Some common fixed point theorems of sequentially compact and complete cone -2- metric spaces of a contractive mapping

L Shambhu Singh ${ }^{1}$, Th. Chhatrajit Singh ${ }^{2}$ and K Anthony Singh ${ }^{1}$

Abstract

In this paper, we prove some common fixed point theorems of sequentially compact and complete cone 2-metric spaces of a contractive mappings. We have proved four lemmas for the main theorems. Our results improve and generalize some of the results of B Singh etal(15) etc.

Mathematics Subject Classification: 47 H 10, 54 H 25
Keywords: Fixed points, common fixed points, compact and complete cone 2-metric spaces, ordered Banach space, contractive mapping, Normal cone with normal constant, sequentially compact cone 2-metric space.

1 Introduction

The notion of 2-metric space was introduced by S. Gahler in series of papers [1], [2],[3] etc. published in the 60's whose abstract properties were suggested by the area function for a triangle determined by a triplet in the Euclidean Space.
L.G. Huang and X. Zhang [10] introduced the concept of cone metric space as a generalization of a metric space on replacing real numbers by an ordered Banach Space and obtained some fixed points of contractive mappings. Using both the two concepts B.Singh etal [15] introduced cone 2-metric space and

[^0]proved some common fixed point theorems. We now extend and generalize the results of [15] for a pair of self-mappings using a contractive mapping.

2 Preliminary Notes

We need the following definitions for our main theorems.
Definition 1.1: A non-empty set X with at least three points together with a mapping $d: X \times X \times X \rightarrow R^{+}$, is called a 2-metric space if d satisfies.
i) To each pair of points x and $y, x \neq y$ in X there exists a point $z \in X$ such that $d(x, y, z) \geq 0$.
ii) $d(x, y, z)=0$ if at least two of x, y and z are equal.
iii) $\quad d(x, y, z)=d(y, z, x)=d(z, x, y) \forall x, y, z \in X$
iv) $d(x, y, z) \leq d(x, y, w)+d(x, w, z)+d(w, y, z)$ for all $x, y, z, w \in X$

It is denoted by the ordered pair (X, d). The mapping d is called a 2 -metric defined on X

Definition 1.2 [15]: A cone 2-metric space is defined as follows. Let E be a real Banach Space and P, a subset of E . P is called a cone of E if
i) $\quad P$ is closed, non-empty and $P \neq\{0\}$
ii) $\quad a, b \in I^{+}, a, b \geq 0$ and $x, y \in P \Rightarrow a x+b y \in P$
iii) $\quad x \in P$ and $-x \in P \Rightarrow x=0$

Given a cone $P \subset E$, we define a partial ordering \leq in E with respect to P by $x \leq y$ if and only if $y-x \in P$. A cone P is normal if for every $x, y \in P$ there exist a number $K>0$ such that $x \leq y \Rightarrow\|x\| \leq K\|y\|$.

The least of K is the normal constant of the cone P . The symbol $x \ll y$ is used to denote that $y-x \in \operatorname{Int}(P)$, interior of P in E .

A cone P is regular if for every non-decreasing sequence which is bounded above is convergent i.e. if $\left\{x_{n}\right\}$ be a sequence such that $x_{1} \leq x_{2} \leq \ldots \ldots \ldots . \leq x_{n} \leq \ldots . \leq y \leq \ldots$ for some $y \in P$ then there exists some $x \in P$ such that $\quad x_{n} \rightarrow x$ or $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$

Equivalently $x_{n} \rightarrow$ xas $n \rightarrow \infty$ if $\left\{x_{n}\right\}$ is a non-increasing sequence which is bounded from below..
Definition 1.3 : Let X be a non-empty set with at least three points. Let $d: X \times X \times X \rightarrow P$ be a mapping such that
i) $d(x, y, z) \geq 0, \forall x, y, z \in X$ and $d(x, y, z)=0$ if at least two of x, y or z are equal.
ii) $d(x, y, z)=d(y, z, x)=d(z, x, y), \forall x, y, z \in X$.
iii) $\quad d(x, y, z) \leq d(x, y, w)+d(x, w, z)+d(w, x, z)$ for all $x, y, z, w \in X$.

Such a mapping ' d ' is called a cone 2 -metric and the pair (X, d) is called a cone 2-metric space.

Definition 1.4 : Let (X, d) be a cone 2-metric space with respect to a cone P in a real Banach Space E, Let $\left\{x_{n}\right\}$ be a sequence in X and let $x \in X$. If for every $c \in \operatorname{Int}(P) \quad$ with $0 \ll \mathrm{c}$ there exist a number $\mathrm{N}(\mathrm{c})$ such that $d\left(x_{n}, x, a\right) \ll c \forall a \in X, n \geq N(c)$.

Then $\left\{x_{n}\right\}$ is called a convergent sequence converging to $x . x$ is the limit of the sequence $\left\{x_{n}\right\}$. We denote it by $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.5 : Let $\left\{x_{n}\right\}$ be a sequence in a cone 2-metric space (X, d). For each $c \in \operatorname{Int}(P)$ there is a number $\mathrm{N}(\mathrm{c})$ such $d\left(x_{n}, x_{m}, a\right) \ll c$ for all $a \in X$ and $n, m \geq N(c)$. Such a sequence $\left\{x_{n}\right\}$ is called a Caucly Sequence.

Definition 1.6 : If every sequence $\left\{x_{n}\right\}$ in a cone 2 -metric space has a convergent subsequence then X is said to be a sequentially compact cone 2-metric space. A compact space is a sequentially compact space.

3 Main Results

We prove some results in cone 2-metric spaces.
Lamma 2.1 : Every regular cone is a normal cone with a normal constant.
Proof: Let $\left\{x_{n}\right\}$ be a non-decreasing sequence which is bounded. Then exists a real
number $M \in N$ such that each $x_{i} \leq M, \forall i$ if $\left\{x_{n}\right\} \subset X$ i.e. $M-x_{i} \in \operatorname{Int}(P)$ i.e $\left\|M-x_{i}\right\| \rightarrow 0$ asi $\rightarrow \infty$. i.e $\left\{x_{n}\right\}$ is convergent. Also for some iand $j, i \leq j$
We have, $\left\|x_{i}\right\| \leq K\left\|x_{j}\right\|, \forall i$ and j. Such K has least value and hence P is a normal cone with a
normal constant. If $\left\{x_{n}\right\}$ be a non-increasing sequence and $x_{n+1} \leq x_{n} \forall n \in N$ then $\left\|x_{n+1}\right\| \leq K\left\|x_{n}\right\|, \forall n$ and hence P is normal cone with a normal constant K .

Lamma 2.2: Every convergent sequence $\left\{x_{n}\right\}$ in a cone 2-metric space has a convergent subsequence in X or Every subsequence of a convergent sequence in a cone 2-metric space converges.

Proof : Let $\left\{x_{n}\right\}$ be convergent to some $x \in X$. Then for each $c \in \operatorname{Int}(P), P$ is normal cone with normal constant K . there exists a number $\mathrm{N}(\mathrm{c})$ such that
$d\left(x_{n}, x, a\right) \ll c, \quad \forall n \geq N(c)$
Choosing $\mathrm{c}, 0 \ll c$ such that $K\|c\|<\in$, for $\in>0$.
We have
$\left\|d\left(x_{n}, x, a\right)\right\| \leq K\|c\|<\epsilon \quad \forall n \geq N(c)$
$\Rightarrow\left\|d\left(x_{n(\lambda)}, x, a\right)\right\| \leq \in \quad \forall n(\lambda) \geq N(c \quad a \in X$
$\Rightarrow d\left(x_{n(\lambda)}, x, a\right) \rightarrow 0 \quad$ as $\lambda \rightarrow \infty$
$\Rightarrow \lim x_{\substack{n(\lambda) \\ \lambda \rightarrow \infty}}=x$
$\therefore\left\{x_{n(\lambda)}\right\} \subset\left\{x_{n}\right\}$ converges to $x \in X$.
As $\left\{x_{n(\lambda)}\right\}$ is arbitrary, any subsequence of a convergent sequence $\left\{x_{n}\right\}$ convereges.
Lemma 2.3: Every convergent sequence is Cauchy in a cone 2-metric space but the converse is not true.

Proof: Let $\left\{x_{n}\right\}$ be convergent
There for each $c \in \operatorname{Int}(P)$ there exists a number $N(c)$ such that $d\left(x_{n}, x, a\right) \ll c$ for all $a \in X, n \geq N(c)$, Now for some $m, n \geq N(c)$
$d\left(x_{n}, x_{m}, a\right)$
$\leq d\left(x_{n}, x, a\right)+d\left(x, x_{m}, a\right)+d\left(x_{n}, x_{m}, x\right)$
$<d\left(x_{n}, x, a\right)+d\left(x, x_{m}, a\right)+d\left(x_{n}, x_{m}, x\right)$
$<\frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c$
i.e.d $\left(x_{n}, x_{m}, a\right) \rightarrow 0$ as $n, m \rightarrow \infty$
$\therefore\left\{x_{n}\right\}$ is a Cauchy sequence.
Conversely if $\left\{x_{n}\right\}$ is Cauchy sequence, then for some $c \in \operatorname{Int}(P)$. We have,
$\therefore d\left(x_{n}, x_{m}, a\right) \leq d\left(x_{n}, x_{m}, x\right)+d\left(x_{n}, x, a\right)+d\left(x, x_{m}, a\right), \forall \mathrm{n}, \mathrm{m} \geq \mathrm{N}(\mathrm{c})$
$\therefore 0<d\left(x_{n}, x, a\right), \forall n \geq N(c)$
Hence, $\lim d\left(x_{n}, x, a\right) \neq 0$
or $\quad \lim _{n \rightarrow \infty} \neq x$
$\therefore\left\{x_{n}\right\}$ does not converge to x.
This completes the proof.

Lemma 2.4: If every subsequence of a sequence $\left\{x_{n}\right\}$ converges to the same limit x in a cone 2 -metric space (X, d) then x is the limit of the sequence $\left\{x_{n}\right\}$ in X.
Proof :
Let $\left\{x_{n(\lambda)}\right\} \subset\left\{x_{n}\right\}$ be a subsequence such that $x_{n(\lambda)} \rightarrow x$ as $\lambda \rightarrow \infty$
Therefore, given $c \in \operatorname{Int}(P)$, there exists a number $\mathrm{N}(\mathrm{c})$ and $x \in X$ such that $d\left(x_{n(\lambda)}, x, a\right) \ll c$ or equivalently.
$d\left(x_{n(\lambda)}, x, a\right)<\frac{\epsilon}{3}$ if $K\|c\|<\epsilon \quad$ and $\in>0$ be chosen.
Now,
$d\left(x_{n}, x, a\right)$
$\leq d\left(x_{n}, x, x_{n(\lambda)}\right)+d\left(x_{n}, x_{n(\lambda)}, a\right)+d\left(x_{n(\lambda)}, x, a\right)$
$\leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\in}{3}=\epsilon$
i.e, $d\left(x_{n}, x, a\right) \rightarrow 0$ as $n \rightarrow \infty \forall a \in X \& n \geq N(\mathrm{c})$

Thus,
$\lim _{n \rightarrow \infty} x_{n}=x$, as $n \rightarrow \infty$
Hence the sequence $\left\{x_{n}\right\}$ also converges to x.
Remark 2.5 [15];[12] : If E be a real Banach space with cone P and if $a \leq \lambda a$ where $a \in P$ and $0<\lambda<1$, then $a=0$.
Theorem 2.6: Let $((X, d)$ be a sequentially compact cone 2-metric space and let P be a cone with a normal constant K. Suppose the mappings $S, T: X \rightarrow X$ satisfy the following for all $x, y, z \in X:$
$T(\mathrm{X})$ or $\mathrm{S}(\mathrm{X})$ is closed subset of X .
$d(S x, T y, z) \leq K d(x, y, z)+\lambda d(S x, x, z)$
$+\mu d(T y, y, z)+\beta \max \{d(S x, y, z), d(T y, x, z)\}$
Where $0 \leq K, \lambda, \mu, \beta<1$
and $K+\lambda+\mu+2 \beta<1, K+\beta<1, \mu+\beta<1$

Then S and T have coincident points which are the unique common fixed points of S and T.
Proof :
For $x_{0} \in X$, define a sequence $\left\{x_{n}\right\}$ as follows

$$
\begin{aligned}
& x_{n}=T x_{n-1} \text { if } n \text { is odd } \\
& x_{n+1}=S x_{n} \text { if } n \text { is even. }
\end{aligned}
$$

Now,

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}, z\right) & =d\left(S x_{n}, T x_{n-1}, \mathrm{z}\right) \\
& \leq K d\left(x_{n}, x_{n-1}, z\right)+\lambda d\left(S x_{n}, x_{n}, Z\right)+\mu d\left(T x_{n-1}, x_{n-1}, Z\right) \\
& +\beta \max \left\{d\left(S x_{n}, x_{n-1}, Z\right), d\left(T x_{n-1}, x_{n}, z\right)\right\} \\
& \leq K d\left(x_{n}, x_{n-1}, z\right)+\lambda d\left(x_{n+1}, x_{n}, Z\right)+\mu d\left(x_{n}, x_{n-1}, z\right) \\
& +\beta \max \left\{d\left(x_{n+1}, x_{n-1}, z\right), d\left(x_{n}, x_{n}, z\right)\right\} \\
& \leq K d\left(x_{n}, x_{n+1}, z\right)+\lambda d\left(x_{n+1}, x_{n}, Z\right)+\mu d\left(x_{n}, x_{n-1}, z\right) \\
& +\beta d\left(x_{n+1}, x_{n-1}, z\right) \\
\Rightarrow & (1-\lambda-\beta) d\left(x_{n+1}, x_{n}, z\right) \leq(K+\mu+\beta) d\left(x_{n}, x_{n-1}, z\right) \\
\Rightarrow & d\left(x_{n+1}, x_{n}, z\right) \leq\left(\frac{K+\mu+\beta}{1-\lambda-\beta}\right) d\left(x_{n}, x_{n-1}, z\right) \\
\Rightarrow & d\left(x_{n+1}, x_{n}, z\right) \leq \rho d\left(x_{n}, x_{n-1}, z\right) \\
\text { if } \rho & =\frac{K+\mu+\beta}{1-\lambda-\beta}<1 \text { i.e.if } K+\mu+\lambda+2 \beta<1
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \Rightarrow d\left(x_{n}, x_{n-1}, z\right) \leq \rho d\left(x_{n-1}, x_{n-2}, z\right) \leq \ldots \\
& \quad \leq \rho^{n} d\left(x_{1}, x_{0}, z\right)
\end{aligned}
$$

Now for some $m, n \in N, n>m$.

$$
\begin{aligned}
& d\left(x_{n}, x_{m}, z\right) \leq d\left(x_{n}, x_{m}, x_{n-1}\right)+d\left(x_{n}, x_{n-1}, z\right)+d\left(x_{n-1}, x_{m}, z\right) \\
& \quad \leq \rho^{n-1} d\left(x_{1}, x_{0}, z\right)+d\left(x_{n}, x_{n-1}, z\right)+d\left(x_{n-1}, x_{m}, z\right) \\
& \leq \\
& \quad\left(\rho^{n-1}+\rho^{n-2}\right) d\left(x_{1}, x_{0}, z\right)+d\left(x_{n-2}, x_{m}, z\right) \\
& \quad \leq\left(\rho^{n-1} \rho^{n-2}+\ldots+\rho^{m}\right) d\left(x_{1}, x_{0}, z\right) \\
& \quad \leq \rho^{m}\left(1+\rho+\rho^{2} \ldots+\rho^{n-m-1}\right) d\left(x_{1}, x_{0}, z\right) \\
& \quad \leq \frac{\rho^{m}}{1-\rho} d\left(x_{1}, x_{0}, z\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \left\|d\left(x_{n}, x_{m}, z\right)\right\| \leq \frac{\rho^{m}}{1-\rho}\left\|d\left(x_{1}, x_{0}, z\right)\right\| \\
\Rightarrow & \left\|d\left(x_{n}, x_{m}, z\right)\right\| \rightarrow o \text { as } n, m \rightarrow \infty \\
\Rightarrow & \lim d\left(x_{n}, x_{m}, z\right)=o \\
& n, m \rightarrow \infty
\end{array}
$$

$$
\Rightarrow \quad\left\|d\left(x_{n}, x_{m}, z\right)\right\| \rightarrow o \text { as } n, m \rightarrow \infty \quad \text { by remark (2.5) }
$$

Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence in $T(X)$ or $S(X)$ which has a convergent subsequence. Let $\left\{x_{n(k+1)}\right\} \subset\left\{x_{n}\right\}$ be the convergent subsequence such that $x_{n(k+1)} \rightarrow x$ as $k \rightarrow \infty$
$\therefore \lim _{\substack{n(k+1) \\ k \rightarrow \infty}}=\underset{\substack{k \rightarrow \infty \\ k \rightarrow \infty}}{ } \lim _{n(k)} \Rightarrow S x=x$
To prove $x=T x$. If not,$x \neq T x$.
Now, $\quad d(x, T x, z)$

$$
=d\left(\underset{n \rightarrow \infty}{\operatorname{Sim}, \lim _{n}, z}\right)
$$

$$
=\lim _{n \rightarrow \infty} d\left(S x, T x_{n}, z\right)
$$

$$
=\lim _{n \rightarrow \infty} d\left\{K d\left(x, x_{n}, z\right)+\lambda d(S x, x, z)+\mu d\left(T x_{n}, x_{n}, z\right)+\beta \max \left(d\left(S x, x_{n}, z\right), d\left(T x_{n}, x, z\right)\right)\right\}
$$

$$
\leq(K d(x, x, z)+\lambda d(s x, x, z)+\mu d(T x, x, Z)+\beta \max (d(S x, x, z), d(T x, x, z)))
$$

$\therefore d(x, T x, z) \leq(\mu+\beta) d(T x, x, z)$
$\Rightarrow T(x, T x, z)=0 \quad$ by remark $[2.5]$
$\Rightarrow T x=x$
Thus, $S x=T x=x \Rightarrow$ The coincident points of S and T is the common fixed point of the mappings S and T .
We prove that the fixed point is unique.
If possible, let z^{\prime} be another fixed point of S and T, then $z=z^{\prime}$.
Now,

$$
\begin{aligned}
& d\left(z, z^{\prime}, a\right) \\
& =d\left(S z, T z^{\prime}, a\right) \\
& \leq K d\left(z, z^{\prime}, a\right)+\lambda d(s z, z, a)+\mu d\left(T z^{\prime}, z^{\prime}, a\right)+\beta \max \left\{d\left(S z, z^{\prime}, a\right), d\left(T z, z^{\prime}, a\right)\right\} \\
& \leq K d\left(z, z^{\prime}, a\right)+\lambda d(z, z, a)+\mu d\left(z^{\prime}, z^{\prime}, a\right)+\beta \max \left\{d\left(z, z^{\prime}, a\right), d\left(z^{\prime}, z^{\prime}, a\right)\right\} \\
& \leq(K+\beta) d\left(z, z^{\prime}, a\right) \\
& \text { i.e, } d\left(z, z^{\prime}, a\right) \leq(k+\beta) d\left(z, z^{\prime} a\right) \\
& \text { i.e, } d\left(z, z^{\prime}, a\right)=o \quad \text { by } \operatorname{remark}(2.5) \\
& \therefore z=z^{\prime}
\end{aligned}
$$

Thus, the fixed point s of S and T is unique.
Theorem 2.7 : Let (X, d) be a complete cone 2-metric space and let P be a normal cone with normal constant K suppose the mappings $S, T: X \rightarrow X$ satisfy the
contractive conditions :

$$
\begin{equation*}
d(S x T y, z) \leq K d(x, y, z)+\lambda d(S x, x, z)+\mu d(T y, y, z)+\beta \max \{d(S x, y, z), d(T y, x, z)\} \tag{2.6.1}
\end{equation*}
$$

where K, λ, μ and β are constants and $o \leq K, \lambda, u, \beta<1$ and

$$
\begin{equation*}
K+\lambda+u+2 \beta<1, \text { with } K+\beta<1, \mu+\beta<1 \tag{2.6.2}
\end{equation*}
$$

Thus S and T have coincident points which are the unique common fixed point of the mappings S and T

Proof : For $x_{0} \in X$, We define a sequence $\left\{x_{n}\right\}$ as
$x_{n}=T x_{n-1}$ if n is odd.
$x_{n+1}=S x_{n}$ if n is even.
Then continuing as in the proof of Theorem 2.6 are can prove that the sequence $\left\{x_{n}\right\}$ is Cauchy
Since X is complete the sequence $\left\{x_{n}\right\}$ converges to a unique limit i.e. if $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$
Then $S z=T z=z$, Such a fixed point is unique.
The details of the proof are omitted.

Theorem 2.8 : Let (X, d) be a complete cone -2 metric space and Let P be a normal cone with a normal constant K Suppose the mapping $T: X \rightarrow X$ satisfies for all $x, y, z \in X: d(T x, T y, Z) \leq K d(x, y, z)+\lambda d(T x, x, z)+\mu d(T y, y, z)+\beta \max \{d(T x, y, z), d(T y, x, z)\}$

For some constants $K, \lambda, \mu \& \beta$ such that $o \leq k, \lambda, \mu, \beta<1$ and

$$
K+T+\mu+2 \beta<1, \lambda+\mu+\beta<1, K+\beta<1
$$

Then T has a unique fixed point in X .
Proof: For some $x_{o} \in X$ define a sequence $\left\{x_{n}\right\}$ in X by

$$
\begin{aligned}
& x_{1}=T x_{o} \\
& x_{2}=T x_{1}=T^{2} x_{o} \ldots, x_{n+1}=T x_{n}=T^{(n+1)} x_{o}
\end{aligned}
$$

Now,

```
\(d\left(x_{n+1}, x_{n}, z\right)=d\left(T x_{n}, T x_{n-1}, z\right)\)
\(\leq K d\left(x_{n}, x_{n-1}, Z\right)+\lambda d\left(T x_{n}, x_{n}, z\right)+\mu d\left(T x_{n-1}, x_{n-1}, z\right)+\beta \max \left\{d\left(T x_{n}, x_{n-1}, z\right), d\left(T x_{n-1}, x_{n}, z\right)\right\}\)
\(\Rightarrow d\left(x_{n+1}, x_{n}, x\right) \leq K d\left(x_{n}, x_{n-1}, x\right)+\lambda d\left(x_{n+1}, x_{n}, z\right)+\mu d\left(x_{n}, x_{n-1}, z\right)+\beta \max \left\{d\left(x_{n+1}, x_{n-1}, Z\right), d\left(x_{n}, x n, z\right)\right\}\)
\(\Rightarrow(1-\lambda-\beta) d\left(x_{n+1}, x_{n}, z\right) \leq(K+\mu+\beta) d\left(x_{n}, x_{n-1}, z\right)\)
\(\Rightarrow d\left(x_{n+1}, x_{n}, z\right) \leq \rho d\left(x_{n}, x_{n-1}, x\right)\), if \(\rho=\left(\frac{k+u+\beta}{1-\lambda-\beta}\right)<1\)
i.e. \(K+u+\lambda+2 \beta<1\)
Also, \(d\left(x_{n}, x_{n-1}, x\right) \leq \rho d\left(x_{n-1}, x_{n-2}, x\right)\)
Thus, \(d\left(x_{n+1}, x_{n}, z\right) \leq \rho^{n} d\left(x_{1}, x_{o}, x\right)\)
```

For some $m, n \in N$ and $n>m$
We can prove that

$$
d\left(x_{n}, x_{m}, z\right) \rightarrow o \text { as } n, m \rightarrow \infty
$$

$\therefore\left\{x_{n}\right\}$ is a Cauchy sequence in X and hence if converges to some $x \in X$.
To prove $x=T x=\underset{n \rightarrow \infty}{\lim T x_{n}}$. Assume that $x \neq T x$.
Now,

$$
\begin{aligned}
& d(T x, x, z) \\
& \leq d\left(T x, x, T x_{n}\right)+d\left(T x, T x_{n}, z\right)+d\left(T x_{n}, T x_{n}, z\right) \\
& \leq d\left(T x, T x_{n}, x\right)+d\left(T x, T x_{n}, z\right)+d\left(T x_{n}, x, z\right) \\
& \leq\left[K d\left(x, x_{n}, x\right)+\lambda d(T x, x, x)+\mu d\left(T x_{n}, x_{n}, x\right)+\beta \max \left\{d\left(T x, x_{n}, x\right), d\left(T x_{n}, x, x\right)\right\}\right] \\
& +\left[K d\left(x, x_{n}, z\right)+\lambda d(T x, x, x)+\mu d\left(T x_{n}, x_{n}, z\right)\right] \\
& +\beta \max \left\{d\left(T x, x_{n}, z\right), d\left(T x_{n}, x, z\right)\right\}+d\left(T x_{n}, x, z\right) \\
& \leq \mu d\left(T x_{n}, x_{n}, x\right)+\beta \cdot d\left(T x, x_{n}, x\right)+K d\left(x, x_{n}, z\right) \\
& +\lambda d(T x, x, z)+\mu d\left(T x_{n}, x_{n}, z\right) \\
& +\beta \max \left\{d\left(T x, x_{n}, z\right), d\left(T x_{n}, x, z\right)\right\}+d\left(T x_{n}, x, z\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$ and lim $x_{n}=x$, we have

$$
\begin{aligned}
& d(T x, x, z) \leq \mu d(T x, x, z)+\beta d(T x, x, x)+K d(x, x, z) \\
& +\lambda d(T x, x, z)+\mu d(T x, x, z)+\beta \max \{d(T x, x, z), d(T x, x, z)\} \\
& \Rightarrow d(T x, x, z) \leq(\lambda+\mu+\beta) d(T x, x, z) \\
& \quad \Rightarrow d(T x, x, z)=0 \operatorname{as} \lambda+\mu+\beta<1 \\
& \quad \Rightarrow T x=x
\end{aligned}
$$

i.e. x is as fixed point of T.

This fixed point is unique. Let, if possible, $T y=y$ for some $y \in X$.
Now,

$$
d(x, y, z)
$$

$$
\begin{aligned}
& =d(T x, T y, z) \\
& \leq K d(x, y, z)+\lambda d(T x, x, z)+\mu d(T y, y, z) \\
& +\beta \max \{d(T x, y, z), d(T y, x, z)\} \\
& \leq K d(x, y, z)+\lambda d(x, x, z)+\mu d(y, y, z) \\
& +\beta \max \{d(x, y, z), d(y, x, z)\} \\
& \leq(K+\beta) d(x, y, z)
\end{aligned}
$$

i.e. $d(x, y, z) \leq(K+\beta) d(x, y, z), K+\beta<1$.
$\therefore d(x, y, z)=0 \forall z \in X \quad$ using remark
i.e. $x=y$
\therefore The fixed point of T is unique in (X, d).

Corollary Theorem 2.9:

Let (X, d) be a complete cone 2-metric space and P be a normal cone with a normal constant K . Suppose $T: X \rightarrow X$ satisfies, $d(T x, T y, c) \leq K d(x, y, c)+\lambda d(T x, \mathrm{x}, c)+\mu d(T y, y, c) \quad$ for \quad some $\quad k, \lambda, \mu \in[0,1)$ with $k+\lambda+\mu<1$, then T has a unique fixed point on X and for every $x \in X$, the sequence $\left\{T^{n} x\right\}$ converages to the fixed point. This is the main Theorem 2.1 of [15] as a particular case of our theorem 2.7.

Proof: Putting $\beta=0$ in Theorem 2.8 above, we get a sequence $\left\{T^{n} x_{0}\right\} \subset X$ which is a Cauchy sequence and hence converges to a point $x \in X$ as X is x_{0} - orbitally complete. The uniqueness of such fixed point follows easily.

Example: Let $E=R^{2}$ and $P=\left\{(\mathrm{x}, \mathrm{y}) \in R^{2}: \mathrm{x}, \mathrm{y} \geq 0\right\}$ be a normal cone in E. Let X be $X=\{(x, 0): 0 \leq x \leq 1\} \cup\{(0, y): 0 \leq y \leq 1\}$. Define a mapping d by $\mathrm{d}: \mathrm{X} \times \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{Ed}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)=\mathrm{d}_{1}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}\right), \mathrm{a}_{i} \in X, \forall i=1,2,3 \& \mathrm{~b}_{1}, \mathrm{~b}_{2} \in\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\}$ such that $\left\|\mathrm{b}_{1}-\mathrm{b}_{2}\right\|=\min \left\{\left\|a_{1}-a_{2}\right\|,\left\|a_{2}-a_{3}\right\|,\left\|a_{3}-a_{1}\right\|\right\}$ and $\mathrm{d}_{1}((x, 0),(\mathrm{y}, 0))=\left(\frac{3}{2}|x-y|,|x-y|\right)$
$\mathrm{d}_{1}((0, \mathrm{x}),(0, \mathrm{y}))=\left(|x-y|, \frac{1}{2}|x-y|\right)$,
$\mathrm{d}_{1}((x, 0),(0, \mathrm{y}))=\mathrm{d}_{1}((0, y),(x, 0))=\left(\frac{3}{2} x+y, x+\frac{1}{2} y\right)$

Then (X, d) is a complete cone 2-metric space. Define the mappings $S, T: X \rightarrow X$ by

$$
\begin{aligned}
& \mathrm{S}(\mathrm{x}, 0)=\mathrm{T}(\mathrm{x}, 0)=\left(0, \frac{1}{2} x\right) \\
& \mathrm{S}(0, \mathrm{y})=\mathrm{T}(0, \mathrm{y})=\left(\frac{1}{12} y, 0\right)
\end{aligned}
$$

then the mappings S and T satisfy the contractive condition

$$
\mathrm{d}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{z}) \leq \mathrm{kd}(\mathrm{x}, \mathrm{y}, \mathrm{z})+\lambda \mathrm{d}(\mathrm{Sx}, \mathrm{x}, \mathrm{z})+\mu \mathrm{d}(\mathrm{Ty}, \mathrm{y}, \mathrm{z})+\beta \max \{\mathrm{d}(\mathrm{Sx}, \mathrm{y}, \mathrm{z}), \mathrm{d}(\mathrm{Ty}, \mathrm{x}, \mathrm{z})\}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in X$ with the constants assuming the values $k=\frac{1}{4}, \lambda=\mu=\frac{1}{6}$ and

$$
\beta=\frac{1}{12} .
$$

The mappings S and T have a coincident point $(0,0)$ which is the unique common fixed points. One can check that S and T are not contractive in the 2-metric space on X.

ACKNOWLEDGEMENTS. The first author L. Shambhu Singh is financially supported by UGC-MRP project No.-F.5-334/2014-2015/NERO/2367 dated 18/2/2015.

References

[1] Gahler, S. 2 metrische Raume and ither topologische structure, Math Nachr, 26, (1963), PP. 115-148.
[2] Gahler, S, Uber die unformesior barkat 2-metriche Raume, Math. Nachr, 28(1966), PP. 235-244.
[3] Gahler, S., Zur geometric 2-metrische Raume, Math. Nachr, 28(1966), 11,PP.665-667
[4] Boyd, D.W., Wong, T.S.W., On non-linear contractions, Proc.Amer.Soc. 20(1969), PP.458-464.
[5] Sessa, S. On a weak commutatively condition in fixed points considerations, Publ. Inst. Math. 32, (1982), PP. 149-153.
[6] Naidu, S.V.R. and Prasad, J.R., Fixed point Theorem in 2-metric spaces, Indian J.Pure Appl. Math., 17 (1986), PP. 974-993.
[7] Imdad, M. Khan, M.S. and Khan, M.D., A common fixed point theorem in 2-metric space, Math. Japonica, 36(5), (1991), PP. 907-914.
[8] Rhoades, B.E., Some theorems on weakly contractive maps., Non-linear Anals, 47(2001), PP. 2683-2693.
[9] Singh, M.R., Singh, L.S. and Murthy P.P., common fixed points of set -valued mappings, Int, J.Math. Sci. 25(6), (2001), PP. 411-415.
[10] Huang, L.G., Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), PP. 1468-1476.
[11] Murthy, P.P., Kenan Tas, New common fixed point theorem of Gregus type for R-weakly commuting mappings in 2-metric space, Hacettepe Journal of Mathematics and Statistics, 38(3), (2009), PP. 285-291.
[12] Shobha Jain, Shishir Jain and Lal Bahadur, Weakly Compatible maps in Cone Metric Spaces, Rediconti Del Semnario Mathematica, 3,(2010), PP. 13-23.
[13] Asim R., Aslam M. Zafer, A.A., Fixed point theorem for certain contraction in D-metric space, Int Journal of Math. Analysis, 5(39) 2011, PP. 1921-1931.
[14] Shambu Singh L. Ranjit Singh M., New common fixed point theorem of Set-valued mapping in 2-metric spaces, International Journal of Math. Sci\&Engg. Appls. (IJMSEA), 5(III), PP. 156-173.
[15] B.Singh, Shishir Jain, Prakash Bhagat, Cone 2-metric spaces and fixed point theorem of contractive mappings, Commentationes Mathematicae, 52(2) 2012, PP. 143-151.

[^0]: ${ }^{1}$ Department of Mathematics, D.M. College of Science. Imphal Manipur India
 ${ }^{2}$ Department of Mathematics, Manipur Technical University, Imphal Manipur India

