Theoretical Mathematics & Applications, vol.8, no.2, 2018, 21-32

ISSN: 1792-9687 (print), 1792-9709 (online)

Scienpress Ltd, 2018

Some common fixed point theorems of sequentially compact and complete cone -2- metric spaces of a contractive mapping

L Shambhu Singh¹, Th. Chhatrajit Singh² and K Anthony Singh¹

Abstract

In this paper, we prove some common fixed point theorems of sequentially compact and complete cone 2-metric spaces of a contractive mappings. We have proved four lemmas for the main theorems. Our results improve and generalize some of the results of B Singh etal(15) etc.

Mathematics Subject Classification: 47 H 10, 54 H 25

Keywords: Fixed points, common fixed points, compact and complete cone 2-metric spaces, ordered Banach space, contractive mapping, Normal cone with normal constant, sequentially compact cone 2-metric space.

1 Introduction

The notion of 2-metric space was introduced by S. Gahler in series of papers [1], [2],[3] etc. published in the 60's whose abstract properties were suggested by the area function for a triangle determined by a triplet in the Euclidean Space.

L.G. Huang and X. Zhang [10] introduced the concept of cone metric space as a generalization of a metric space on replacing real numbers by an ordered Banach Space and obtained some fixed points of contractive mappings. Using both the two concepts B.Singh etal [15] introduced cone 2-metric space and

Article Info: Received: May 30, 2018. Revised: July 5, 2018 Published online: July 30, 2018

¹ Department of Mathematics, D.M. College of Science. Imphal Manipur India

² Department of Mathematics, Manipur Technical University, Imphal Manipur India

proved some common fixed point theorems. We now extend and generalize the results of [15] for a pair of self-mappings using a contractive mapping.

2 Preliminary Notes

We need the following definitions for our main theorems.

Definition 1.1: A non-empty set X with at least three points together with a mapping $d: X \times X \times X \to R^+$, is called a 2-metric space if d satisfies.

- i) To each pair of points x and $y, x \neq y$ in X there exists a point $z \in X$ such that $d(x, y, z) \ge 0$.
 - ii) d(x, y, z) = 0 if at least two of x, y and z are equal.
 - iii) $d(x, y, z) = d(y, z, x) = d(z, x, y) \forall x, y, z \in X$
 - iv) $d(x, y, z) \le d(x, y, w) + d(x, w, z) + d(w, y, z)$ for all $x, y, z, w \in X$

It is denoted by the ordered pair (X,d). The mapping d is called a 2-metric defined on X

Definition 1.2 [15]: A cone 2-metric space is defined as follows. Let E be a real Banach Space and P, a subset of E. P is called a cone of E if

- i) P is closed, non-empty and $P \neq \{0\}$
- ii) $a,b \in IR^+, a,b \ge 0$ and $x, y \in P \Rightarrow ax + by \in P$
- iii) $x \in P$ and $-x \in P \Rightarrow x = 0$

Given a cone $P \subset E$, we define a partial ordering \leq in E with respect to P by $x \leq y$ if and only if $y - x \in P$. A cone P is normal if for every $x, y \in P$ there exist a number K > 0 such that $x \leq y \Rightarrow \|x\| \leq K \|y\|$.

The least of K is the normal constant of the cone P. The symbol $x \ll y$ is used to denote that $y - x \in Int(P)$, interior of P in E.

A cone P is regular if for every non-decreasing sequence which is bounded above is convergent i.e. if $\{x_n\}$ be a sequence such that $x_1 \le x_2 \le \dots \le x_n \le \dots \le y \le \dots$ for some $y \in P$ then there exists some $x \in P$ such that $x_n \to x$ or $||x_n - x|| \to 0$ as $n \to \infty$

Equivalently $x_n \to x \, as \, n \to \infty$ if $\{x_n\}$ is a non-increasing sequence which is bounded from below..

Definition 1.3 : Let X be a non-empty set with at least three points. Let $d: X \times X \times X \to P$ be a mapping such that

- i) $d(x, y, z) \ge 0, \forall x, y, z \in X$ and d(x, y, z) = 0 if at least two of x, y or z are equal.
 - ii) $d(x, y, z) = d(y, z, x) = d(z, x, y), \forall x, y, z \in X$.
 - iii) $d(x, y, z) \le d(x, y, w) + d(x, w, z) + d(w, x, z)$ for all $x, y, z, w \in X$.

Such a mapping 'd' is called a cone 2-metric and the pair (X,d) is called a cone 2-metric space.

Definition 1.4: Let (X,d) be a cone 2-metric space with respect to a cone P in a real Banach Space E, Let $\{x_n\}$ be a sequence in X and let $x \in X$. If for every $c \in Int(P)$ with 0 << c there exist a number N(c) such that $d(x_n, x, a) << c \, \forall a \in X, n \geq N(c)$.

Then $\{x_n\}$ is called a convergent sequence converging to x. x is the limit of the sequence $\{x_n\}$. We denote it by $x_n \to x$ or $\lim_{n \to \infty} x_n = x$.

Definition 1.5: Let $\{x_n\}$ be a sequence in a cone 2-metric space (X,d). For each $c \in Int(P)$ there is a number N(c) such $d(x_n, x_m, a) << c$ for all $a \in X$ and $n, m \ge N(c)$. Such a sequence $\{x_n\}$ is called a Caucly Sequence.

Definition 1.6: If every sequence $\{x_n\}$ in a cone 2-metric space has a convergent subsequence then X is said to be a sequentially compact cone 2-metric space. A compact space is a sequentially compact space.

3 Main Results

We prove some results in cone 2-metric spaces.

Lamma 2.1: Every regular cone is a normal cone with a normal constant.

Proof: Let $\{x_n\}$ be a non-decreasing sequence which is bounded. Then exists a real

number $M \in N$ such that each $x_i \leq M$, $\forall i$ if $\{x_n\} \subset X$ i.e. $M - x_i \in Int(P)$ i.e $\|M - x_i\| \to 0$ as $i \to \infty$. i.e $\{x_n\}$ is convergent. Also for some i and $j, i \leq j$

We have, $||x_i|| \le K ||x_j||$, $\forall i$ and j. Such K has least value and hence P is a normal cone with a

normal constant. If $\{x_n\}$ be a non-increasing sequence and $x_{n+1} \le x_n \forall n \in N$ then $\|x_{n+1}\| \le K \|x_n\|$, $\forall n$ and hence P is normal cone with a normal constant K.

Lamma 2.2: Every convergent sequence $\{x_n\}$ in a cone 2-metric space has a convergent subsequence in X or Every subsequence of a convergent sequence in a cone 2-metric space converges.

Proof: Let $\{x_n\}$ be convergent to some $x \in X$. Then for each $c \in Int(P), P$ is normal cone with normal constant K. there exists a number N(c) such that

$$d(x_n, x, a) \ll c, \quad \forall n \geq N(c)$$

Choosing $c, 0 \ll c$ such that $K ||c|| \ll for \ll 0$.

We have

$$\begin{split} & \left\| d(x_n, x, a) \right\| \leq K \left\| c \right\| < \in & \forall n \geq N(c) \\ \Rightarrow & \left\| d(x_{n(\lambda)}, x, a) \right\| \leq \in & \forall n(\lambda) \geq N \ (c \qquad a \in X) \\ \Rightarrow & d(x_{n(\lambda)}, x, a) \to 0 \qquad as \ \lambda \to \infty \\ \Rightarrow & \lim_{\lambda \to \infty} x_{n(\lambda)} = x \\ & \therefore \left\{ x_{n(\lambda)} \right\} \subset \left\{ x_n \right\} \text{ converges to } x \in X. \end{split}$$

As $\{x_{n(\lambda)}\}$ is arbitrary, any subsequence of a convergent sequence $\{x_n\}$ converges.

Lemma 2.3: Every convergent sequence is Cauchy in a cone 2-metric space but the converse is not true.

Proof: Let $\{x_n\}$ be convergent

There for each $c \in Int(P)$ there exists a number N(c) such that $d(x_n, x, a) << c$ for all $a \in X, n \ge N(c)$, Now for some $m, n \ge N(c)$

$$d(x_n, x_m, a)$$

$$\leq d(x_{...}, x, a) + d(x, x_{...}, a) + d(x_{...}, x_{...}, x)$$

$$< d(x_n, x, a) + d(x, x_m, a) + d(x_n, x_m, x)$$

$$<\frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c$$

$$i.e.d(x_n, x_m, a) \rightarrow 0 \, as \, n, m \rightarrow \infty$$

 $\therefore \{x_n\}$ is a Cauchy sequence.

Conversely if $\{x_n\}$ is Cauchy sequence, then for some $c \in Int(P)$. We have,

$$\therefore d(x_n, x_m, a) \le d(x_n, x_m, x) + d(x_n, x, a) + d(x, x_m, a), \forall n, m \ge N(c)$$

$$\therefore 0 < d(x_n, x, a), \forall n \ge N(c)$$
Hence, $\lim_{n \to \infty} d(x_n, x, a) \ne 0$
or $\lim_{n \to \infty} x_n \ne x$

$$\therefore \{x_n\} \text{ does not converge to } x.$$

This completes the proof.

Lemma 2.4: If every subsequence of a sequence $\{x_n\}$ converges to the same limit x in a cone 2-metric space (X,d) then x is the limit of the sequence $\{x_n\}$ in X.

Proof:

Let
$$\{x_{n(\lambda)}\}\subset \{x_n\}$$
 be a subsequence such that $x_{n(\lambda)}\to x$ as $\lambda\to\infty$

Therefore, given $c \in Int(P)$, there exists a number N(c) and $x \in X$ such that $d(x_{n(\lambda)}, x, a) << c$ or equivalently.

$$d(x_{n(\lambda)}, x, a) < \frac{\epsilon}{3} \text{ if } K ||c|| < \epsilon \text{ and } \epsilon > 0 \text{ be chosen.}$$

Now,

$$d(x_n, x, a)$$

$$\leq d(x_n, x, x_{n(\lambda)}) + d(x_n, x_{n(\lambda)}, a) + d(x_{n(\lambda)}, x, a)$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

$$i.e, d(x_n, x, a) \rightarrow 0 \text{ as } n \rightarrow \infty \forall a \in X \& n \ge N(c)$$

Thus.

$$\lim_{n\to\infty} x_n = x, as \, n\to\infty$$

Hence the sequence $\{x_n\}$ also converges to x.

- Remark 2.5 [15];[12] : If E be a real Banach space with cone P and if $a \le \lambda a$ where $a \in P$ and $0 < \lambda < 1$, then a = 0.
- Theorem 2.6: Let ((X,d)) be a sequentially compact cone 2- metric space and let P be a cone with a normal constant K. Suppose the mappings $S,T:X\to X$ satisfy the following for all $x,y,z\in X$:
- (2.6.1) T(X) or S(X) is closed subset of X.

(2.6.2)
$$d(Sx,Ty,z) \le Kd(x,y,z) + \lambda d(Sx,x,z) + \mu d(Ty,y,z) + \beta \max\{d(Sx,y,z),d(Ty,x,z)\} \text{ Where } 0 \le K, \lambda, \mu, \beta < 1 \text{ and } K + \lambda + \mu + 2\beta < 1, K + \beta < 1, \mu + \beta < 1$$

Then S and T have coincident points which are the unique common fixed points of S and T.

Proof: For
$$x_0 \in X$$
, define a sequence $\{x_n\}$ as follows
$$x_n = Tx_{n-1} \ if \ n \ \text{ is odd}$$

$$x_{n+1} = Sx_n \ \text{ if n is even}.$$

Now,

$$\begin{split} d(x_{n+1},x_n,z) &= d(Sx_n,Tx_{n-1},z) \\ &\leq Kd(x_n,x_{n-1},z) + \lambda d(Sx_n,x_n,Z) + \mu d(Tx_{n-1},x_{n-1},Z) \\ &+ \beta \max \left\{ d(Sx_n,x_{n-1},Z), d(Tx_{n-1},x_n,z) \right\} \\ &\leq Kd(x_n,x_{n-1},z) + \lambda d(x_{n+1},x_n,Z) + \mu d(x_n,x_{n-1},z) \\ &+ \beta \max \left\{ d(x_{n+1},x_{n-1},z), d(x_n,x_n,z) \right\} \\ &\leq Kd(x_n,x_{n+1},z) + \lambda d(x_{n+1},x_n,Z) + \mu d(x_n,x_{n-1},z) \\ &+ \beta d(x_{n+1},x_{n-1},z) \\ &\Rightarrow (1-\lambda-\beta)d(x_{n+1},x_n,z) \leq (K+\mu+\beta)d(x_n,x_{n-1},z) \\ &\Rightarrow d(x_{n+1},x_n,z) \leq \left(\frac{K+\mu+\beta}{1-\lambda-\beta}\right) d(x_n,x_{n-1},z) \\ &\Rightarrow d(x_{n+1},x_n,z) \leq \rho d(x_n,x_{n-1},z) \\ &\text{if } \rho = \frac{K+\mu+\beta}{1-\lambda-\beta} < 1 \text{ i.e. if } K+\mu+\lambda+2\beta < 1 \end{split}$$

Also,

$$\Rightarrow d(x_n, x_{n-1}, z) \le \rho d(x_{n-1}, x_{n-2}, z) \le \dots$$

$$\le \rho^n d(x_1, x_0, z)$$

Now for some $m, n \in N, n > m$.

$$\begin{split} d(x_{n}, x_{m}, z) &\leq d(x_{n}, x_{m}, x_{n-1}) + d(x_{n}, x_{n-1}, z) + d(x_{n-1}, x_{m}, z) \\ &\leq \rho^{n-1} d(x_{1}, x_{0}, z) + d(x_{n}, x_{n-1}, z) + d(x_{n-1}, x_{m}, z) \\ &\leq (\rho^{n-1} + \rho^{n-2}) d(x_{1}, x_{0}, z) + d(x_{n-2}, x_{m}, z) \\ &\leq (\rho^{n-1} \rho^{n-2} + \dots + \rho^{m}) d(x_{1}, x_{0}, z) \\ &\leq \rho^{m} (1 + \rho + \rho^{2} \dots + \rho^{n-m-1}) d(x_{1}, x_{0}, z) \\ &\leq \frac{\rho^{m}}{1 - \rho} d(x_{1}, x_{0}, z) \end{split}$$

$$\Rightarrow \qquad ||d(x_{n}, x_{m}, z)|| \leq \frac{\rho^{m}}{1 - \rho} ||d(x_{1}, x_{0}, z)||$$

$$\Rightarrow \qquad ||d(x_{n}, x_{m}, z)|| \to o \text{ as } n, m \to \infty \qquad \text{by remark (2.5)}$$

$$\Rightarrow \qquad \lim_{n \to \infty} d(x_{n}, x_{m}, z) = o$$

Thus, $\{x_n\}$ is a Cauchy sequence in T(X) or S(X) which has a convergent subsequence. Let $\{x_{n(k+1)}\}\subset\{x_n\}$ be the convergent subsequence such that

$$x_{n(k+1)} \to x \text{ as } k \to \infty$$

$$\therefore \lim_{k \to \infty} x_{n(k+1)} = \lim_{k \to \infty} x_{n(k)} \Longrightarrow Sx = x$$

To prove x = Tx. If $not, x \neq Tx$.

Now,
$$d(x,Tx,z)$$

$$= d\left(Sx, \lim_{n\to\infty} Tx_n, z\right)$$

$$= \lim_{n\to\infty} d\left(Sx, Tx_n, z\right)$$

$$= \lim_{n\to\infty} d\left\{Kd(x,x_n,z) + \lambda d\left(Sx,x,z\right) + \mu d\left(Tx_n,x_n,z\right) + \beta \max\left(d\left(Sx,x_n,z\right), d\left(Tx_n,x,z\right)\right)\right\}$$

$$\leq \left(Kd(x,x,z) + \lambda d\left(sx,x,z\right) + \mu d\left(Tx,x,z\right) + \beta \max\left(d\left(Sx,x,z\right), d\left(Tx,x,z\right)\right)\right)$$

$$\therefore d(x,Tx,z) \leq (\mu + \beta) d\left(Tx,x,z\right)$$

$$\Rightarrow T(x,Tx,z) = 0 \qquad by \ remark [2.5]$$

Thus, $Sx = Tx = x \Rightarrow$ The coincident points of S and T is the common fixed point of the mappings S and T.

We prove that the fixed point is unique.

 $\Rightarrow Tx = x$

If possible, let z' be another fixed point of S and T, then z = z'. Now,

$$d(z,z',a)$$

$$= d(Sz,Tz',a)$$

$$\leq Kd(z,z',a) + \lambda d(sz,z,a) + \mu d(Tz',z',a) + \beta \max \{d(Sz,z',a),d(Tz,z',a)\}$$

$$\leq Kd(z,z',a) + \lambda d(z,z,a) + \mu d(z',z',a) + \beta \max \{d(z,z',a),d(z',z',a)\}$$

$$\leq (K+\beta)d(z,z',a)$$

$$i.e.d(z,z',a) \leq (k+\beta)d(z,z',a)$$

$$i.e.d(z,z',a) = 0 \qquad by \ remark(2.5)$$

$$\therefore z = z'$$

Thus, the fixed point s of S and T is unique.

Theorem 2.7: Let (X,d) be a complete cone 2-metric space and let P be a normal cone with normal constant K suppose the mappings $S,T:X\to X$ satisfy the

contractive conditions:

(2.6.1)
$$d(SxTy,z) \le Kd(x,y,z) + \lambda d(Sx,x,z) + \mu d(Ty,y,z) + \beta max \{d(Sx,y,z),d(Ty,x,z)\}$$

where K,λ,μ and β are constants and $o \le K,\lambda,u,\beta < 1$ and
(2.6.2) $K + \lambda + u + 2\beta < 1$, with $K + \beta < 1$, $\mu + \beta < 1$

Thus S and T have coincident points which are the unique common fixed point of the mappings S and T

Proof: For
$$x_0 \in X$$
, We define a sequence $\{x_n\}$ as $x_n = Tx_{n-1}$ if n is odd. $x_{n+1} = Sx_n$ if n is even.

Then continuing as in the proof of Theorem 2.6 are can prove that the sequence $\{x_n\}$ is Cauchy

Since X is complete the sequence $\{x_n\}$ converges to a unique limit i.e. if $z \in X$ such that $x_n \to z$ as $n \to \infty$

Then Sz = Tz = z, Such a fixed point is unique.

The details of the proof are omitted.

Theorem 2.8 : Let (X,d) be a complete cone -2 metric space and Let P be a normal cone with a normal constant K Suppose the mapping $T: X \to X$ satisfies for all $x, y, z \in X: d(Tx, Ty, Z) \le Kd(x, y, z) + \lambda d(Tx, x, z) + \mu d(Ty, y, z) + \beta max\{d(Tx, y, z), d(Ty, x, z)\}$

For some constants
$$K, \lambda, \mu \& \beta$$
 such that $o \le k, \lambda, \mu, \beta < 1$ and $K+T+\mu+2\beta < 1, \lambda+\mu+\beta < 1, K+\beta < 1$

Then T has a unique fixed point in X.

Proof: For some
$$x_o \in X$$
 define a sequence $\{x_n\}$ in X by $x_1 = Tx_o$ $x_2 = Tx_1 = T^2x_0, ..., x_{n+1} = Tx_n = T^{(n+1)}x_0$

Now,

$$\begin{split} &d\left(x_{n+1},x_{n},z\right) = d\left(Tx_{n},Tx_{n-1},z\right) \\ &\leq Kd\left(x_{n},x_{n-1},Z\right) + \lambda d\left(Tx_{n},x_{n},z\right) + \mu d\left(Tx_{n-1},x_{n-1},z\right) + \beta \max\left\{d\left(Tx_{n},x_{n-1},z\right),d\left(Tx_{n-1},x_{n},z\right)\right\} \\ &\Rightarrow d\left(x_{n+1},x_{n},x\right) \leq Kd\left(x_{n},x_{n-1},x\right) + \lambda d\left(x_{n+1},x_{n},z\right) + \mu d\left(x_{n},x_{n-1},z\right) + \beta \max\left\{d\left(x_{n+1},x_{n-1},Z\right),d\left(x_{n},x_{n},z\right)\right\} \\ &\Rightarrow \left(1 - \lambda - \beta\right)d\left(x_{n+1},x_{n},z\right) \leq \left(K + \mu + \beta\right)d\left(x_{n},x_{n-1},z\right) \\ &\Rightarrow d\left(x_{n+1},x_{n},z\right) \leq \rho d\left(x_{n},x_{n-1},x\right), & \text{if } \rho = \left(\frac{k + \mu + \beta}{1 - \lambda - \beta}\right) < 1 \\ &\text{i.e. } K + \mu + \lambda + 2\beta < 1 \\ &Also,d\left(x_{n},x_{n-1},x\right) \leq \rho d\left(x_{n-1},x_{n-2},x\right) \\ &Thus, \ d\left(x_{n+1},x_{n},z\right) \leq \rho^{n}d\left(x_{1},x_{o},x\right) \end{split}$$

For some $m, n \in N$ and n > m

We can prove that

$$d(x_n, x_m, z) \rightarrow o \text{ as } n, m \rightarrow \infty$$

 $\therefore \{x_n\}$ is a Cauchy sequence in X and hence if converges to some $x \in X$.

To prove $x = Tx = \lim Tx_n$. Assume that $x \neq Tx$.

Now,

$$\begin{split} &d\left(Tx,x,z\right) \\ &\leq d\left(Tx,x,Tx_{n}\right) + d\left(Tx,Tx_{n},z\right) + d\left(Tx_{n},Tx_{n},z\right) \\ &\leq d\left(Tx,Tx_{n},x\right) + d\left(Tx,Tx_{n},z\right) + d\left(Tx_{n},x,z\right) \\ &\leq \left[Kd\left(x,x_{n},x\right) + \lambda d\left(Tx,x,x\right) + \mu d\left(Tx_{n},x_{n},x\right) + \beta max\left\{d\left(Tx,x_{n},x\right),d\left(Tx_{n},x,x\right)\right\}\right] \\ &+ \left[Kd\left(x,x_{n},z\right) + \lambda d\left(Tx,x,x\right) + \mu d\left(Tx_{n},x_{n},z\right)\right] \\ &+ \beta max\left\{d\left(Tx,x_{n},z\right),d\left(Tx_{n},x,z\right)\right\} + d\left(Tx_{n},x,z\right) \\ &\leq \mu d\left(Tx_{n},x_{n},x\right) + \beta .d\left(Tx,x_{n},x\right) + Kd\left(x,x_{n},z\right) \\ &+ \lambda d\left(Tx,x_{n},z\right),d\left(Tx_{n},x,z\right)\right\} + d\left(Tx_{n},x,z\right) \\ &+ \beta max\left\{d\left(Tx,x_{n},z\right),d\left(Tx_{n},x,z\right)\right\} + d\left(Tx_{n},x,z\right) \end{split}$$

Letting $n \to \infty$ and $\lim x_n = x$, we have

$$d(Tx,x,z) \le \mu d(Tx,x,z) + \beta d(Tx,x,x) + Kd(x,x,z)$$

$$+\lambda d(Tx,x,z) + \mu d(Tx,x,z) + \beta \max\{d(Tx,x,z),d(Tx,x,z)\}$$

$$\Rightarrow d(Tx,x,z) \le (\lambda + \mu + \beta)d(Tx,x,z)$$

$$\Rightarrow d(Tx,x,z) = 0 \text{ as } \lambda + \mu + \beta < 1$$

$$\Rightarrow Tx = x$$

i.e. *x* is as fixed point of T.

This fixed point is unique. Let, if possible, Ty = y for some $y \in X$. Now,

$$= d(Tx,Ty,z)$$

$$\leq Kd(x,y,z) + \lambda d(Tx,x,z) + \mu d(Ty,y,z)$$

$$+\beta \max \left\{ d\left(Tx,y,z\right), d\left(Ty,x,z\right) \right\}$$

$$\leq Kd(x,y,z) + \lambda d(x,x,z) + \mu d(y,y,z)$$

$$+\beta \max \left\{ d\left(x,y,z\right), d(y,x,z) \right\}$$

$$\leq \left(K + \beta\right) d(x,y,z)$$

i.e.
$$d(x, y, z) \le (K + \beta) d(x, y, z), K + \beta < 1.$$

 $\therefore d(x, y, z) = 0 \forall z \in X$ using remark (2.5)
i.e. $x = y$

 \therefore The fixed point of T is unique in (X,d).

Corollary Theorem 2.9:

Let (X,d) be a complete cone 2-metric space and P be a normal cone with a normal constant K. Suppose $T: X \to X$ satisfies, $d(Tx,Ty,c) \le Kd(x,y,c) + \lambda d(Tx,x,c) + \mu d(Ty,y,c)$ for some $k,\lambda,\mu \in [0,1)$ with $k+\lambda+\mu<1$, then T has a unique fixed point on X and for every $x \in X$, the sequence $\{T^nx\}$ converages to the fixed point. This is the main Theorem 2.1 of [15] as a particular case of our theorem 2.7.

Proof: Putting $\beta = 0$ in Theorem 2.8 above, we get a sequence $\left\{T^n x_0\right\} \subset X$ which is a Cauchy sequence and hence converges to a point $x \in X$ as X is x_0 - orbitally complete. The uniqueness of such fixed point follows easily.

Example: Let $E = R^2$ and $P = \{(x, y) \in R^2 : x, y \ge 0\}$ be a normal cone in E. Let X be $X = \{(x, 0) : 0 \le x \le 1\} \cup \{(0, y) : 0 \le y \le 1\}$. Define a mapping d by $d: X \times X \times X \to E$ $d(a_1, a_2, a_3) = d_1(b_1, b_2), a_i \in X, \forall i = 1, 2, 3 \& b_1, b_2 \in \{a_1, a_2, a_3\}$ such that $||b_1 - b_2|| = \min\{||a_1 - a_2||, ||a_2 - a_3||, ||a_3 - a_1||\}$ and $d_1((x, 0), (y, 0)) = \left(\frac{3}{2}|x - y|, |x - y|\right)$ $d_1((0, x), (0, y)) = d_1((0, y), (x, 0)) = \left(\frac{3}{2}x + y, x + \frac{1}{2}y\right)$

Then (X,d) is a complete cone 2-metric space. Define the mappings $S,T:X\to X$ by

$$S(x,0) = T(x,0) = (0, \frac{1}{2}x)$$

$$S(0, y) = T(0, y) = (\frac{1}{12}y, 0)$$

then the mappings S and T satisfy the contractive condition $d(Sx, Ty, z) \le kd(x, y, z) + \lambda d(Sx, x, z) + \mu d(Ty, y, z) + \beta \max\{d(Sx, y, z), d(Ty, x, z)\}$

for all $x, y, z \in X$ with the constants assuming the values $k = \frac{1}{4}, \lambda = \mu = \frac{1}{6}$ and

$$\beta = \frac{1}{12}.$$

The mappings S and T have a coincident point (0,0) which is the unique common fixed points. One can check that S and T are not contractive in the 2-metric space on X.

ACKNOWLEDGEMENTS. The first author L. Shambhu Singh is financially supported by UGC-MRP project No.-F.5-334/2014-2015/NERO/2367 dated 18/2/2015.

References

- [1] Gahler, S. 2 metrische Raume and ither topologische structure, *Math Nachr*, **26**, (1963), PP. 115-148.
- [2] Gahler, S, Uber die unformesior barkat 2-metriche Raume, *Math. Nachr*, **28**(1966), PP. 235-244.
- [3] Gahler, S., Zur geometric 2-metrische Raume, *Math. Nachr*, **28**(1966), 11,PP.665-667
- [4] Boyd, D.W., Wong, T.S.W., On non-linear contractions, *Proc.Amer.Soc.* **20**(1969), PP.458-464.
- [5] Sessa, S. On a weak commutatively condition in fixed points considerations, *Publ. Inst. Math.* **32**, (1982), PP. 149-153.
- [6] Naidu, S.V.R. and Prasad, J.R., Fixed point Theorem in 2-metric spaces, *Indian J.Pure Appl. Math.*, **17** (1986), PP. 974-993.
- [7] Imdad, M. Khan, M.S. and Khan, M.D., A common fixed point theorem in 2-metric space, *Math. Japonica*, **36**(5), (1991), PP. 907-914.
- [8] Rhoades, B.E., Some theorems on weakly contractive maps., *Non-linear Anals*, **47**(2001), PP. 2683-2693.
- [9] Singh, M.R., Singh, L.S. and Murthy P.P., common fixed points of set –valued mappings, *Int, J.Math. Sci.* **25**(6), (2001), PP. 411-415.

- [10] Huang, L.G., Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, *J. Math. Anal. Appl.*, **332**(2007), PP. 1468-1476.
- [11] Murthy, P.P., Kenan Tas, New common fixed point theorem of Gregus type for R-weakly commuting mappings in 2-metric space, *Hacettepe Journal of Mathematics and Statistics*, **38**(3), (2009), PP. 285-291.
- [12] Shobha Jain, Shishir Jain and Lal Bahadur, Weakly Compatible maps in Cone Metric Spaces, *Rediconti Del Semnario Mathematica*, **3**,(2010), PP. 13-23.
- [13] Asim R., Aslam M. Zafer, A.A., Fixed point theorem for certain contraction in D-metric space, *Int Journal of Math. Analysis*, **5**(39) 2011, PP. 1921-1931.
- [14] Shambu Singh L. Ranjit Singh M., New common fixed point theorem of Set-valued mapping in 2-metric spaces, *International Journal of Math. Sci&Engg. Appls. (IJMSEA)*, **5**(III), PP. 156-173.
- [15] B.Singh, Shishir Jain, Prakash Bhagat, Cone 2-metric spaces and fixed point theorem of contractive mappings, *Commentationes Mathematicae*, **52**(2) 2012, PP. 143-151.