on the long-time

behavior of solutions to the nonlinear damped wave equations, While the ran-

dom attractor is an analogue of global attractors for deterministic dynamical

systems. Since the foundational work in [9,10], the existence of random at-

tractors has been investigated by many authors, see,e.g., [1-8,11-17]. In this

work, we apply the means in [4] to provide the existence of a random attrac-

tor, for the random dynamical system generated by the initial value problem

(1.1)–(1.3). The key is to deal with the nonlinear terms and strongly damped

term −∆ut, −∆ut is difficult to be handled. so we aimed at show that it’s

dissipative and the solution is bounded and continuous with respect to initial

value. Hence we can discover the random attractor, which has finite fractal

and Hausdorff dimension. In this paper, we use the method introduced in [3],

so that we needn’t divide the equation into two parts.
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The rest of this paper is organized as follows. In section 2, we introduce

basic concepts concerning random attractor. In section 3, we obtain the ex-

istence of the uniqueness random attractor,which has fractal and Hausdorff

dimension.

2 Preliminary Notes

Let (X, ‖ · ‖) is a separable Hilbert space, (Ω,F ,P) be a probability space,

where Ω = {w ∈ C(R, R); w(0) = 0} is endowed with compact-open topology,

P is the corresponding Wiener measure, and F is the P-completion of Borel

σ − algebra on Ω. Let {θt : Ω → Ω, t ∈ R} be a family of measure preserving

transformations such that (t, w) 7→ θtw is measurable, θ0 = IdΩ, θt+s = θtθs,

for all s, t ∈ R. The space (Ω,F ,P, (θt)t∈R) is called the metric dynamical

system on the probability space(Ω,F ,P).

Definition 2.1. ([6]) A continuous random dynamical system on X over

(Ω,F ,P, (θt)t∈R) is a (B(R+)×F × B(X),B(X))-measurable mapping

ϕ : R+ × Ω×X → X, (t, w, u) 7→ ϕ(t, w, u)

such that the following properties hold

(1) ϕ(0, w, u) = u for all w ∈ Ω and u ∈ X;

(2) ϕ(t + s, w, ·) = ϕ(t, θsw,ϕ(s, w, ·)) for all s, t ≥ 0;

(3) ϕ(t, w, ·) : X → X is continuous for all t ≥ 0.

Definition 2.2. ([6])

(1) A set-valued mapping {D(w) : Ω → 2X , w 7→ D(w)}, is said to be a

random set if the mapping w 7→ d(u,D(w)) is measurable for any u ∈ X.

If D(w) is also closed(compact) for each w ∈ Ω, {D(w)} is called a

random closed (compact) set. A random set {D(w)} is said to be bounded

if there exists u0 ∈ X and a random variable R(w) > 0 such that

D(w) ⊂ {u ∈ X, : ‖u− u0‖X ≤ R(w)} for all w > 0.
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(2) A random set {D(w)} is called tempered provided for P− a.e.w ∈ Ω,

lim
t→+∞

e−βtd(D(θ−tw)) = 0 for all β > 0,

where d(D) = sup{‖b‖X : b ∈ D}.
Let D be the set of all random tempered sets in X.

(3) A random set {B(w)} is said to be a random absorbing set if for any

tempered random set {D(w)}, and P−a.e.w ∈ Ω, there exists t0(w) such

that

ϕ(t, θ−tw, D(θ−tw)) ⊂ B(w) for all t ≥ t0(w).

(4) A random set {B1(w)} is said to be a random attracting set if for any

tempered random set {D(w)},,and P− a.e.w ∈ Ω,we have

lim
t→+∞

dH(ϕ(t, θ−tw, D(θ−tw), B1(w)) = 0,

where dH is the Hausdorff semi-distance given by dH(E, F ) = sup
u

∈
E inf

v
∈ F‖u− v‖X for all E, F ⊂ X.

(5) ϕ is said to be asymptotically compact in X if for P − a.e.w ∈ Ω,

{ϕ(tn, θ−tnw, xn)}∞n=1 has a convergent subsequence in X whenever tn →
+∞, and xn ∈ B(θ−tnw) with B(w) ∈ D.

(6) A random compact set {A(w)} is said to be a random attractor if it is a

random attracting set and ϕ(t, w, A(w)) = A(θtw) for P−a.e.w ∈ Ω and

all t ≥ 0.

Theorem 2.3. Let ϕ be a continuous random dynamical system with state

space X over (Ω,F ,P, (θt)t∈R). If there is a closed random absorbing set

{B(w)} of ϕ and ϕ is asymptotically compact in X, then {A(w)} is a ran-

dom attractor of ϕ ,where

A(w) =
⋂
t≥0

⋃
τ≥t

ϕ(τ, θ−τw, B(θ−τw)), w ∈ Ω.

Moreover, {A(w)} is the unique random attractor of ϕ.
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Definition 2.4. [5] Let M be metric space and A be a bounded subset of M.

The measure of noncompactness γ(A) of A is defined by

γ(A) = inf{δ > 0|A admits finite cover by sets whose diameter ≤ δ}.

Definition 2.5. A C0 semigroup {S(t)}t≥0 in a complete metric space M

is called w− limit compact if for every bounded subset B of M , and for every

ε > 0, there is a t(B) > 0, such that

γ(
⋃

t≥t(B)

S(t)B) ≤ ε.

Definition 2.6. Condition(C)[5] For any bounded set B of a Banach space

X and for any ε > 0, there exists a t(B) > 0 and a finite dimensional subspace

X1 of X such that {PmS(t)B} is bounded and

‖(I − Pm)S(t)x‖ < ε, for t ≥ t(B), x ∈ B,

where I is the identity and Pm : X → X1 is a bounded projector.

Theorem 2.7. [3] Let {S(t)}t≥0 be a C0 semigroup in a complete metric

space M . Then {S(t)}t≥0 has a group attractor A in M if and only if

(1) {S(t)}t≥0 is w − limit compact, and

(2) there is a bounded absorbing set B ⊂ M .

Lemma 2.8. [3] Let X be a Banach space and {S(t)}t≥0 be a C0 semigroup

in X.

(1) If Condition(C) holds, then {S(t)}t≥0 is w − limit compact.

(2) Let X be uniformly convex Banach space. Then {S(t)}t≥0 is w − limit

compact if and only if Condition(C) holds.
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Theorem 2.9. [3] Let X be a uniformly convex Banach space(especially a

Hilbert space). Then the C0 semigroup {S(t)}t≥0 has a group attractor if and

only if

(1) there is a bounded absorbing set B ⊂ M .

(2) condition (C) holds.

3 The random attractor

In this section, our objection is to show that the well-posed and the exis-

tence of global attractor for the initial boundary value problem (1.1)–(1.3).

Let 1
α

< ε < min{ 1
α
, β} and α > 1, then by the transformation v(x, t) =

ut + εu− qW , the initial boundary value problem (1.1)–(1.3) is equivalent to





du
dt

= v − εu + qW,

dv
dt

= (1− αε)∆u + α∆v + ε(β − ε)u + (ε− β)v+

+(ε− β)qW + α∆qW − f(u) + g

(1)

with the initial value conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), (2)

where v0(x) = u1 + εu0.

Let E = H1
0 (D)× L2(D),which is endowed with the usual norm

‖Y ‖2
H1

0×L2 = ‖∇u‖2 + ‖u‖2‖+ ‖v‖2, for Y = (u, v)> ∈ E, (3)

where ‖ · ‖ denote the norm in L2(D) and > stands for the transposition.

For convenient, we now define a new norm ‖ · ‖E by

‖Y ‖2
E = (1− αε)‖∇u‖2 + ε(β − ε)‖u‖2‖+ ‖v‖2, for Y = (u, v)> ∈ E, (4)

it is easy to check that ‖ ·‖E is equivalent to the usual norm ‖ ·‖H1
0×L2 in (3.3).
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Theorem 3.1. Assume that (i) and (ii) hold for all (u0, v0)
> ∈ E, α, β

are the positive constants. Then the initial boundary value problem (3.1) has

unique solution (u, v)> ∈ E, which is continuous with respect to (u0, v0)
> ∈ E

for all t > 0.

Proof. Taking the inner product of the second equation of (3.1) with v in

L2(D), we find that

1

2

d

dt
‖v‖2 = (1− αε)(∆u, v)− α‖∇v‖2 + ε(β − ε)(u, v)

+ (ε− β)‖v‖2 + ((ε− β)qW + α∆qW, v)− (f(u), v) + (g, v). (5)

Since v = ut + εu− qW , we deal with the terms in (3.5) one by one as follows

(1− αε)(∆u, v) = −1− αε

2

d

dt
‖∇u‖2 − ε(1− αε)|∇u‖2

+(1− αε)(u, ∆qW ) ≥ −1− αε

2

d

dt
‖∇u‖2 − ε(1− αε)|∇u‖2 −

ε(β − ε)(1− αε)

2
‖u‖2 − (1− αε)

2ε(β − ε)
‖∆q‖2‖W‖2 (6)

ε(β − ε)(u, v) =
1

2

d

dt
ε(β − ε)‖u‖2 + ε2(β − ε)‖u‖2 + ε(β − ε)(u, qW )

≥ 1

2

d

dt
ε(β − ε)‖u‖2 + ε2(β − ε)‖u‖2 − ε(β − ε)(1− αε)

2
‖u‖2

− ε(β − ε)

2(1− αε)
‖q‖2‖W‖2 (7)

(ε− β)(qW, v) ≤ αλ1 + β

4
‖v‖2 +

(β − ε)2

λ2
1(αλ1 + β)

‖∆q‖2‖W‖2; (8)

α(∆qW, v) ≤ αλ1 + β

4
‖v‖2 +

α2

αλ1 + β
‖∆q‖2‖W‖2; (9)

(−f(u), v) ≤ C1‖v‖2 ≤ αλ1 + β

4
‖v‖2 +

C2
1

αλ1 + β
; (10)

(g, v) ≤ ‖g‖‖v‖ ≤ αλ1 + β

4
‖v‖2 +

‖g‖2

αλ1 + β
; (11)

−α‖∇v‖2 ≤ −αλ1‖v‖2, (12)

where λ1is the first eigenvalue of −∆ in H1
0 (D).
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By (3.6)–(3.12), it follows from that

1

2

d

dt
(‖v‖2 + (1− αε)‖∇u‖2 + ε(β − ε)‖u‖2)

≤ −ε(‖v‖2 + (1− αε)‖∇u‖2 + ε(β − ε)‖u‖2) + ε(β − ε)(1− αε)‖u‖2

+2ε‖v‖2 + kε‖∆q‖2‖W‖2 +
C2

1 + ‖g‖2

αλ1 + β

≤ −(αε− 1− ε)[‖v‖2 + (1− αε)‖∇u‖2 + ε(β − ε)‖u‖2]

+kε‖∆q‖2‖W‖2 +
C2

1 + ‖g‖2

αλ1 + β
. (13)

where kε = 1−αε
2ε(β−ε)

+ ε(β−ε)

2(1−αε)λ2
1

+ (β−ε)2

λ2
1(αλ1+β)

+ α2

αλ1+β
.

Setting ϕ = (u, v) ∈ E, recalling the new norm‖ · ‖E in (3.4), we obtain

from (3.13) and (3.4) that

d

dt
‖Y ‖2

E ≤ −2(αε− 1− ε)‖ϕ‖2
E + Cε(‖∆q‖2‖W‖2 + ‖g‖2 + C2

1). (14)

Using the Gronwall lemma then gives

‖Y ‖2
E ≤ e−2(αε−1−ε)t‖ϕ0‖2

E +
Cε

2(αε− 1− ε)
(‖∆q‖2‖W‖2 + ‖g‖2 + C2

1). (15)

Substituting w by θ−t and taking W by w, then we have from (3.15) that

‖ϕ(t, θ−tw, ϕ0(θ−tw))‖2
E ≤ e−2(αε−1−ε)t‖ϕ0(θ−tw)‖2

E

+
Cε

2(αε− 1− ε)
(‖∆q‖2‖W‖2 + ‖g‖2 + C2

1). (16)

(3.16) implies that the existence of the solution of random wave equation (3.1),

it’s easy to check that the solution is unique. so, the proof is completed.

By the theorem 3.1,we obtain the global smooth solution (u, ut) continu-

ously depends on the initial value (u0, u1), the initial boundary value prob-

lem (1.1)–(1.3) generates a continuous semigroup {S(t)}t≥0, S(t) : X → X;

(u, ut) = S(t)(u0, u1). Choosing

R =
Cε

2(αε− 1− ε)
(‖∆q‖2‖W‖2 + ‖g‖2 + C2

1),

then BR = {(u, ut)| ‖(u, ut)‖X ≤ R} is a bounded absorbing set for the semi-

group {S(t)}t≥0 generated by (1.1)–(1.3).

Under the assumption (i), (ii), we can get the nonlinear term g(u) is com-

pact and continuous, f(x) is continuous. Next, our object is to show that the

C0 semigroup {S(t)}t≥0 satisfies cinditionC.
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Theorem 3.2. Assume that (i) and (ii) hold for all (u0, v0) ∈ E,α, β are

positive constants. Then the C0 semigroup {S(t)}t≥0 associated with initial

value problem (3.1) satisfies cinditionC, that is, there exists m ∈ N and T =

T (B, R) , for any N ≥ m, t ≥ T such that

‖(I − Pm)ϕ(t, θ−tw,ϕ0(θ−tw))‖2
E ≤

k1ε‖∆q2‖2‖W‖2 + ε

2(αε− 1− ε)

Proof. Let λj be the eigenvalues of −∆u and wj be the corresponding eigenvec-

tors, j = 1, 2, ..., without loss of generality, we can assume that λ1 < λ2 < ...,

and lim
m→∞

λm = ∞.

It is well known that {wj}∞j=1 form an orthogonal basis of H1
0 . We write

Hm = span{w1, w2, ..., wm}

Since f ∈ H1
0 and f is compact, for any ε > 0, there exists some m ∈ N

such that

‖(I − Pm)f‖ ≤ ε

2
, (17)

‖(I − Pm)g‖ ≤ ε

2
, for all u ∈ BR(0, R) (18)

where Pm : H1
0 → Hm is orthogonal projection and R is the radius of the

absorbing set. For any (u, ut) ∈ E, we write

(u, ut) = (Pmu, Pmut) + ((I − Pm)u, (I − Pm)ut) = (u1, u1t) + (u2, u2t). (19)

We note that

q2 = (I − Pm)q, g2 = (I − Pm)g, f2 = (I − Pm)f,

Taking the inner product of the second equation of (3.1) with v2 in L2(D),

After a computation like in the proof of Theorem 3.1, we can yield that

1

2

d

dt
‖v2‖2 = (1− αε)(∆u2, v2)− α‖∇v2‖2 + ε(β − ε)(u2, v2)

+ (ε− β)‖v2‖2 + ((ε− β)q2W + α∆q2W, v2)

− (f2(u), v2) + (g2, v2). (20)
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This is the same as in the proof of the Theorem 3.1, except for a replacement

of λ1 with λm+1 and a choice of k1ε. Combined with (3.17) and (3.18), then

we have

1

2

d

dt
(‖v2‖2 + (1− αε)‖∇u2‖2 + ε(β − ε)‖u2‖2)

≤ −(αε− 1− ε)[‖v2‖2 + (1− αε)‖∇u2‖2 + ε(β − ε)‖u2‖2]

+k1ε‖∆q2‖2‖W‖2 + ε. (21)

By Gronwall lamma , we can get

(1− αε)‖∇u2‖2 + ε(β − ε)‖u2‖2‖+ ‖v2‖2

≤ e−2(αε−1−ε)t‖ϕ0(θ−tw)‖2
E +

k1ε‖∆q2‖2‖W‖2 + ε

2(αε− 1− ε)
, (22)

i.e.

(1− αε)‖∇u2‖2 + ε(β − ε)‖u2‖2‖+ ‖v2‖2 ≤ k1ε‖∆q2‖2‖W‖2 + ε

2(αε− 1− ε)
. (23)

Substituting w by θ−t and taking W by w, then we have from (3.15) that

‖(I − Pm)ϕ(t, θ−tw,ϕ0(θ−tw))‖2
E ≤

k1ε‖∆q2‖2‖W‖2 + ε

2(αε− 1− ε)

this shows that Condition(C) is satisfied, and the proof is completed.

Theorem 3.3. Assume that (i) and (ii) hold for all (u0, v0) ∈ E,α, β are

the positive constants. Then the C0 semigroup {S(t)}t≥0 associated with initial

value problem (3.1) has a unique global attractor in E.

Lemma 3.4. Let X be a Banach space, S : X → X be a continuous map. If

S is bounded, that is, takes bounded sets to bounded sets, and S = P +U , where

P is globally Lipschitz continuous with a Lipschitz constant k ∈ (0, 1)/,and

U is conditionally completely continuous, then S is a β−contraction, and

hence, an α−contraction (see [8] for the definition of both β−contraction and

α−contraction).

Theorem 3.5. Assume that (i) and (ii) hold for all (u0, v0) ∈ E,α, β are the

positive constants. Then the unique global attractor in E for the C0 semigroup

{S(t)}t≥0 associated with initial value problem (3.1) is connected and has finite

fractal and Hausdorff dimension..
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The global estimate (3.15) shows that the continuous semigroup S(t) is

bounded for t ≥ 0. Since Pm is completely continuous as t > 0, by Lemma 4.1,

S(t) is an α− contraction as t > T0 . On the other hand , by the estimation

in (3.23), we can get S(t) is an α− contraction as t > T0. And as a direct

consequence of Theorem 2.8.1 of Hale [8], A has finite fractal and Hausdorff

dimension.
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