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Nondifferentiable Continuous
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Abstract

A mixed type second-order dual is formulated for a class of continuous
programming problems in which the integrand of the objective functional
contains square root of positive semi-definite quadratic form; hence it is
nondifferentiable. Under second-order pseudoinvexity and second-order
quasi-invexity, various duality theorems are proved for this pair of dual
nondifferentiable continuous programming problems. A pair of dual continuous
programming problems with natural boundary values is constructed and it is
briefly indicated that the duality results for this pair of problems can be validated
analogously to those for the earlier models. Lastly, it is pointed out that our
duality results can be regarded as dynamic generalizations of those for a
nondifferentiable nonlinear programming problem, already treated in the

literature.
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1 Introduction

A number of researchers have studied second-order duality in mathematical
programming. A second order dual to a Nonlinear programming problem was first
formulated by Mangasarian [1] .Subsequently Mond [2] established various
duality theorem under a condition which is called second-order convexity, which
is much simpler than that used by Mangasarian [1]. Mond and weir [3]
reformulated the second-order and higher-order duals to validate duality results. It
is found that second-order dual to a mathematical programming problem offers a
tighter bound and hence enjoys computational advantage over a first-order dual.

In the spirit of Mangasarian [1], Chen [4] formulated second-order dual for
a constrained variational problem and established various duality results under an
involved invexity-like assumption. Later, Husain et al. [5], studied Mond-Weir
type second-order duality for the problem of [4], by introducing continuous-time
version of second-order invexity and generalized second-order invexity, validated
usual duality results. Subsequently Husain and Masoodi [6] presented Wolf type
duality while Husain and Srivastava [7] formulated Mond-weir type dual for a
class of continuous programming containing square root of a quadratic form to
relax to the assumption of second-order pseudoinvexity and second-order
quasi-invexity.

In this paper, in order to combine dual formulations of [6] and [7], a mix
type dual to the non-differentiable continuous programming problem of Chandra

et al. [8] is constructed and a number of duality results are proved under
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appropriate generalized second-order invexity established. A relation between our
duality results and those of a nondifferentiable nonlinear programming problem is

pointed out through natural boundary value variational problems.

2 Related Pre-requisites

Let I = [a, b] be a real interval, ¢:IxR"xR"—>R and
w:IxR"xR" — R™ be twice continuously differentiable functions. In order to
consider ¢(t,x(t),>‘<(t)), where x: 1 — R"is differentiable with derivative x ,
denoted by ¢, and ¢, the first order of ¢ with respect tox(t) and Xx(t),

respectively, that is,

¢X:(a¢ op . %j | ¢X:(% o %j

oo o o o X
Denote by ¢, the Hessian matrix of¢ and w, the mxn Jacobian matrices

82¢
ox'ox’

respectively, that is ¢XX:[ j ILj=12,..n, w, the mxn Jacobian

matrix

1

oyt oy v
ox'  ox* X"
oy’ oy’ oy
v.=| ox ¢ X"

2

o e
The symbols ¢,, .., 4, and w, have analogous representations.

Designate by X the space of piecewise smooth functionsx:l — R", with the
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norm||x| =|x|, +|Dx|, , where the differentiation operator D is given by

u:Dx<:>x(t):Jt‘u(s)ds,

a
d : o
Thus E:D except at discontinuities.

Now we incorporate the following definitions which are required in the

subsequent analysis.

Definition2.1 (Second-order Invex) If there exist a vector function

n=n(t,x,X)e R"where 7:1xR"xR" — R"and with »=0att=aandt=b,
such that for a scalar function ¢(t, x, X), the functional j¢(t, X, X) dt where
.
¢:1xR"xR" — Rsatisfies
'I[¢(t,x, X) dt —j{qﬁ(t,i,i)—%ﬁ (t) Gﬂ(t)}dt
ZI{UT¢X (t,%,%)+(Dn)" 4, (t%,%)+7'G ,B(t)}dt,
|

then j(é(t, X, X)dt is second-order invex with respect toz where
|

G=¢,-2Dg,+D’¢,—D’,,and feC ( I,R" ) the space of n -dimensional

continuous vector functions.

Definition 2.2 (Second- order Pseudoinvex) If the functional I¢(t, X, X)dt

satisfies

[{n76.+(On)" ¢, +n7G p(b)|dt=0
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Then I¢(t, X, X)dt is said to be second-order pseudoinvex with respectto 7.
|

Definition 2.3 (Second- order Quasi-invex) If the functional I¢(t, X, X)dt

satisfies
[p(t.xx)dt < [{g(t.x.%)-=B(t) Gﬁ(t)}dt
= {74, +(Dn)" g, +n'G(1) A(1)] dt <0

then I¢(t, x,X)dt is said to be second-order quasi-invex with respect toz.
|

Remark 2.1 If ¢ does not depend explicitly on t, then the above definitions

reduce to those given in [2] for static cases.
The following giving Schwartz inequality is also required for the validation of our

duality results.

Lemma 2.1 (Schwartz inequality) It states that

1/2

x(O)BO)2(0)<(x(t) BEOx(®) (2(t) BE)z(t) . te 1)

with equality in (1) if and only if B(t)(x(t)—q(t)z(t)) =0 for some q(t)eR.

Proposition 2.1 If (CP) attains an optimal solution at x = X € X, then there exist
Lagrange multiplier teR and piecewise smoothy: |1 — R", not both zero, and
also piecewise smooth ®:1 — R", satisfying forallte I .

© f, (LX.X)+B(t)o+y(t) g, (t.X.X) = D(c f(t.X,X)+y(t) g,)=0,tel

y(t) g(t.xx)=0tel
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x(1) B(t) &(t)=(x(t) B(t) X(1)] tel

o(t) B(t) o(t)<Ltel

The Fritz John necessary optimality conditions given in Proposition7.2.1 become

the Karush-Kuhn-Tucker type optimality conditions if t=1.

For t=1, itsuffices that the following slater’s conditions [8] holds.

g(t.x.%)+g, (t,X,X)v(t)+g, (t,X,X)V(t) <0,For someve X andallt € I.

Consider the following class of non-differentiable continuous programming

problem studied in [8].

L 1/2
(CP): Minimize J’(f(t,x,>‘<)+(x(t)T B(t)x(t)) Jdt
[

Subject
x()=a, x(b)=p (2)
g(t,x,x)<0,tel (3)
Where
(i) 1=[ab] isarealinterval (i) f:l1xR"xR" -R,g:1xR"xR" —R"
are twice continuously differentiable function with respect to its argument
x(t) and x(t) .

(i) x:1 — R" is four times differentiable with respect to t and these derivatives

are defined by x, %, Xand X .
(iii) B (t) is a positive semi-definite nxn matrix with B (.) continuous on I.
The popularity of mathematical programming problems as (CP) seems to stem
from the fact that, even though the objective functions and /or constraint functions
are differentiable, a simple formulation of the dual may be given.
Non-differentiable mathematical programming deals with much more general
kinds of functions by using generalized sub-differentials and quasi differentials.
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Husain et al. [5] formulated the following Wolf type second-order dual and
established duality results for the pair of problems (CP) and (W-CD) under the

second-order pseudoinvexity of J'{f (t,...)+u) B(t)w(t)+y(t) g (t)} dt with
|
respect ton.

(WCD):

Maximize j[f (t,u,u)+u(t) B(t)w(t)+y(t) g, (t,u,u)—%ﬂ(tf L ﬂ(t))dt

Subject to
u(a)=0=u(h),
f, (tu,u)+u(t) B(t)+y(t) g, (tuu) —D(f,+y(t)'g,)+L A(t)=0, tel,
y(t)>0,tel,
w(t) B(tw(t)<itel.

where

L=f, (t,u,u)+(y(t)T g, (t,u,U))u

+ D[y (tu,0)+(y()' 0y (t,u,u))u]—D3[fuu (tud)+(y()" g5 (tu,0)) ]

u

—2D[ fy (t,u,u)+(y(t)T Jy (t,u,u)) ]

u

Recently, Husain and Srivastava [7] investigated Mond-Weir type duality by
constructing the following dual to (CP) underj( f (t,u(t) u (t)) w B(t)w(t))dt,

forall w(t)eR" is second-order pseudo-invex and J'y(t)Tg (t,...)dt is
|

second-order quasi-invex with respect to the same 7.

(M—-WCD)

Maximize I{f(t,u,u )+u(t) B(t)w(t)—%ﬂ(t)T F ﬂ(t)}dt
|
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Subject to
u(a)=0=u(b)
f, (t,u,U)+B(t)w(t)+y(t)" g, (t,u,u)-
=D fy (tu,u)+ y(1) gy (tu,u))+(F +K) A(t)=0
J(y(t)T o(tus) 2 A Kﬁ(t)]dtzo,te |
y(t)ZO,tel
w(t) B(t)w(t)<Ltel
where

F(t,u,u,0,0) = f,, —2Dfyy +D?fyy — D3y, tel
and
K (t,u,0,0,0) = y(t)" guy —2D y(t)" guy + D2y (t)" gyy — D3y (t) gy te

In this paper, we propose a mixed type second-order dual (MixCD) to
(CP) and prove various duality theorems under the assumptions of second-order
pseudoinvexity and second-order quasi-invexity. We formulate a pair of
nondifferentiable continuous programming problem with natural boundary values
rather than fixed end points. Finally, it is also pointed out that our duality results
derived in this research can be regarded as the generalization of those of the

nonlinear programming problem.

3 Mixed Type second-order duality

In this section we formulate the following mixed type second-order dual
Mixed (CD) to (CP):

Mixed (CD):

Maximizej f(tu,u)+u(t) B(ta(t)+ Y vy (t)g' (t,uu)- ;ﬂ(t)T HO4(t) dt

| ielg
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Subject to
u@ =0, u(b)=0 (4)
f, (t,u,u)+B(t)w)t) + y(t)" g, (t,u,u)
- Dy (tu,0)+ YO gyt u,0))+ H AR =0t e 5)
15 yi(t)gi(t,u,u)—%ﬂ(t)TG“ﬂ(t) 4t>0. @=123.r (6
| \iely
w(t)" B(t)w(t) <1, and y(t)>0,tel (7)
Where

r

(i)l, =M ={12,..m},a=0.12,.r with UOI“ =Mandl, Nlg=¢if a=p.

o=

(i) HO=fouu)-> (y‘(t)g‘(t,u,u)) —2D(f(t,u, )
ielg XX

-2 (Y g tu) )+ DX (ftuu)- Y (Y ®g'tu) )

iclg ielg
D (fyy )= 3 (v gl tuw) )
iclp

(if)) H = fuy(tu,0)~(yO gut0.0)) -2D(fuy (tu,0)~(y0 gutu.0)) )

+ D2 (fyg (60,0 =y gy tu1) )

u

_ D3(fuu(t,u,u)—(y(t)T gu(t,U,U)) )

G

(iv) 6= 3 (v' g, tu.u) —ZD{ > (v'®e. €uw) ]

iely iely

+ DZ[Z (YO tu.w) ]—D3[Z (Y ®o'tuu) J L@ =12,..T.

iely iely u i

and
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(v) 6= 3 (yYOu'tuv) ZD[ > (y‘(t)gu‘(t,u,u))]

ieM-lg u ieM-lg

+D? Y (yi(t)gui(t,u,u)) -D3 3 (y‘(t)g‘(t,u,u)) ,
ieM-lg U ieM-lg u g

Theorem 3.1 (Weak Duality)

Let X be feasible for (CP) and (u,y,w,p) feasible for Mixed (CD). If for all

feasible (x,u,y,w,s),

I(f(t, 2+ Y (09 () + () B(t)W(t)J

iely

is second-order pseudoinvex and

> [y Mot )dta=12,...r

icly |
is second-order quasi-invex with respect to the same 7,
then
infimum(CP) > supremum Mixed(CD)
Proof: By the feasibility of x and (u ,y,w, ) for (CP) and Mixed (CD)

respectively, we have

I(Zy (t,x, x)dt<j(Zy (t,u, u)—%ﬂ(t)TG“ﬂ(t))dt,

iel, iel,

a=12,..r
By second-order quasi-invexity of
> I (t,x,x)dt, @ =1,2,..
icly 1
this inequality yields
J[(n 3 y(t) o' (tu,u)+(D7) (X v () gy (tu,u) +7" G B(t)dt>0,

icly iel,
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a=12,..r.
This implies
0> j (" 3 v'(t) glu(tuu)
IeM )
+(Dn)' le y' (1) g'y (tu,u))+7" G B(t)]dt
M 1g

={n" [[ ) g, tou [Z v ( tuu)]+Gﬂ(t)]dt

t=b
(Zy tuu)}

Using n=0,at t=aandt =b, we obtain,

[771C Y y'(1) gy (tuu)-D( Yy (t) gy (tu,u)+GB(t)ldt<0

| ieM-lg ieM-lg

t=a

(by integrating by parts)

Using (5), we have

0<_|.77[f (t,u,u)+B(t Zy g4 (t,u,u)
ielg
—D(fy (tu,u)+ >y (t)gf (tu,u))+HOB(t)dt
iclg
_j[n (fy (tu,u)+B(O)w(t)+ Yy (t)a) (tu,u)
ielp
(Dn ) (fy +Zy gu (t.u, u))+77 H ﬂ( )dt
ielg
t=b
—n" (f, +Zy tuu))
ielp t=a

(by integrating by parts)
From this, as earlier n=0at t=a andt=b, we get,
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j[n (fy (tu,u)+B(O)w(t)+ D y'(t)g' (t,u,u))
ielp
+(Dn)" (fy (Lu,u)+ >y (t)gy (tu,u)+7  HOA(t)dt >0
ielp

which by second-order pseudo-invexity of

I(ftxx)+xB Zy g' (t,x X)) dt
ielp
implies
J'(f txx)+x(t Zy g' (t,x,%))dt
| ielp
>I[(f (t,u, u)+u(t )+ y (tu, u))—%ﬂ(t)T HOB (1)l
| iclp

Thus from y(t)>0 and g(t,x,%) <0, tel. The above gives,

I xx)+x) B(t)wu))dt

>I[(f (tu,u)+u(t)’ )+ >y (t)g' (tu,u )—%ﬂ(t)T HOB(t)jdt

i€lp

Since W(t) B(t) w(t)<1, tel, the Schwartz inequality (1), this inequality

implies
j(f (t,x,>‘<)+(x(t)T B(t)x(t))ﬂz)dt

>I[(f (tu,u)+u(t)’ )+ > v (t)g (tu, u))——ﬂ(t)T HOpB(t)jdt

| ielp
yielding
infimum(CP) > supremum Mixed (CD)
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Theorem 3.2 (Strong Duality)

If X is a optimal solution of (CP) and normal [8],then there exist piecewise
smooth y: 1 - R™and w:l —R" such that (X.y.w,B(t)=0) is feasible for

Mixed (CD), and the corresponding values of (CP) and Mix (CD) are equal.
If, for all feasible (X,u,y,w,f),

j{ tx,%)+ >y (1) g (t,x x)+x(t)T B(t)w(t)}dt

| iclp

is second-order pseudo-invex and j(Zy‘(t)gi(t,x,x))dt, a=12,..r is

| iel,
second-order quasi-invex, then(Y,y,w,,B(t)) is an optimal solution of Mix (CD).
Proof: Since X is an optimal solution of (CP) and normal [8], then by
Proposition 2.1, there exist piecewise smoothy: | — R™and w: I — R" such

that

w(t) B(t)w(t)<1, tel
y(t)=0, tel
This implies that (X,y,w,3(t)=0) is feasible for Mix (CD) and the

corresponding value of (CP) and Mix (CD) are equal. If

J{f 6% X)+ >y g (6% %) ++x(t)' B(t)w(t)}dt

| icl,

is second-order pseudo-invex, and
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ij g(t,x,x)dt, @ =1,2,..

iel,

is second-order quasi-invex with respect to the samer, then from weak duality

Theorem3.1 (X,y,w,A(t)) isan optimal solution of Mix (CD).

Theorem 3.3 (Converse Duality) Let (x,y,w, ) be an optimal solution at which

(A)forall o =1,23...r,either

iel, iel

(a)jﬁ(t) (G +>(y'd', j A(t)dt >0,and jﬁ(t) (Z(y' jdtzo, or

(b)!ﬂ (G“+Z( )j ) dt<0, and jﬂ(t) (Z(y' Jt<0,

iel iel
(A,) the vectors H?,Gf’ ,a=12,. and j=12,.n are linearly independent,
where H? is the jth row of the matrix H°and G{ s the jth row of the matrix

G“ and
(A,) the vectors

2 (Y'(09,)-DY (y'()g;), @=123,...r

iel, iel,

are linearly independent. If, for all (x,u,y,w, ),

iel,

f{f(t D+ BOWD + Xy (09 )}d

is second-order pseudoinvex and

[y md.)dt, a=12..r,

| i€l,
is second-order quasi-invex, then x is an optimal solution of (CP).

Proof: Since(x,y,u, A)is an optimal solution of Mix (CD), (2), by Proposition
2.1,there r,eR, 7,€R, a=12,..,r, and piecewise smooth

6:1 >R"r:1 >R"™and p:1 —R" suchthat



I. Husain and S.K. Shrivastav 137

0=ro[(f, + Z(yi (t)g; )+ BOW() - D(f, + Z(yi g’ ).)—%(ﬂ(t)T HA()).

+= D(ﬂ(t) H°A()), ——DZ (BOTH B, += DS(ﬂ(t) H°A(®)),
—ED“(ﬂ(t) H°A®)), ]
+ O [(Fo + YO 8) = D(f + Y1) 9, )~ D( F + (YO 9,),)

—D(D(f +Y()' gy )+ D* (D(F + (Y1) go)x )+ (HB(), ®
—D(HB(1)); + D*(HB); ~D*(H B); + D*(H ),

—ir £y 09, - Dy 09'),) -3 (AOG" ) +3 D(FVG" AV,

a=! iely

-2 DY (BOG" A1), + D (G AV) - D*(FOG SO, te

7(g' —%ﬂ(t)T 0, A1) -0 (9, + 9, BM)+r'(1)=0, el ©)
7(g’ —%/5’(0T 9, A1) -0()(9; + 9, BM) +r'(t) =0, iel,, a=12..r (10)
7,B(t)x(t) - O(t)B(t) - 2p(t) (B(t)w(t)) =0, tel (11)
(28— 6(t))H° +Zr:(ra,3—«9(t))G“ 0 (12)

j{z y' )¢’ )——ﬁ’(t) G“B(1)}t=0, a=1,23,. (13)
p(t)’ (w(t) B(t)w(t)-1)=0, tel (14)
rit)" yt)=0,tel (15)
(ro,z'l,rz,......z'r,r(t), p(t))ZO, tel (16)
(701 Ty TprenT, T (1), 0(1), P(1)) £ 0, tel 17)

Because of assumption (A,), (10) implies

7, pt)-0(t)=0,0=012,..r (18)
Multiplying (10) by y'(t).,tel,, a=12,..,r, and summing over i, we have,

7, {y'®)g' —%ﬂ(t)(y‘g‘)mﬁ(t)}+ O{(y'a"), +(y'g"),. BOI+Y ®O)r'(t)=0
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4> y't)g' - ﬂ(t) > (y'g) B0}

iel, iel,
+OOLY (v'a)x+ 2 (V'a)BWI=0, icl, a=12..r 19)
icly iely

Using (18)in (19), we have

74> Y (t)g' - ﬂ(t) > (v'g") B}

icl, iely,
—zBOLY. (V') + 2 (v'0)BM}I=0 icl,, a=12..r.  (20)
iclg icly

—ra{j BOT Y (')t + j BOT Y (v'g")wBM)d}

icl, icl,

+7,[I (v'd) ﬂ(t) (X (V'gNedB(t)dt=0, a=12...,r.  (21)
| iely icl,
gives

L[ AT (/9,082 [ AT (2 ('9),) A0

+%, [ p)G=pt)dt=0 (22)

jﬂ(t) z<yg>xdt+—Jﬂ(t)<z(y'g'>xx+G )A(t)dt =0 (23)

iel, icly

If forall «¢=0,12...r,z, =0, then (18) implies 4(t)=0,te |

From (10), we have r(t)=0,teland p(t)=0 from (11) and (14).
Thus(z,,7;,75,......7,, F(1),6(t), p(t)) = O,t € |

This gives a contradiction. Hence there exists an & €{0,1,2,.....r} such that

7.>0. If B(t)=0,tel,thus (18)gives (r,-7,)p1)=0,a=12,..,r.
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This implies thatz,, =7, > 0,from (20), we have

2[ BT (X (y'gh)dt+ [ BOT (G + X (v'g")y)BE)dt =0
|

iel, | iel,
This contradicts (A ). Hence g(t) =0,t e I .
Using (4) and A(t) =0,t € 1,(8) gives
r o o
2 (gD (¥'9)-D 2. (y'g5)}=0, (24)
a=1 icl, iel,

Which by the linear independence of
2.(v'g)-DY (Yo} a=123..r
iel, iel,

yields

r,=1,, forall «e{0,12,...r}

Now (9) and (10) gives

7,0 +r(t)=0tel,iel, gives g'()<0/iel, (25)
7,9 +r'()=0tel,iel, implies g'(.)<0iel,,a=123..r. (26)
Gives g (.) <0 implies x is a feasible solution of (CP).

Multiplying (25) by y'(t),iel, andto y'(t),iel, ,a=12,.,r

From (11), we have

2p(t
o)) =228 0(y)
Hence
X(t)" BO)w(t) = (x(®)" B(t)x(t) )2 (w(t)" B(t)w(t))? (27)

If p(t)>0,tel, (14)implies w(t)" B(t)w(t) =1 and (25) implies

1

X(t)' Bw(t) = (x(t)" B)x(t))?, tel
If p(t)=0,tel, then(27) gives
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B(t)x(t)=0tel,

Thus in either Case, we have
X(t)" B(tw(t) = (x(t)" B(t)x(t)); tel

This gives I{f(t,x, >'()+(x(t)T B(t)x(t));}dt

:'.[{ t,x,X)+x(t) )+ y'g' (tx X —%ﬂ(t)Hoﬂ(t)}dt

iely

implies x is optimal to (CP).

4  Special Cases

If 1,=M, then Mix (CD) becomes (WD) and from Theorem 3.1-3.3, it
follows that it is a second-order dual to (CP), if

j{ f(tx,%)+y" (1)g(tx,%)+x(t) B(t)w(t)} dt is a second-order pseudoinvex.

If 1, is empty set and I, =M for somea €{1,2,...,r}, then Mix (CD) reduces
to (M-WD) which is a second-order dual to (CP).
If

[{F (txx)+x(0)" B(t)w(t)}

is second-order pseudoinvex and Iy(t)Tg(t,x,X)dt, is  second-order

quasi-invex.

If B(t) =0,t € | ,the dual problem Mixed (CD) will reduce to the Mixed type dual

treated by Husain and Bilal [9].
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5 Natural Boundary Values

In this section, we formulate a pair of nondifferentiable mixed type dual

variational problems with natural boundary values rather than fixed end points.

(CPo):
Minimize
j{f (t.x5)+(x(t)' B(t)x(t))z}dt
Subject to
g(t,x,%) <0, tel
(MixCDyy):
Maximize
j(f (tu(t),u(t))+u(t) )+ 2.y (19 (tu.u ——ﬂ(t) HO A(t))dt
Subject to

(fu (t,u,u)+B(t)w(t)+y(t) g, (t,u,u))
-D(f, (tu,u)+y(t) g, (tuu))+H B(t)=0, tel

I(Zy(t)g(tuu)——ﬂ(t) G“ A)t=0, a=123,

w(t)B(t)w(t)<1 y(t)=0, tel
>y (t)g, (tu,u)=0,

Iel
and

(t,u,u)+> y'(t)gy(t,u,u)=0, at t=aandt=b.

iely



142 Mixed Type Second-order Duality...

6 Nondifferentiable Nonlinear Programming Problems

If all the functions of the problem (CPy) and Mix (CDy) are independent of t
as b—a=1.Then these problem will reduces to the following dual problem to
(CPo) formulated by Zhang and Mond [10] :

(CP1): Minimize  f(x)+(x'Bx)"
Subjectto  9(x)<0,

. . 1 .-

=
Subject to
f,(u )+Bw+y J(u)+y'g, (u)+HB=0
2¥'0.(u) B'GB=0
WOBWSL y>0
where

(Zy'g']w and é:(Zyigi]uu, a=12,..r.

iely iel,

In Theorem 3.3, the symbols H 0 ,H f ,G” and G will respectively become as

Hozfxx(x)—{yg‘“)lx :V{f(x)‘%yigi(x)]
= 160~

For the problems (CPy) and Mix (CDo) will be stated as the following
theorem (Theorem 6.1) established by Yang and Zhang [11].Theorem 6.1 is
Theorem 2 of [11] and the rectified version of [10].
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Theorem 6.1 Let (x,y,w,/3) be an optimal solution of Mix (CDy) at which
(A)forall a=1.2,.,r.either

(a)the nxn Hessian matrix V> y'g'(x)is positive definite, and

iel,

AV Y (x)20

iel,
or

(b) the nx n Hessian matrix V2> y'g'(x) is negative definite and

iel,

BTV ¥ 9(x)<0,

iel,

(A,) The vectors {Vz(f (x)-2v'd (X)ﬂj ,{VZ(Z y'g' (x)H ,

iely iel,

J

a=12,.,r. j=1,2,...n are linearly independent, where it is the j" row of the
matrix H® and G-“.

(A,) thevectors {V Y y'9'(x), @=12,.,r} are linearly independent.

iel,

If, for all feasible (x,u,y,w,p), f()+> y'g'()+() Bw is second-order

iel,

pseudoconvex and Zyigi (.),a=l,2,..,r is second-order quasiconcave with

iel,

respect to the samez, then xis an optimal solution to (CPy).
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