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Abstract

Fritz John type optimality conditions for a multiobjective variational Problems
with equality and inequality constraints are derived. By an application of Karush
-Kuhn-Tucker type optimality conditions, a Wolfe type second-order dual to this
problem is formulated and various duality results are proved under generalized
second-order invexity assumptions. A pair of Wolfe type second-order dual
multiobjective with natural boundary values is also presented to investigate duality.
Finally, it is pointed out that our duality results established in this research can be
viewed as dynamic generalizations of those of static cases already existing in the

literature.
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1 Introduction

Second-order duality in mathematical programming has been widely
researched. As second-order dual to a constrained optimization problem gives a
tighter bound and hence enjoys computational advantage over the first-order dual
to the problem. Mangasarian [1] was the first to study second-order duality in
non-linear programming. Motivated with analysis of Mangasarian [1], Chen [2]
presented Wolfe type second-order dual to a class of constrained variational
problems under an involved invexity like conditions. Later Husain et al [3]
introduced second-order invexity and generalized invexity and presented a
Mond-Weir type second-order dual to the problem of [2] in order to relax implicit
invexity requirements to the generalized second-order invexity.

Multiobjective optimization (also known as multiobjective programming,
vector optimization, multicriteria optimization, multiattribute optimization, or
Pareto optimization) is an area of multiple criteria decision making. This deals
with optimization problems involving more than one objective functions to be
optimized simultaneously which appear more often than single objective
optimization problem to represent the models of real life problems.
Multiobjective optimization has applications in various fields of science that
includes engineering, economics and logistics where optimal decisions need to be
taken in the presence of trade-off between two or more conflicting objectives.
Minimizing weight while maximizing the strength of a particular component,
maximizing performance whilst minimizing fuel consumption and emission of

pollutants of a vehicle are examples of multiobjective optimization problems
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involving two or three objectives respectively. In real-life problems, there can be
more than three objectives.

Motivated with the above cursory remarks relating to multiobjective
optimization problems in this paper we present a multiobjective version of the
variational problem considered by Chen [2] with equality and inequality
constraints which represent more realistic problems than those variational problem
with an inequality constraint only. For this multiobjective variational problem,
Fritz John type optimality conditions are obtained. Using Karush-Kuhn-Tucker
type optimality conditions, deduced from the Fritz John type optimality conditions
requiring a suitable regularity conditions. Wolfe type second-order multiobjective
variational to the variational problems is formulated and various duality theorems,
viz. weak, strong, strict-converse and converse duality theorems are proved
under second-order pseudoinvexity and second-order strict pseudo-invexity. A
pair of Wolfe type second-order dual multiobjective variational problems with
natural boundary values is also constructed to study duality. Finally, it is indicated
that our duality theorems can be regarded as dynamic generalizations of the

second-order duality theorems is nonlinear programming, existing in the literature.

2 Pre-Requisites and expression of the problem

Let 1=[a,b] be a real interval, ¢:IxR"xR" >R and
w:IxR"xR" —> R™ be twice continuously differentiable functions. In order to
consider g (t,x(t),%(t)), where x:1—R"is differentiable with derivative X,
denoted by ¢, and ¢, , the first order derivatives of ¢ with respect to
x(t) and x(t), respectively, that is,

’ (a¢ op 6¢T ’ [a¢ op a¢jT
ot T ) T e ad T ax
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Denote by ¢, the Hessian matrix of ¢, and y, the mxn Jacobian matrix

5%
ox'ox?

respectively, that is, with respect to x(t), that is, 4, :( j i,j=12,..n,

w, the mxn Jacobian matrix

oy’ oy oy
oxt ox* X"
oy’ oy’ oy’

v, = ox*  ox? P

oy
ot ox? X" Jman

The symbols ¢,, 4., ¢, and , have analogous representations.

Designate by X, the space of piecewise smooth functions x:1 — R", with the
norm x| =[ x|, +[Dx|, . where the differentiation operator D is given by

u=Dx<:>x(t)=ju(s)ds,

a

Thus %:D except at discontinuities.

Consider the following constrained multiobjective variational problem:

(VEP): Minimize U fl(t,x,)'()dt,...,J' fP(t, X, X)dtj

subject to x(a)=a ,x(b)=2
g(t,x,x)<0,tel (1)
h(t,x,x)=0,tel )
where f':1xR"xR" >R, ieK={2,..,p} g:IxR"xR">R",

h:1xR"xR" — R' are continuously differentiable functions.

The following convention for equality and inequality will be used. If «,B8<R",
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then
azﬂ@aizﬂi i=12,..n

a>pead>p i=12,..,Nn
azf<a>p and azp

a>p<a >p i=12,..,n

Definition 2.1 A feasible solution X is efficient for (VEP) if there is no feasible
x for (VEP) such that

[l 0dt<[fit,x,%)dt, forsome ie{l2,...p}
| |
[fitgdt< [ fi@xX)dt, forall je{L2..p}
| |

In the case of maximization, the signs of above inequalities are reversed. We need
the following lemma due to Chankong and Haimes [4] for the proof of strong
duality result.

Lemma 2.1 If Xis efficient solution of (VEP) if and only if X solvesP, (x), for
allK, defined as
P.(X): Minimize If"(t,x,)‘()dt

|

subject to

h(t,x,x)=0, tel

F1(t,%%) < f1E,X,%) tel forall jefl,2,...,p} j=k

We incorporate the following definitions which are required in the subsequent

analysis.
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Definitions 2.2 The function I¢(t, x,X)dt whereg: 1 xR"xR" — R, is said to be
|

second order-pseudo invex with respect to 7 =n(t, x,u)if
d T
J{n% (t,u,u)+(d—7t7j ¢, (t,u,u)+7" A,B(t)}dt >0
I

N Ijgzs(t,x, X)dt > _!.(¢(t,u,U)—%ﬂT (t)Aﬁ(t)jdt

where A=g_(t,x,X)—2Dg, (t,X,X) + D’@, (t,X, X) — D°@, (t,x,X) , tel.

The functional J'¢(t, X, X)dt is said to strictly pseudoinvex with respect to 7 if
|

J {m a0+ ) duo sy Aﬂ(t)}dt >0
:>I¢(t,x,>‘<)dt > j¢(t,u,u)dt

Or equivalently

jqﬁ(t,x, x)dt < j¢(t,u,u)dt

J {M (t,u,u){‘fj—fj % (t,u,u)+nTAﬁ(t)}dt <0

Remark 2.1 If ¢ does not depend explicitly on t then the above definitions

reduce to those given in [5].

3 Necessary optimality conditions

In order to obtain the Fritz John type necessary optimality conditions, we

state the following variational problem treated by Chandra et al [6]:

(P):  Minimize jf(t,x,x)dt
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subject to
x(a)=a ,x(b)=2

g9(t,x,x)<0, tel

where f:IxR"xR" — Rand gand h are the same as earlier.

The problem (P) may be written as
Minimize  F(x)
subject to
G(x)eS,
H(x)=0,
where G: X — C(I,R™) giving G(x)(t)=g(t,x,x) for all xe X and tel and
C(l1,R™) denotes the space of continuous function from an interval | into R™, S
is the convex cone of function inC(I,R™)where components are non-negative.
The function H : X — C(I,R")is defined by
H(x)(t) =h(t,x, %) for xe X ;tel.

The following theorem gives the Fritz John type necessary optimality conditions

for the single objective variational problems derived in [6].

Theorem 3.1 (Fritz John optimality conditions) If X is an optimal solution of

(P) and h,(.,x(.),x(.)) maps onto a closed subspace of C(I,R'), then there exist

Lagrange multipliers z € R and piecewise smooth y:1 - R™,Z:1 = R' such

that
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v gt X(t),X(t) =0, tel
(7,¥(t))>0, tel
(7.¥(t),Z(t)) =0, tel

Remark 3.1 The above Fritz John necessary optimality conditions become
Karush-Kuhn-Tucker John optimality condition if z=1 (then X may be called
normal). It is sufficient for =1 that the Zowe’s form of Slater condition [6] is
assumed, that is, there exist qe X,
G(X)+G'(X)qeintS
H'(X)q=0
The Karush-Kuhn-Tucker type necessary optimality conditions for (P) can

explicitly be given in the following theorem:

Theorem 3.2 (Karush-Kuhn-Tucker type necessary optimality conditions) If

X is an normal and optimal solution of (VEP) and h, (.,x(.),x(.)) maps onto a
closed subspace of C(1,R'), then there exist piecewise smooth y:I — R",
Z:1 - R' such that
f (6 X(0), X(0) + V() 9, (& X(0), X)) +Z(1)" h, (&, X(1), X(1))
= D( £, (&, X(1), X(1) + ()" 9, (t. X(1), X(1)) + Z(®)" h, (t, X(1), (1)), tel
vy g(t,x(t),X(t))=0, tel
y(t)>0, tel

In this section, we will establish the following theorem giving the Fritz John type

necessary optimality conditions for (VEP):

Theorem 3.3 (Fritz John type necessary optimality conditions) Let X be an

efficient solution of (VEP). Then there exist 1'eR, ieK and piecewise
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smooth functions y:1 — R™, Z: 1 — R'such that

" T (-8 ) +(07 9, + Z()"h, )~ D(Y®)' ¢, +Z(®7 ) =0, te

¥ g(t.X,X)=0, tel
(2.71))>0, tel
(2,7),2(1)) =0, tel
Proof: Since X is an efficient solution of (VEP), by Lemma 2.1, X is an

optimal (PR,) for each pe Kand in particular of (P,). Therefore, by Theorem
3.1, thereexist A' eR,ie K

(27, -DA" £, )+ (YO 9, +Z®"h, )-D(V(t) g, +Z(t) h,) =0, te

which validates the theorem.

4 Wolfe type Duality

In this section, we present the following Wolfe type second- order dual to the
problem (VEP) and prove various duality theorems
(WVED):

Maximize (j(f Y, x, X))+ y(t) g(t, x, X) + z(t)" h(t, x, %) —%,B(t)T H*B(t))dt,

...,j(f P(t, X, %)+ y(t) g(t, x, %)+ z(t)" h(t, x, X) —%,B(t)T HPB(t))dt)

subject to

x(a)=a ,x(b)=p (3)
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ATy g, +2() h =D (A f, + Y1) g, +2(®) b, )+ HA®) =0 4)
y(t)>0 (5)
A>0,A"e=1, where e=(11,...,1)eR" (6)

where

H' = f, -2Df; +D*fy ~D*fi +(y() g, +2() h,) -2D(y(®) g, +2(®)"h,)
+D*(y() g, +2z()"h,) —D*(y®) g, +z(®)"h,)

X

H =27, —2DA" f, + D*A" f, —D°A" £, +(y(®) g, +2(t)'h,).
-2D(y(®)" g, +z(®)"h,) +D*(y() g, +2(t) h,) —D°(y(®) g, +z(t)'h,)

. o !
X X

and A =f! —-2Df! +D*f) —D3f.

Theorem 4.1 (Weak Duality) Assume that for all feasible x for (VEP) and all
feasible (u,y,z,4,)for (WVED).

J{F x5+ y® gt x %) +2()" h(t,x, %)}dt

is second-order pseudoinvex with respectto 7 . Then the following cannot hold:
Ijfi(t,x, X)dt<Hfi(t,u,U)+ y(t)Tg(t,u,u')+z(t)Th(t,u,U)—%,B(t)T Hiﬂ(t)}dt

for some ie{L2,..., p}. @)

iji(t,x,X)dt < Hf j(t,u,u)+y(t)Tg(t,u,u)+z(t)Th(t,u,u)—%ﬂ(t)TH 'ﬁ(t)}dt

forall je{1,2,..., p}. (8)
Proof: Suppose contrary to the result that (7) and (8) hold. Since x is feasible for
(VEP) and (u,y,z,4,p) is feasible for (WVED), it follows fromg(t,x, X)<0,

y(t) > 0, (7) and (8) that
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J{F @ x0)+y®" gt x, %)+ 2()" h(t, x, X) dt

< j{ fi(t,u,u)+ y(t) g(t,u,u)+z(t)" h(t,u,U)—%ﬁ(t)T H iﬂ(t)}dt
for some ie{12,..,p}. 9)

J{FI x50 +y®T gt x, %)+ 2(0)" ht, x, %) }dt

< j{f T(t,u,0) + y(t)" g(t,u,u) +z(t)" h(t,u,u) —%ﬁ(t)T H ‘ﬁ(t)}dt

forall je{L2,..p}, with j=i. (10)
Using the second-order pseudoinvexity of

j{ f'(t,..)+ y®)" g(t,...) + z(t)" h(t,.,.)}dt from the relations (9) and (10), we get

[ @ x u)(f)tuw+y®" g, tu,0)+ 207 h, tu,0)
|

.

+(‘3—’t7j (fJ(tu,0)+y®" g, (tu,u)+2()" b tu,u)) —%UT H'A(t)}dt <0
forall ie{l2,..,p} (11)

multiplying each inequality of (11) by A' >0, i=1,2,..., pand adding , we have

0> [ (t,x,u)(A" £(t,u,0)+ y(®)" g, (t.u,u)+2(®)" h, (t,u,0))
|
]
i‘i—@ (ATt u.0)+ YO gy () + 2O hy (L, 1))+ 7" H ()t

= jnT (&% u){(A" )t u,0)+y()" g, u,0)+2()"h, (tu,u))
—D (A" f,(t,u,u)+y(t)" g, (t,u,u)+z(t)" h, (t,u,u))+H A(t)}dt

e (474,600 + (0 0,60.0) + 207w 0)|
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jnT (tx,u){(A" £, (t,u,u)+ y(t) g, (t,u,u) + z(t)" h, (t,u,u))
|
—D (A" f,(t,u,u)+ y(t)" g, (t,u,u) + 2(t)" h, (t,u,u)) + H A(t)}dt < 0
This contradicts the feasibility of (u,y,z,}t,ﬁ) for (WVED). Hence the result

follows.

Corollary 4.1 Assume that the weak duality (Theorem 4.1) holds between (VEP)
and (WVED). If Xis feasible for (VEP) and (X,V,Z,1,5) is feasible for

(WVED) with y(t)"g(t,X,X)=0,8(t)=0,tel. Then Xis efficient for (VEP)
and (X,y,Z,4,8) isefficient for (WVED).

Proof: Suppose X is not efficient for (VEP). Then there exist some feasible X
for (VEP) such that

[ fit. & 0dt < [ £, %, %)dt, for some ie{L2,...p}
[iegndt < [ it x,X)dt, forall je{l2..,p}
Since y(t)' g(t,X,X)=0,Z(t) h(t,X,X)=0,te l and B(t)=0,te
Ij f1(t,X,X)dt < H f1(t,%, %)+ V() g(t,X, %)+ Z(t)" h(t, X, %) —%ﬂ(t)T H iﬁ(t)}dt
for some ie{l,2,... p}.
Ij f(t,X,%)dt < Hf I(t, X, %)+ y(t) g(t,X,X)+Z(t) h(t,X, ?)—%ﬁ(t)T H ‘ﬁ(t)}dt
forall je{12,.,p}.

This contradicts weak duality. Hence X is efficient for (VEP).

Now suppose that (X,4,Y,Z, /) is not efficient for (WVED) such that
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j{ (L, % %)+ y(®) g(t, x, X)+ z(t)" h(t, x, X) —%ﬁ(t)T H iﬁ(t)}dt

<[ { ' (X, %) + ¥()" 9(t, X, X) + Z(t)" h(t, X, X) —%ﬂ(t)T H iﬂ(t)}dt
for some ie€{1,2,..., p}

j{ fI(t, %, %)+ y(t) g(t,x, X)+ z(t)" h(t, x, X) —%ﬂ(t)T H jﬂ(t)}dt

< Hf I(t, X, %)+ Y (1) g(t,X,X) +Z(t)" h(t, X, X) —%,B(t)T H jﬂ(t)}dt
forall je{1,2,.,p}, j=i.
Since y(t)' g(t,x,X)=0, Z(t)"h(t,X,X)=0, B(t) =0, te |, we have
Hfi(t,x, )+ y(O) g(t, x, X) + z(t)" h(t, x, X)—%ﬂ(t)THiﬂ(t)}dk ! f(t, X, X)dt
for some ie{L2,... p}.

j{f (8, %, %) + y()" g(t,x, )+ 2())" h(t, x, ) —%ﬂ(t)T H ’ﬂ(t)}dté [ £@x,%dt

forall je{1,2..,p}.

This contradicts weak duality. Hence (7, 1.V, f,ﬁ(t)) is efficient for (WVED).

Theorem 4.2 (Strong Duality) Let X be an efficient solution of (VEP) and X
satisfy the constraint qualification of Theorem 3.1 for P, (X), for at least one

ke{l2,..,p}. Then there exist 1 € R“ and piecewise smooth y:1 — R™ and
Z:1 > R' such that (Y,/T, 7,7,,8:0) is feasible for (WVED) and
Y1) g(t,x,X)=0,tel. If the weak duality also holds between (VEP) and
(WVED) then (Y,I,V,T,,B:O) is efficient for (WVED).

Proof: As X satisfies the constraint qualification of Theorem 3.2 for P, (X), for

at least one k e{1,2,..., p}, it follows from Theorem 3.2 that there exist 1'e R**



28 On Multiobjective Variational Problems

and piecewise smooth y':1 —R™and z':1 — R'such that forall te

fi(t,X,X)—DFf, (t,X,X) + iﬂ" (f,(t,x,%)-Df/(t,X,X))

+Y' ()7 g, (t, X, X) - DY'(t) g, (t, X, X) + Z'()" h, (t, X, X) - Dz'(t) h,(t,X,X) =0,t e |
y'(t) g, (t,X,X)=0,tel
y'(t)' >0tel

A">0,i=12,.,pi=k

Setting
— . b _ P
A=2"111+Y 2", A =1 |1+ A"
i=1 i=1
izk izk

y(t)=y'(t) {l+zp:ﬂ”],7(t)=z’(t) 1+Zp‘/1"

i=k izk

o

and dividing by 1+Z/1" , we finally get
i=1
izk

AT (X, X)+ V() g, (X, X)+Z(t)" h, (t,X,X)
—D(ATf,(t,X, %)+ Y(1) 9, (L, X, X) +Z(1) h, (1, X,X)) =0,t e |
P .
Alsoweget » 2'=1 and Z(t)"h(t,X,X)=0,te . Itimplies that
i=1
(X.2,¥,Z, 8 =0)is feasible for (WVED).
The weak duality holds along ¥(t)" g(t,X,X)=0 and g(t)=0,tel . This by

corollary 4.1 implies that (Y, AY.Z, 0= 0) is efficient for (WVED).

Theorem 4.3 (Strict- converse Duality) Let X be efficient and normal solution

of (VEP) and (u,y,z,4,) be efficient for (WVED) such that
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p
!;ﬂf ,X,X)d

(12)
= j {Z AT, W)+ Y g, T, i) +Z ()" h(t,T,T) —% B()H B(t))dt

If '[(/IT f +y) g+z(t) h)dt is second-order strictly pseudoinvex with respect

to 7, then
X(t)=u(t), te

Proof: By second-order strict pseudoinvexity of

j(/f f(t,..)+y® gt...)+z() h(t,..))dt, (12) implies

0> [{n" (271, (t,u,u)+ y(@®)" g, (t,u,u)+2(t)" h, t,u,u))

dt
= [7"{(A" 1,00+ y(©) g, (6. T,0)+ ()" h, (t,T,0))

(d ) f f, (t,u,u)+y(t) g, (t,u,u)+z()" hu(t,u,u))+77THﬂ}dt

D(A" f,(t,T,0)+ (1) g, (&, T,T) + 2(t) h, (t,T,T) )+ H A(t) Jat
t=b

7 (AT T, 0+ Y g, (6T T) +2(0)"h, (4.7, ﬁ))| .

~—+

Using n=0, at t=a,t=b, we have
[774(A7 £ .0, 0) + yO©)T g, (t.T,0) + 2(0)" h, (T, T))
—D (A" f,(t,T,0) + y(t) 9, (t.T,T) +z(t)" h, (&, T,T) )+ H B(H)}dt < 0

This contradicts the equality constraint of (WVED).Hence X(t) =U(t), te

Theorem 4.4 (Converse duality) Let (X(t),y(t),z(t),2, B(t)) be an efficient
solution of (WVED) for which

(C1): His non-singular
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(C.): [(e® H'o®) ~D(o®) H'o (),
+D* (o) H'o(t), - D*(o(t) H'o (), +D* (o) H'a(), |

+2[ o)’ (Ho(t), —o(t)' D(Ho(t)), +o(t) D* (Ho(t))
~o(t)' D*(Ho (1)), +o(t)' D* (Ho(t), |=0=o(t) =0,

%

where o(t) isa vector function.
Then X(t)is feasible for (VEP) and the two objective functionals have the same

value. Also, if the weak duality theorem holds for all feasible solutions of (VEP)
and (WVED), then X(t)is efficient for (VEP).

Proof: Since (Y, y,z,ﬂ,ﬂ(t))is an efficient solution of (WVED), there exists
a,EeR?,6eR and piecewise smooth &:1 —->R", n:1 - R™ such that
following Fritz John conditions (Theorem (3.3)) are satisfied at(Y, Y, z,/l,,B(t)) :

iai {(f‘ +y'g +2'h)-D(f'+y'g, +zThX)—%(ﬂ(t)T H'A(1))
+ZD(AO" H'A), ~ D (BT H'AW), +
+2D* (A H' (), -5 D (AOT H'A), ]

+0(t) [H+(HB), ~D(HB),+D*(HpA),~D*(Hp), +D*(Hp), |=0 (13)
(aTe)[g" -2y gx’;ﬂ(t)}
+0()" [ 9 - D) +(g}, ~2Dg}, + D’g}, ~ D°gy ) A1) [+ 7' () =0  (14)
(aTe)[h" -2 Ay h:;ﬂ(t)}
+0(t)' | h} —Dh/ +(h}, —2Dh, + DN}, —D*h}, ) A(t) |= 0 (15)

(0)~(ae) ﬂ)T H=0 (16)

o) (f, -Df, - AB())+&'+5'=0  (17)
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nt)" y)=0, tel (18)
EA=0 (19

5[2% —1) =0 (20)

(@.1,£,:0)20 (1)
(2,0,n,&,0)#0 (22)
Since 1 >0, (19) implies& =0.
Since H is non singular, (16) implies
o(t)=(a"e) A(t) tel (23)

Using the equality constraint of the dual and (23) , we

S HAT —(BOTH'A), +2D(BOTH'A), - D7 (AT H'AW),
— al

+2D* (B H'A(), -5 D (AOT H'AQ)),
T [Hﬁ(t)T + PO (HB), - BT D(HB), + B D* (HB),
+(a'e)

~p)" D*(HB), +B(t) D* (Hp) -

Consequently, we obtain

{(ﬂ(tf H'A(1) —D(AMTH'AW). +D* (AL H'AE))

-D*(B(t) H'B(1)) +D* (A1) H'AW))
. zlﬂ(t)T (HB),-B® D(HB),+B1) D*(Hp), |
-p(t)' D*(Hp), + A1) D*(Hp),
This, because of the hypothesis (C,) implies g(t)=0, tel,

Using p(t)=0, tel in(23), we have
ot)=0, tel.
Using #(t)=0 and pA(t)=0, tel.From (14), we have

(a"e) g’ +n'(t)=0 (24)
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Let =0, then (14) and (17) respectively give &' =0 and 7'=0 .
Consequently (a,@,n,g‘,é)zo leading to a contradiction to (22). Hence a >0.

From (24), we have

gi=—”i(t) <0tel (25)
(a'e) =
or g(t,X,X)<0,tel

the relations (24) and (15) respectively imply that

yt) g(t.x,X)=0,tel and h(t,x,x)=0
Also g(t,X,X) <0 and h(t,X,X)=0,tel implythat Xis feasible for (VEP).
Now, we have

j(fi(t,Y,Y)+y(t)Tg(t,Y,?)+z(t)Th(t,Y,Y))dt=jfi(t,Y,?)dt, ickK,

|
implying the equality of objective values. By Corollary 4.1 the efficiency of X
for (VEP) follows.

5 Multiobjective variational problems with natural boundary
values

The following is a pair of Wolfe type second- order Multiobjective

variational problems with natural values:
(VEP)N: Minimize [j fl(t,x,X)dt,...,j f p(t,x,x)dt)
| |

subject to
g(t,x,x)<0, tel

h(t,x, X)

A

0, tel
(WVED)N: Maximize
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j( A8 X, %)+ (1) g(t, x, X)+2(t)" h(t, x, X) —%ﬂ(t)T Hlﬂ(t)jdt,...,

j( Pt %, X)+ y(t) g(t,x, X)+ z(t)" h(t, x, X) —%ﬁ’(t)T H "ﬂ(t)jdt

subject to

ATE 4y g, +2(t) h —D(ATf +y®) g, +2®)"h, )+ HB(E) =0, tel
yt)>0, tel
A>0, A"e=1, wheree=(11,...,1) e R*

ATf (tu,u)+y(t)" g, (t,u,u)+z(t) h,(t,u,u)=0, at t=aandt=b

The theorems established in the proceeding sections can easily be proved for the

above pair of problems.

6 Wolfe type second—order Multiobjective nonlinear

programming problems

If the problems (VEP) and WVED) are independent of t, i.e. if f, g and h do
not depend explicitly on t, then these problems essentially reduce to the static

cases of nonlinear programming studied in [7], namely

(VEP)o:  Minimize (f'(x), f*(x),..., f*(x))

subjectto g(x) <0, h(x)=0

(WVED),: Maximize
fl(u)+yTg(u)+zTh(u)—%/fv2(fl(u)+ Y g(u)+2"h(u)) B, ..

fp(u)+yTg(u>+zTh(u)—§ﬂTv2(fP(u)+yTg(u)+zTh<u>)ﬂ



34

On Multiobjective Variational Problems

subject to
AT, (u)+y g, (U)+2"h, (u)+V? (/1T f,(u)+y'g,u)+z"h, (u))ﬁ’ =0

y>0
A>0 Ale=1
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