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Abstract 

In this paper, we obtain optimality conditions for a class of nondifferentiable 

nonlinear programming problems with equality and inequality constraints in 

which  the objective contains the square root of a positive semidefinite quadratic 

function and is ,therefore, not differentiable. Using Karush-Kuhn-Tucker 

optimality, Mond-Weir dual to this problem is constructed and various duality 

results are validated under suitable generalized invexity hypotheses. A mixed type 

dual to the problem is also formulated and duality results are similarly derived.  
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1  Introduction 

In mathematical programming, there are a large number of researchers who 

have discussed duality for a problem involving the square root of a positive 

semidefinite. Mond studied Wolfe type duality while Chandra et. al. [1] 

investigated Mond-Weir type duality for a class of nondifferentiable mathematical 

programming problem containing square root term. Subsequently several research 

papers have appeared in the literature, namely Chandra and Husain [2] and 

references exist there. The popularity of this kind of problem seems to originate 

from the fact that, even though the objective functions and or constraint functions 

are non-smooth, a simple representation for the dual problem may be found. The 

nonsmooth mathematical programming deals with much more general kind of 

functions by means of generalized subdifferential, or quasidifferentials. However, 

the square root of a positive semidefinite quadratic form is one of the four cases 

of a nondifferentiable function for which subdifferential can explicitly be written. 

In this paper, we obtain optimality conditions for a class of nondifferentiable 

nonlinear programming problem having square root term in the objective function 

with equality and inequality constraints. It is to be remarked here, a constrained 

optimization problem with equality and inequality constraints  represents a 

majority of real life problems, and hence it is important. For this class of problem, 

Mond-Weir duality is investigated using generalized invexity assumptions. A 

mixed type dual problem to this problem is also constructed to obtain various 

duality results. 

 

 

2  Statement of the Problem and Related Pre-requisites 

We consider the following nondifferentiable nonlinear programming 

problems: 
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(EP):     Minimize ( ) ( )1 2/Tf x x B x+  

subject to  

                       ( ) 0,g x ≤                 (1) 

                       ( ) 0,h x =            (2) 

Where 

 (i) n n mf : R R, g : R R→ → and n ph : R R→ are continuously differentiable 

functions. 

(ii) B is an n n×  symmetric positive semi-definite matrix. 

We recall the following definitions of generalized invexity which will be used to 

derive various duality results. 

 

Definitions 2.1: (i) A function n: R Rφ → is said to be quasi-invex with respect 

to a vector function ( )x,u ,η η= if 

              ( ) ( ) ( ) ( ) 0≤ ⇒ ∇ ≤Tx u x,u uφ φ η φ . 

(ii) A function φ  is said to be pseudo-invex with respect to a vector function

( )x,u ,η η= if 

              ( ) ( ) ( ) ( )0∇ ≥ ⇒ ≥T x,u u x uη φ φ φ . 

(iii) φ  is said to be the strictly pseudoinvex with respect to η  if x u,≠  

( ) ( ) ( ) ( )0∇ ≥ ⇒ >T x,u u x uη φ φ φ  

Equivalently, if  

             ( ) ( ) ( ) ( ) 0≤ ⇒ ∇ <Tx u x,u u .φ φ η φ  

We shall make use of the generalized Schwartz inequality [3] 

              
( ) ( ) ( )1 2 1 2T T / T /x B x B x Bω ω ω≤  

The equality holds if, for 0λ ≥ , B x B .λ ω=  The function ( ) ( )1/2Tx x B xφ = , 
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being convex and everywhere finite, has a subdifferential in the sense of convex 

analysis.  

The subdifferential of ( )1/2Tx B x  is given by  

( ) ( ){ }1/2 1/2
, where , and 1T T T n Tx B x Bw x Bw x B x w R w B w∂ = = ∈ ≤ .

 
We also require the Mangasarian-Fromovitz constraint qualification which is 

described as the following: 

Let x ∈Ω  be the set of feasible solution of the problem (EP), that is, 

( ) ( ){ }0, 0 ,nx R g x h xΩ = ∈ ≤ = and by ( ) ,A x the set of inequality active 

constraint indices, that is, ( ) ( ){ }, 0 ,jA x j g x= =  where x ∈Ω . 

We say the Mangasarian-Fromovitz constraint qualification holds at x ∈Ω when 

the equality constraint gradients ( ) ( ) ( )1 2, ,..., ph x h x h x∇ ∇ ∇ are linearly 

independent and there exist a vector nd R∈  such that ( ) 0h x d∇ = and 

( ) 0,jg x d∇ < for all ( )j A x∈ .  

 

 

3  Optimality Conditions 

In this section, optimality conditions for the problem (EP) are obtained. 

 

Theorem 3.1 (Fritz John Necessary Optimality Condition) If x  is an optimal 

solution of (EP), then there exist , ,m pr R y R z R∈ ∈ ∈  and nw R∈  such that  
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( ) ( ) ( )
( )

( )

( )
( )

1/2

0,

0,

,

1,
, 0

, , 0.

T T

T

T T

T

r f x B y g x z h x

y g x

x B w x B x

B
r y

r y z

ω

ω ω

∇ + +∇ +∇ =

=

=

≤

≥

≠

 

Proof: The problem (EP) may be written as  

     Minimize ( ) ( ) ( ) ,x f x xφ ψ= +             

     Subject to  

              
( )

( )
,

0.

mg x R

h x
+− ∈

=
          

Where mR+  is the non-negative orthant of mR  and the nondifferentiable convex 

function ( )1/2
.Tx B xψ =  

A Fritz John theorem [4] shown that the necessary condition for a minimum of 

(EP) at x are the existence of Lagrange multipliers ,r R∈ my R∈ , pz R∈  and 
nRω∈  such that 

( ) ( ) ( ) ( )0 T Tr x r x y g x z h xφ ψ∈ ∂ + ∂ +∂ + ∂  

This implies  

( ){ } ( ) ( ) ( ){ }1/2
0 { , , 1}n T T T T Tr f x r B R x B w x B x B y g x z h xω ω ω ω∈ ∇ + ∈ = ≤ + ∇ +∇

which implies 

( )( ) ( ) ( )
( )

( )

( )
( )

1/2

0,

0,

,

1,
, 0,

, , 0.

T T

T

T T

T

r f x B y g x z h x

y g x

x B w x B x

B
r y

r y z

ω

ω ω

∇ + +∇ +∇ =

=

=

≤

≥

≠
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Thus the theorem follows.  

Karush-Kuhn-Tucker type optimality conditions can be deduced from the above 

Fritz John optimality condition if Mangasarian-Fromovitz Constraint Qualification 

holds at x .∈Ω  

The following theorem gives the Karush-Kuhn-Tucker types optimality 

conditions. 

 

Theorem 3.2 (K-K-T optimality condition) If x  is an optimal solution of (EP) 

and satisfies Mangasarian-Fromovitz constraint qualification, then there exist 

, ,m pr R y R z R∈ ∈ ∈  and  nRω∈  such that  

( ) ( ) ( )
( )

( )1/2

0,

0,

,

1,
0.

T T

T

T T

T

f x B y g x z h x

y g x

x B w x B x

B
y

ω

ω ω

∇ + +∇ +∇ =

=

=

≤
≥

 

 

 

4  Mond-Weir type Duality 

In this section, we present the Mond-Weir type dual to (EP). Using 

Karush-Kuhn-Tucker necessary optimality conditions, Wolfe type dual to the 

following problem was formulated in [5].  

Problem: (P)    Minimize  ( ) ( )1 2/Tf x x B x+  

               Subject to  

                        ( ) 0g x ≤ . 

Dual (WD):     

Maximize ( ) ( ) ( ) ( )( )T T Tf u y g u u y g u f u+ − ∇ +∇  
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subject to 

              

( ) ( ) 0

1
0

T

T

f u B y g u ,

B ,
y .

ω

ω ω

∇ + +∇ =

≤
≥

 

The problem (WD) is a dual to (P) assuming that f and g  are convex: 

Further, Chandra et. al. [1] in order to weaken the convexity requirements in [5] 

for duality to hold, formulated the following Mond-Weir type dual to the problem 

(P). 

(M-WD): Maximize ( ) Tf u u Bω+  

        subject to  

                    

( ) ( )
( )

0

0

1
0

T

T

T

f u B y g u ,

y g u ,

B ,
y .

ω

ω ω

∇ + +∇ =

≥

≤
≥

     

and established duality results assuming that ( ) ( ). . Tf Bω+  is pseudoconvex for 

all nRω∈  and ( ).Ty g  is quasiconvex. Later Mond and Smart [6] generalized 

the results by Zhang and Mond [7] and Chandra et. al. [1] to invexity conditions. 

Here, we propose the following Mond-Weir type dual to the problem (EP) to 

study duality:  

(M-WED): Maximize ( ) Tf u u Bω+  

          Subject to       

( ) ( ) ( )

( )
( )

0, (3)

1, (4)
0, (5)

0, (6)
0. (7)

T T

T

T

T

f u B y g u z h u

B
y g u

z h u
y

ω

ω ω

∇ + +∇ +∇ =

≤

≥

≥

≥
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 Theorem 4.1 (Weak Duality) Let x  be feasible for (EP) and ( ), ,u y ω  

feasible for (M-WED). If for all feasible ( ), , ,x u y ω , ( ) ( ). . Tf Bω+  is 

pseudoinvex, ( )Ty g .  and ( )Tz h .  are quasi-invex with respect to the same η , 

then  

infimum (EP) ≥  supremum (M-WED) 

Proof: Since x  is feasible for (EP) and ( ), ,u y ω is feasible for (M-WED), we 

have                                       

                                   ( ) ( ) (8)T Ty g x y g u≤  

                                    ( ) ( ) (9)T Tz h x z h u≤  

By quasi-invexity of ( ).Ty g  and ( )Tz h .  with respect to the same η , (8) and (9) 

respectively yield 

                               

( ) ( )
( ) ( )

, 0 (10)

, 0 (11)

T T

T T

x u y g u

x u z h u

η

η

∇ ≤

∇ ≤
 

Combining (10) and (11), we have  

               
( ) ( ) ( )( ) 0T T Tx,u y g u z h uη ∇ +∇ ≤  

which because of (3) gives 

                      ( ) ( )( ), 0T x u f x Bη ω∇ + ≥  

By pseudoinvexity of ( ) ( )Tf . . B+ ω , this implies  

                     ( ) ( )T Tf x x B f u u Bω ω+ ≥ +  

Since 1,T Bω ω≤  by the generalized Schwartz inequality, it follows that 

                 
( ) ( ) ( )1/2T Tf x x B x f u u Bω+ ≥ +

 
giving 

infimum (EP) ≥  supremum (M-WED). 
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Theorem 4.2 (Strong Duality) If x  is an optimal solution of (EP) and MFCQ 

holds at x , then there exist ,my R∈ pz R∈  and nRω∈  such that ( ), , ,x y zω  is 

feasible for (M-WED) and the corresponding values of (EP) and (M-WED) are 

equal. If, also ( ) ( ). . Tf Bω+  is pseudoinvex for all ,nRω∈ ( )Ty g .  and ( )Tz h .  

are quasi-invex with respect to the same .η  Then ( ), , ,x y zω  is an optimal 

solution of (M-WED). 

Proof: Since x  is an optimal solution of (EP) and MFCQ holds at x , then from 

Theorem 3.2, then there exist ,my R∈ pz R∈  and nRω∈  such that  

                  ( ) ( ) ( ) 0,T Tf x B y g x z h xω∇ + +∇ +∇ =  

                    ( ) 0,Ty g x =  

                    ( )1/2
,T Tx B x B xω =  

                    1,T Bω ω ≤  

                     y 0.≥  

Since x is feasible for (EP) and (M-WED), ( ) 0,h x =  which implies  

                         

( )
( ) ( ) ( )
( )

0,

0,

0,

1,

T

T T

T

T

z h x

f x B y g x z h x

y g x

B

ω

ω ω

=

∇ + +∇ +∇ =

=

≤

 

             and         0y .≥  

If ( ) ( ). . Tf Bω+  is pseudoinvex for all ( ), .n TR y gω∈  and ( ).Tz h  are 

quasi-invex with respect to the same .η  Then from Theorem 4.1, ( ), , ,x y zω  is an 

optimal solution for (M-WED). 

The following is another dual to the following (EP): 

(M-WED1): Maximize  ( ) Tf u u Bω+  

              subject to 
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( ) ( ) ( )
( )
( )

0,

0, 1,2,...,

0,

1,
0.

T T

i i

T

T

f u B y g u z h u

y g u i m

z h u

B
y

ω

ω ω

∇ + +∇ +∇ =

≥ =

≥

≤
≥

 

This is a dual of (EP) if ( ) ( )Tf . . B+ ω  is pseudo-invex and each ,i iy g  

1, 2,...,i m=  is quasi-invex and ( )Tz h u  is quasi-invex with respect to the sameη . 

It is remarked here that if ( )ig .  is quasi-invex with respect to same η , 0,iy ≥  

then i iy g  is quasi-invex with respect to η . The problem (M-WED1) is a dual to 

(EP) if ( ) ( ). . Tf Bω+  is pseudoinvex and each 1 2ig ,i , ,..m=  is quasi-invex and 

( )Tz h . is quasi-invex with respect to the same .η  

 

Theorem 4.3 (Strict Converse duality) Assume that ( ) ( ). . Tf Bω+  for all 

nRω∈  is strictly pseudoinvex, ( ).Ty g  is quasi-invex and ( ).Tz h  is quasi-invex 

with respect to the same .η  Assume also that (EP) has an optimal solution x  

which satisfies Mangasarian-Fromovitz constraint qualification. If ( ), , ,u y z ω  is 

an optimal solution. Then u  is an optimal solution of (EP) with u x.=  

Proof: We assume that u x≠  and exhibit a contradiction. Since x  is an optimal 

solution of (EP), it implies from Theorem 4.2 that there exists ,m py R z R∈ ∈ and  

nRω∈  such that ( ), , ,x y z ω is an optimal solution of (M-WED1). Since

( ), , ,u y z ω  is also an optimal solution of (M-WED1), it follows that 

                       ( ) ( )Tf x x B f u u Bω ω+ = +  

This, by strict pseudoinvexity of ( ) ( ). . Tf Bω+  yields 
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                            ( ) ( )( ), 0 (12)T x u f u Bη ω∇ + <  

From the constraints of (EP) and (M-WED), we have 

                       ( ) ( ) ,T Ty g x y g u≤  

                       ( ) ( ) ,T Tz h x z h u≤  

which by quasi-invexity of ( ).Ty g  and ( ).Tz h  with respect to the same ,η  yield 

                                  
( ) ( )
( ) ( )

, 0 (13)

, 0 (14)

T T

T T

x u y g u

x u z h u

η

η

∇ ≤

∇ ≤  

From (12), (13) and (14), we have 

          
( )( ) ( ) ( ) 0,T T Tf x B y g u z h uη ω ∇ + +∇ +∇ <   

contradicting the feasibility of ( ), , ,u y z ω  for (M-WED). 

Hence                                                    

                                       u x.=  

 

Theorem 4.4 (Converse duality) Let ( ), , ,x y z ω be optimal to (M-WED) at 

which  

( )1A : the matrix ( ) ( ) ( )( )2 T Tf x y g x z h x∇ + + , is positive or negative definite 

and 

( )2A :the vectors ( )Ty g x∇ and ( )Tz h x∇  are linearly independent. 

If, for all feasible ( ), , , , ,x u y z ω ( ) ( ). . Tf Bω+  is pseudoinvex, ( )Ty g .  and 

( ).Tz h  are quasi-invex with respect to the same ,η  then x  is an optimal solution 

of (EP). 

Proof: By Theorem 3.1, there exist , , , ,n mR R R R Rτ θ α β η∈ ∈ ∈ ∈ ∈  and 

Rγ ∈  such that 
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( ) ( ) ( ) ( )( )

( )

2 2 2

0, (15)

T T T

T T

f B f u y g u z h u

y g z h u

τ ω θ

α β

∇ + + ∇ +∇ +∇

+ ∇ + ∇ =
                  

           ( ) 0, (16)g u gθ α η∇ + + =
 

Implies 

( ) 0, (17)T Ty g uθ ∇ =                                                                                                                      

( ) 0, (18)T Tz h uθ ∇ =
                                                                                

( ) 2 0, (19)Tx B B Bτ θ γ ω+ − =                                                                                                         

0, (20)Ty gα =                                                                                               
0, (21)Tz gβ =

( )1 0, (22)T Bγ ω ω− =                                                                                                                                   

0, (23)T yη =                                                                                               
( ), , , , 0, (24)τ α β γ η ≥
                                                                                             

( ), , , , , 0. (25)rτ α β η θ ≠  
Using (3) in (15), we have  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

2

2 0,

T T T T

T T

y g u z h u f u y g u z h u

y g u z h u

τ θ

α β

∇ +∇ + ∇ + +

+ ∇ + ∇ =  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 0,T T T Ty g u z h u f u y g u z h uα τ β τ θ− ∇ + − ∇ + ∇ + + =
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 0,T T T T T T Ty g u z h u f u y g u z h uα τ θ β τ θ θ⇒ − ∇ + − ∇ + ∇ + + =
 

Which because of (17) and (18), yields
 

( ) ( ) ( )( )2 0,T T Tf u y g u z h uθ ∇ + + =  

By ( )1A , it follows that 0.θ =  

Then (15) implies 
 

( ) ( ) ( ) ( ) 0.T Ty g u z h uα τ β τ− ∇ + − ∇ =  
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By the linear independent of ( )Ty g x∇  and ( )Tz h x∇ , this gives ( ) 0,α τ− =  

and ( ) 0.β τ− =  

Let 0, 0θ τ= > . Then 0, 0.α β= =  Consequently (16) implies 0.η =  

The relation (19) and (22) together imply that 0.γ = This leading to a 

contradiction to (25). Hence  

0, 0τ α> > and 0.β >  Also 0, 0θ τ= >  and (19) give  

2 .Tx B Bγ ω
τ

=  Hence ( ) ( )1/2 1/2T T Tx B x B x Bω ω ω= . 

If 0,γ >  then (22) give 1T Bω ω =  and so ( )1/2T Tx B x B xω = . 

If 0,γ =  (19) gives 0.B x =  so we still get  

( ) ( )1/2
. (26)T Tx B x B xω =

Thus, in earlier case, we obtain ( ) ( )1/2
.T Tx B x B xω =  

Therefore, from (26), we have  

 
( ) ( ) ( ) ( )1/2

.T Tf x x B x f x x Bω+ = +
 

The equality of objective values follows.
 

If, for all feasible ( ), , , , ,x u y z ω ( ) ( ). . Tf Bω+  is pseudoinvex, ( ).Ty g and 

( ).Tz h  is quasi-invex with respect to the same ,η  then by Theorem 4.1 , it implies 

x  is an optimal solution of (EP). 

 

 

 

5  Mixed type duality 

Let { } { }1,2,..., , 1, 2,... ,M m L l= = , 0,1, 2,...,I M rα α⊆ =   
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with ,I Iα β φ α β= ≠  and 
0

r

I Mα
α=

=


and , 0,1, 2,3...,J L rα α⊆ =  with 

( ),J Jα β φ α β∩ = ≠  and 
0

r

J Lα
α=

=


. 

In relation to (EP), consider the problem. 

Mix (ED):  Maximize ( ) ( ) ( )
0 0

T
i i j j

i I j J
f u u B y g u z h uω

∈ ∈

+ + +∑ ∑  

           subject to 

 

( ) ( ) ( )
( )

( )

0 (27)

0, 1,2,..., . (28)

0, 1,2,..., . (29)

1 (30)
0 (31)

T T

i i
i I

j j
j J

T

f u B y g u z h u

y g u r

z h u r

B
y

α

α

ω

α

α

ω ω

∈

∈

∇ + +∇ +∇ =

≥ =

≥ =

≤
≥

∑

∑  

                 
 

Theorem 5.1 (Weak Duality) Let x  be feasible and ( ), , ,u y z ω feasible for 

(ED). If for all feasible ( ), , , ,x u y z ω , ( ) ( ) ( ) ( )
0 0

. . . .T
i i j j

i I j J
f B y g z hω

∈ ∈

+ + +∑ ∑  is 

pseudoinvex, ( ). , 1, 2,...,i i
i I

y g r
α

α
∈

=∑  is quasi-invex and ( ). ,j j
j J

z h
α∈
∑

1,2,..., rα =  is quasi-invex with respect to the same η , then 

          
( ) ( ) ( ) ( ) ( )

0 0

1/2T T
i i j j

i I j J
f x x B x f u u B y g u z h uω

∈ ∈

+ ≥ + + +∑ ∑
 

That is, 

infimum (EP) ≥ supremum Mix (ED).
 

Proof: Since x  is a feasible for (ED) and ( ), , ,u y z ω  is feasible for Mix (ED), 

we have 
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( ) ( ) , 1, 2...i i i i

i I i I
y g x y g u r

α α

α
∈ ∈

≤ =∑ ∑  

By quasi-invexity of ( ). , 1, 2,..., ,i i
i I

y g r
α

α
∈

=∑  this implies         

( ) ( )

( ) ( )
0

, 0, 1, 2,...,

, 0, 1, 2,..., (32)

T
i i

i I

T
i i

i M I

x u y g u r

x u y g u r

α

η α

η α

∈

∈ −

 
∇ ≤ = 
 
 

∇ ≤ = 
 

∑

∑

( ) ( ) ( ) ( ) ( ) ( )
0 0

. . . . . .T
i i j j

i I j J
f B y g z hω

∈ ∈

+ + +∑ ∑ is pseudo-invex. 

Also  ( ) ( ) , 1, 2,...j j j j
j J j J

z h x z h u r
α α

α
∈ ∈

≤ =∑ ∑ . 

By quasi-invexity of ( ). , 1, 2,...j j
j J

z h r
α

α
∈

=∑
 

This gives ( ) ( ), 0, 1, 2,...,T
j j

j I
x u z h u r

α

η α
∈

 
∇ ≤ = 
 
∑  

( ) ( )
0

, ( ) 0, 1, 2,...,T
j j

j L J
x u z h u rη α

∈ −

∇ ≤ =∑                           (33) 

From the (27), it follows that  

( ) ( ) ( ) ( )
0 0

, [ ] 0T
i i j j

i I j J
x u f u B y g u z h uη ω

∈ ∈

∇ + + ∇ + ∇ ≥∑ ∑  

The pseudoinvexity of ( ) ( ) ( ) ( )
0 0

. . ,i i j j
i I j J

f B y g u z h uω
∈ ∈

+ + +∑ ∑  this yield 

( ) ( ) ( ) ( ) ( )
0 0

T T
i i j j

i I j J
f x x B f u u B y g u z h uω ω

∈ ∈

+ ≥ + + +∑ ∑
 

Since 1,T Bω ω≤ by the generalized Schwartz inequality, this implies 

( ) ( ) ( ) ( ) ( )
0 0

1/2T T
i i j j

i I j J
f x x B x f u u B y g u z h uω

∈ ∈

+ ≥ + + +∑ ∑  

implying, 

infimum (EP) ≥ supremum Mix (ED). 
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Theorem 5.2 (Strong Duality) If x is an optimal solution of (EP) and 

Mangasarian-Fromovitz Constraint Qualification is satisfied at x , then there exist 

, andm l ny R z R Rω∈ ∈ ∈  such that ( ), , ,x u z ω  is feasible for Mix (ED) and the 

corresponding value of (EP) and Mix(ED) are equal. If, also, 

( ) ( ) ( ) ( )
0 0

. . . .i i j j
i I j J

f B y g z hω
∈ ∈

+ + +∑ ∑  is pseudoinvex for all ,nRω∈  ( ).i i
i I

y g
α∈
∑

and ( ).j j
j J

z h
α∈
∑ are quasi-invex with respect to the sameη , then ( ), , ,x y z ω  is 

optimal for Mix (ED). 

Proof: Since x  is optimal solution of (EP) and MFCQ is satisfied at x , then 

from Theorem 3.2, there exist ,m ly R z R∈ ∈  and nRω∈  such that  

           

( ) ( ) ( )
( )

( )1/2

0,

0,

1,

,

0.

T T

T

T

T

f x B y g x z h x

y g x

B

x B x B x

y

ω

ω ω

ω

+ +∇ +∇ =

≥

≤

=

≥

 

The relation ( ) 0,Ty g x ≥  and ( ) 0,Tz h x ≥ are obvious. From the above it implies 

that ( ), , ,x y z ω  is feasible and the corresponding value of (EP) and (Mix ED) 

are equal. If ( ) ( )+ Tf . . Bω ( ) ( )
0 0∈ ∈

+ +∑ ∑i i j j
i I j J

y g . z h .  is quasi-invex, ( ).Ty g and 

( ).Tz h  are quasi-invex with respect to the sameη , then from Theorem 5.1, 

( ), , ,x y z ω  must be an optimal solution of (Mix ED). 

We now consider some special cases of (Mix ED). 

If 0 ,I I Mαφ= =  for some { }1,2,..., rα ∈ and , 0,1, 2,..., .J rα φ α= =  Then 

(Mix ED) be (WD) and (WD) is dual to (EP) if ( ) ( ) ( ). . .T Tf B y gω+ +  is 

pseudoinvex with respect to the same η . 
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If , 0,1, 2,..., .J rα φ α= =  Then (Mix ED) become the Mixed dual to the problem 

(P) considered by Zhang and Mond [7] and generalized dual to (P) if 

( ) ( ) ( ). . .T Tf B y gω+ +  is pseudoinvex and ( ). , 1, 2,...,i i
i I

y g r
α

α
∈

=∑ is 

quasi-invex with respect to the same η .  

 

Theorem5.3 (Converse duality) Let ( )x , y,z,ω  be an optimal solution of Mix 

(ED) at which  

( )1A : the matrix ( ) ( ) ( )( )2 T Tf x y g x z h x∇ + +  is positive or negative definite 

and  

( )2A : the vectors ( ) ( ), , 1, 2,...,i i j j
i I j J

y g x z h x r
α α

α
∈ ∈

  ∇ ∇ = 
  
∑ ∑  are linearly 

independent. If ( ) ( ). . Tf Bω+  is pseudoinvex, ( )
∈
∑ i i
i I

y g .
α

and ( ).j j
j J

z h
α∈
∑  are 

quasi-invex with respect to the same η . Then x  is an optimal solution of (EP). 

Proof:                

( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( )

0 0

2

1 1

( )

0 (34)

T T T T
i i j j

i I j J

r r

i i j j
i I j J

f x B y g x z h x f x y g x z h x

p y g x q z h x
α α

α α
α α

τ ω θ
∈ ∈

= ∈ = ∈

∇ + + ∇ + ∇ + ∇ + +

   
+ ∇ + ∇ =   

   

∑ ∑

∑ ∑ ∑ ∑

( ) ( )
( ) ( )

( )

2 0 (35)
0, , 1, 2,..., (36)

0, , 1, 2,..., (37)

( ) 0, 1,2,..., (38)

T

T
i i

T
j j

i i
i I

B x B B
g x g x i I r

h x h x j J r

p y g x r
α

α

α

α

τ θ γ ω

τ θ η α

τ θ α

α
∈

+ − =

+ ∇ + = ∈ =

+ ∇ = ∈ =

= =∑
( )

( )

( ) 0, 1, 2,..., (39)

0 (40)

1 0 (41)

 

j j
j J

T

T

q z h x r

y

B

α

α α

η

γ ω ω

∈

= =

=

− =

∑
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( )
( )

1 2 1 2

1 2 1 2

, , ,..., , , , , ,..., 0 (42)

, , ,..., , , , , , ,..., 0 (43)
r r

r r

p p p q q q

p p p q q q

τ γ η

τ γ θ η

≥

≠
 From (36), it follows that  

( ) 0, 1,2,..., (44)T
i i

i I
y g x r

α

θ α
∈

∇ = =∑
From (37), it follows that  

( ) 0, 1,2,..., (45)T
J j

j j
Z h x r

α

θ α
∈

∇ = =∑
 

Using equality constraint of the problem Mix(ED) in (34), we have  

( ) ( ) ( ) ( )

( ) ( ) ( )( )
1 1

2

( ) ( )

0 (46)

r r

i i j j
i I j J

T T T

p y g x q z h x

f x y g x z h x
α α

α α
α α

τ τ

θ

= ∈ = ∈

− ∇ + − ∇

+ ∇ + + =

∑ ∑ ∑ ∑

 Multiplying (46) by θ , and then using (44) and (45), we have 

              
( ) ( ) ( )( )2 0.T T Tf x y g x z h xθ θ∇ + + =  

By ( )1A , from this we obtain 

    0.θ =                                                     (47)               
Then (46) implies  

       
( ) ( ) ( ) ( )

1 1
( ) ( )

r r

i i j j
i I j J

p y g x q z h x
α α

α α
α α

τ τ
= ∈ = ∈

− ∇ + − ∇∑ ∑ ∑ ∑               (48) 

Since the vector ( ) ( ){ , , 1, 2,..., }i i j j
i I j J

y g x z h x r
α α

α
∈ ∈

∇ ∇ =∑ ∑  are linearly 

independent, (48) yields 

0, 0, 1, 2,..., (49)p q rα ατ τ α− = − = =
If 0,τ =  (49) implies 0 , 1, 2,...,p q rα α α= = = . 

From (36) implies 0η =  and from (35) together with (41), we have 0.γ =  

 Hence ( )1 2 1 2, , , ,..., , , , , ,..., 0r rp p p q q qτ θ γ η =  contradicting to (43), hence 0.τ >  

Consequently  0pα >  and 0, 1,2,..., .q rα α> =  

Multiplying (36) by 0,iy i I∈  and using (40), we have 
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( ) 00, (50)i iy g x i Iτ = ∈

Multiplying (37) by 0, ,jz j I∈  we have 

( ) 00, (51)j jz h x j Jτ = ∈
Then from 0,τ > (47) and (48) implies that 

( )
( )

0

0

0, (52)

0, (53)
i i

j j

y g x i I

z h x j J

= ∈

= ∈
Also 0, 0θ τ= >  and (35) implies  

2 (54)rB x Bω
τ

=

Hence

( ) ( )1/2 1/2
(55)T T Tx B x B x Bω ω ω=

If 0,γ >  then (41) implies 1T B .ω ω =     

consequently, (55) yields  ( )1/2T Tx B x B xω =  

If 0,γ =  then (35), yields 0B x .=   So we obtain  ( ) 1/2T Tx B x x Bω= . 

Thus in either case, we obtain ( )1/2
.T Tx B x B xω =  

Therefore from (49) and (50), with ( )1/2
,T Tx B x B xω = we have 

( ) ( ) ( ) ( ) ( )
0 0

1/2T T
i i j j

i I j J
f x x B x f x x B y g x z h xω

∈ ∈

+ = + + +∑ ∑ . 

If the hypotheses of Theorem 5.1 hold then x  is an optimal solution of (EP). 
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