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Abstract 

The regime switching models are particularly popular in the comity of non-linear models; 

it is of interest to investigate regime switching models with GARCH specification. 

GARCH model was augmented with STAR model vis-a vis Exponential autoregressive 

GARCH (EAR-GARCH), Exponential smooth transition autoregressive GARCH 

(ESTAR- GARCH) model and Logistic smooth transition autoregressive GARCH 

(LSTAR-GARCH) model. The properties of the new models were derived and compared 

with conventional GARCH model which shows that the variance obtained for STAR-

GARCH model was minimum compared to classical GARCH model, the new 

methodology proposed is illustrated with foreign exchange rate data from Great Britain 

(Pound) and Botswana (Pula) against United States of America (Dollar). It is evident that 

all STAR-GARCH outperformed the classical GARCH model, however, LSTAR-

GARCH performed best and closely followed by ESTAR-GARCH, this is followed by 

EAR-GARCH. The implication is that the use of LSTAR –GARCH produces the best 

result; however LSTAR may be utilized in some occasions.  
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1  Introduction 

Non-linear time series models are increasingly becoming very popular this is because 

several financial assets cannot be modeled by pure linear processes. It seems to be 

generally accepted that many economic variables follow non-linear processes. The regime 

switching models are particularly popular in the committee of non-linear models, it is of 

interest to study regime switching models with GARCH specification, in this paper 

GARCH model will be augmented with STAR model vis-a vis Exponential 

autoregressive GARCH (EAR-GARCH), Logistic smooth transition autoregressive 

GARCH (STAR-GARCH) model and Exponential smooth transition autoregressive 

(STAR- GARCH) model.  

Distinct features of GARCH model and its extension lies on the fact that they have ability 

to capture volatility clustering, for instance, if the shock from the previous period is high 

or low, large or small the values of 
2

1t 
 will certainly have an effect on its variance.  

Smooth transition autoregressive (STAR) models are applied to time series data as an 

extension of autoregressive models, in order to allow for higher degree of flexibility in 

model parameters through a smooth transition. So also STAR models are introduced 

according to Terasvirta and Anderson (1992), Granger and Terasvirta (1994) and 

Terasvirta (1994) because of the existence of two distinct regimes, with potentially 

different dynamic properties and that the transition between the regimes is smooth. STAR 

models allow economic variables to follow a given number of regimes with switches 

between regimes achieved in a smooth and continuous fashion and governed by the value 

of a particular variable or group of variables. The transition parameter denoted by 

 , ,ts c is a slope of parameter that determines the speed of transition between the two 

extreme regimes with low absolute values resulting in slower transition. It should be 

noted that  , ,ts c  are generated by data series. Two commonly used transition 

functions are the logistic autoregressive (LSTAR) model and exponential autoregressive 

(ESTAR) model. However, exponential autoregressive (EAR) model from where the 

ESTAR was generalized will be studied along with these two traditionally studied 

models. In the non-linear GARCH model, the conditional variance is expressed as a non 

linear of lagged residuals. In the STAR models, the non-linearity is introduced via either 

logistic or an exponential transition function. The non-linearity in this paper is linked to 

existence of bid-ask spread in the currencies being exchanged. 

 

 

2  General Representation 

We define the general representation of STAR model as: 

    1 21 , , , ,t t t t t ty x G y c x G y c                      (1) 

Where  1 21, , ,..., ,t t t t px y y y      0 1, ,..., , 1,2 ,i i ip i    t  is the error term 

distributed as independently and identically with mean zero and variance
2.    , ,tG s c  

is the transition function bounded between zero and unity and thus allowing for a smooth 

transition between regimes. 
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Now, using the lagged endogenous variable, the various forms of STAR models are as 

follows: 

The logistic STAR model is expressed as 

    11 1 (1 expt t j t dy y y c


 
      +     12 1 expt j t d ty y c 



 
      

 1 2        = 1 L L

t j t t j t ty G y G  
                                  (2) 

 

The exponential – STAR model is of the form 

   2

1 expt t j t dy y y c 
     +    2

2 1 expt j t d ty y c  
      

 1 2        = 1 E E

t j t t j t ty G y G  
                     (3) 

 

The exponential autoregressive STAR (EAR-STAR) model is of the form 

   2

1 11 expt t j ty y y 
    +    2

2 11 expt t j t ty y y  
      

 1 2        = 1 R R

t j t t j t ty G y G  
                   (4) 

For large values of the parameter , the logistic function 
L

tG converges to one when 

0t dy c    when 0  the LSTAR converges to an autoregressive model of order p . 

The ESTAR shows slightly different patterns with respect to . For large values of , the 

exponential function   E

tG  converges to one for values of t dy   below or above 

threshold parameter c . The EAR-STAR is a modified form of ESTAR with 0d  . Base 

on the aforementioned conditions, the STAR model offers the possibility to investigate 

the presence of non linearity in time series data which may account for the weakness of 

GARCH model mentioned in chapter four, and without loss of generality we can 

strengthen the GARCH model with STAR models by adjusting the error terms. The 

LSTAR GARCH model is proposed by combining equation t t ty    with equation (2), 

(3) and (4) to get 

 
 1 2= 1 L L

t t j t t j t t ty y G y G   
                   (5) 

   1 2= 1 E E

t t j t t j t t ty y G y G   
                   (6)      

 1 2  = 1 R R

t t j t t j t t ty y G y G   
                   (7) 

 

Which are EAR-GARCH (5), ESTAR-GARCH (6) and LSTAR-GARCH (7) 

In general, the STAR-GARCH model proposed for the study is of the form 

 1 2        = 1t t j t t j t t ty y G y G    
                                            (8) 

Where tG
is the varying smooth transition functions defined in equations (2 through 4) 
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3  Properties of STAR-GARCH Model 

Suppose that the general STAR-GARCH is of the form 

   
1 2

1t j t t j t t tt S G
y y G y G    

    
1 1 2

  t j t j t t j t t ty y G y G      
       (9)                    

Assume that 
1

  and 
2

  have the same number of parameter such that 
2 1 1      and 

t t j tV y G   1,2,...,j p   and t t tZ   , then equation (9) reduces to 

  11 t j t tt S G
y y V Z 

                  (10) 

Let us assume that
t jy 

, tV  and tZ are independent with zero co-variances and the 

estimates of  
1

   and 1
 are respectively 

1
̂  and 1̂ . The mean of general STAR-GARCH 

model is:- 

       11t t j tt
E y E y E V E Z 

     

Since   0tE Z   and      jt t jE y E y   , then the last expression is of the form 

     11t t tE y E y E V     , which reduces to 

     1

1

1

ˆ1
t tt S G

E y E y V



 


             (11) 

To derive the variance of  t S G
y


, consider the expression for  2

tE y  as  

       2 22 2 2 2

11t t j t tE y E y E V E Z    , this reduces to 

       22 2 2 2

12

1

ˆ1
t t j t t

t

E y E y E V E Z



   
 


                                                        (12) 

From equations (11) and (12) we have  

  2

t S G
Var y


  

 
2 2 0
12

1
     

ˆ 11
t

i j
t

E V



 

 
  

      
 

22

12

1

1

ˆ1
tV



 
  



     (13) 

In order to relate STAR-GARCH model with the GARCH model; if in equation (5.11) 

0V  then   2

t S G
E y


  tE y  and the variance of   2

t S G
Var y


 in equation (13) will 

reduce to 

 
 

2 2 0
12

1
     

ˆ 11
t

i j
t

E V



 

 
 

    
 

 

 

 

 

 

 



Smooth Transition Autoregressive-GARCH Model in Forecasting                                   15 

 
 

4  Empirical Results/Data Analysis with Exchange Rate Data 

This section examines the empirical results obtained for Smooth Transition 

Autoregressive GARCH models (STAR-GARCH) for four sets of exchange rates data 

namely British (Pounds), Japanese (Yen), Nigerian (Naira) and Batswana (Pula) against 

American (Dollar). Here the Parameters of Exponential autoregressive GARCH models 

(EAR-GARCH), Logistic smooth transition autoregressive GARCH models (LSTAR-

GARCH) and that of Exponential smooth transition autoregressive GARCH (ESTAR-

GARCH) models were obtained using the derived equations for all the series. The 

following values of variances were obtained for classical GARCH models: 

 

Table 1: The GARCH model fitted for all series 

SERIES 
COEFFICIENT (S.E) 

0                           1                           1            
MODEL VARIANCE 

NAIRA  3.85802              1.16179                      -0.99980 
  (0.34152)                        (0.52198)                                   (0.00016) 

4949.20411 

POUND  0.00017              0.97219                      -0.00024 
  (0.00005)                        (0.23370)                                   (0.02657) 

0.65816 

PULA  0.047613            1.90362                      -0.91061 
   (0.10084)                       (0.30959)                                   (0.01367) 

2.14441 

YEN  0.67948              1.00818                      -0.03111 
  (0.26140)                        (0.26247)                                   (0.12408)    

5461.26025 

 

In estimating   and c as required in equations (5) through (7) 

Estimation of γ and C: 

Starting values needed for the nonlinear optimization algorithm can be obtained using two 

dimensional grid search over   and c , and select those that give smallest estimator for the 

residual variance. The two dimensional grid give three possible values are tables2 and 3. 

  

Table 2: Values of grid of C 
SERIES I II III 

NAIRA 0.35


 155.76 30 

POUND 0.48


 2.42 30 

PULA 0.74


 7.97 30 

YEN 0.74


 7.97 30 

 

Table 3: Values of grid of   

SERIES I II III 

NAIRA 0.50


  10.00 30 

POUND 0.50 


 10.00 30 

PULA 0.50 


 10.00 30 

YEN 0.50 


 10.00 30 
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In the tables (2 and 3) all the asterisk values are selected because they have minimum 

values and are subsequently used in equations (5)-(7). We fitted models described in 

equations (5)-(7) as follows: 

We can now illustrate the empirical implication of these theories here under: 

 

4.1 EARSTAR-GARCH Model for all Series 

     2 2

( ) 1 1 1 2 1 1exp 1 expt S G t t t t t ty y y y y         
         

(i)  
 

 
 

 ( ) 1 1
1.297588 0.005048

5.384416 1 0.003043*tNaira S G t t t t t ty y G y G       
 

with the variance   64.8983 

(ii) 
 

 
 

 ( ) 1 1
0.007401 0.003444

     0.097709 1 0.481528tPound S G t t t t t ty y G y G        
  

with the variance 0.0037 

(iii)  
 

 
 

 ( ) 1 1
0.961958 0.084636

     9.184421 1 5.236047*tPula S G t t t t t ty y G y G       
 

with the variance 45.8382 

(iv) 
 

 
 

 ( ) 1 1
0.013318 1.425775

3.397120 1 2.6550*tYen S G t t t t t t ty y G Q y G       
 

with the variance 126.2495 

 

 4.2 ESTAR-GARCH for all Series 

     2 2

( ) 1 1 1 2 1 1exp 1 expt S G t t t t t ty y y c y y c         
           

(i) 
 

 
 

 ( ) 1 1
0.005034 1.070787

0.003033 1 4.738773*tNaira S G t t t t t ty y G y G       
 

with the variance 64.5584 

(ii) 
 

 
 

 ( ) 1 1
0.005207 0.014678

0.544219 1 0.899484*tPound S G t t t t t ty y G y G       
 

with the variance 0.0030 

(iii) 
 

 
 

 ( ) 1 1
0.083324 0.633186

5.170756 1 1.276754*tPula S G t t t t t ty y G y G       
 

with the variance 43.4726 

(iv) 
 

 
 

 ( ) 1 1
0.000204 0.004776

2.877449 1 1.014081*tYen S G t t t t t ty y G y G       
 

with the variance 125.6686 

 

4.3 LSTAR-GARCH for all Series 

      
1 1

( ) 1 1 1 2 1 11 1 exp 1 expt S G t t t t t ty y y c y y c     
 

    
            

(i) 
 

 
 

 ( ) 1 1
1.137383 0.000283

26.86795 1 0.000140*tNaira S G t t t t t ty y G y G       
 

with the variance 29.7358 

(ii) 
 

 
 

 ( ) 1 1
0.026206 0.014403

0.585333 1 0.901189*tPound S G t t t t t ty y G y G       
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with the variance   0.0001 

(iii) 
 

 
 

 ( ) 1 1
0.579097 0.006820

14.35766 1 0.316239*tPula S G t t t t t ty y G y G       
 

with the variance 19.8816 

(iv) 
 

 
 

 ( ) 1 1
0.001578 0.007704

1.645026 1 1.040716*tYen S G t t t t t ty y G y G       
 

with the variance 122.3990. 

 

4.4 EAR-GARCH Model Tables for all Series 

Table 4: Fitted model for EAR-GARCH series 
SERIES COEFFICIENT (SE) 

C(1)                         C(2) 

MODEL VARIANCE 

NAIRA 
 1.29759

5.38442             
 0.00505

0.00304  64.8983 

POUND 
 0.007401

0.09771              
 0.00344

0.48153  0.0037 

PULA 
 0.96196

9.18442              
 0.08464

5.23605  45.8382 

YEN 
 0.02130

3.39712              
 0.00137
2.65500  126.2495 

 

4.5 ESTAR-GARCH Model Tables for all Series  

Table 5: Fitted model for ESTAR-GARCH series 
SERIES COEFFICIENT (SE) 

C(1)                         C(2) 

MODEL VARIANCE 

NAIRA 
 0.00503

0.00303             
 1.07078
4.73877  64.5584 

POUND 
 0.00521

0.54422             
 0.01468

0.89948  0.0030 

PULA 
 0.08332

5.17076              
 0.63319

1.27675  43.4726 

YEN 
 0.00020
2.87745           

 0.00478
1.01408  125.6686 

 

4.6 Logistic-GARCH Model Tables for all Series  

Table 6: Fitted model for LSTAR-GARCH series 
SERIES COEFFICIENT (SE) 

C(1)                         C(2) 

MODEL VARIANCE 

NAIRA 
 0.00503

0.00303             
 1.07078
4.73877  29.7358 

POUND 
 0.00521

0.54422             
 0.01468

0.89948  0.0001 

PULA 
 0.08332

5.17076              
 0.63319

1.27675  19.8816 

YEN 
 0.00020
2.87745           

 0.00478
1.01408  122.3990 

 

4.7 Table Comparing the Variances of all Series with GARCH Model 

Table (7) shows the variances of all STAR-GARCH models with GARCH, it is quite 

evident that all STAR-GARCH actually outperformed the classical GARCH model, 
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however, the LSTAR-GARCH performed best and closely followed by ESTAR-GARCH, 

this is followed by EAR-GARCH, the implication of this is that for would be forecaster, 

the use of LSTAR-GARCH produced the best result. However, researcher can equally 

make do with ESTAR as its performance could be considered as well. LSTAR-GARCH is 

strongly recommended for optimum result. 

 

Table 7: Variances of all series with GARCH model 

SERIES GARCH MODEL EAR-GARCH ESTAR-GARCH LSTAR-GARCH 

NAIRA 4949.2041 64.8983 

 

64.5584 29.7358 

POUND 0.6582 0.0037 0.0030 0.0001 

PULA 2.1444 45.8382 43.4726 19.8816 

YEN 5461.2603 126.2495 125.6686 122.3990 

 

 

5  Conclusion 

In table 7, the variances of all STAR-GARCH models with GARCH are displayed, it is 

quite evident that all STAR-GARCH outperformed the classical GARCH model, 

however, the LSTAR-GARCH performed best and closely followed by ESTAR-GARCH, 

this is followed by EAR-GARCH. The implication is that the use of LSTAR–GARCH 

produces the best result; however ESTAR may be utilized in some occasions. But LSTAR 

would produce optimal result. 
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