
Journal of Statistical and Econometric Methods, vol.7, no.4, 2018, 1-18

ISSN: 1792-6602 (print), 1792-6939 (online)

Scienpress Ltd, 2018

Nonparametric Estimation of the Error

Functional of a Location-Scale Model

Emmanuel Torsen1, Peter N. Mwita2 and Joseph K. Mung’atu3

Abstract

Two estimators of the distribution of the error term are proposed
based on nonparametric regression residuals; considering a heteroscadas-
tic location-scale model where the mean and variance functions are
smooth, and the error term is independent of the independent variable.
The asymptotic properties of the two estimators: the unconditional cu-
mulative distribution estimator and the conditional cumulative distri-
bution estimator were examined. Simulation study was conducted, the
mean square error of the unconditional cumulative distribution estima-
tor was found to be smaller in comparison to its conditional cumulative
distribution estimator counterpart. Hence, we recommend the use of
the former.
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1 Introduction

In statistics, the insight to the innovation distribution is crucial, particu-

larly, in Value-at-Risk (VaR). In finance, VaR is a single number measuring

the risk of a financial position over a specific period.

The problem of estimating the error variance in homoscedastic nonpara-

metric regression models has been studied in the literature, see among others

for example [2],[10]. [1] studied the nonparametric estimation of the residual

distribution, they considered the heteroscedastic regression model (1). Weak

convergence of their proposed residual based estimator was examined, extend-

ing the classical work of [3] and [8], applications to prediction interval and

goodness-of-fit were also discussed.

In their paper, [7] examined the problem of fitting a known distribution to

the error distribution in a class of stationary and ergodic time series models.

Where particularly, the authors considered the GARCH and ARMA-GARCH

models.

Non-parametric estimation of the distribution function of the error term

is the focus of this paper. In order to achieve this, firstly, we obtain non-

parametric estimators (9) and (15) of the conditional location and scale func-

tionals and hence, the standardized non-parametric residuals (SNR) (16).

Based on the SNR (16) the proposed estimator of the distribution function

of the error term is the empirical distribution function.

2 Preliminary Notes

Definition 2.1. ( α−mixing or Strong mixing) Let F l
k be the σ− algebra

of events generated by {Yi, k ≤ i ≤ l} for l > k. The α −mixing coefficient

introduced by Rosenblatt (1956) is defined as

α(k) = sup
A∈Fi

1,B∈F∞i+k

|P(AB)− P(A)P(B)|.

The series is said to be α−mixing if

lim
k→∞

α(k) = 0.



E. Torsen, P.N. Mwita and J.K. Mung’atu 3

The dependence described by the α−mixing is the weakest as it is implied by

other types of mixing.

3 Method and Estimation

Let {Yi} denote a stochastic process representing the returns on a given

stock, portfolio or market index, where i ∈ Z indexes a discrete measure of

time, and F (y|x) denote the conditional distribution of Yi given Xi = x. The

vector Xi ∈ Rd normally includes lag returns {Yi}, 1 ≤ l ≤ p, for some p ∈ N,

as well as other relevant conditioning variables that reflect economic or market

conditions.

Here, we assume that processes Yi admits a location-scale representation

given as

Yi = m(Xi) +
√

h(Xi)εi (1)

where m(.) is the unknown nonparametric regression curve and h(.) > 0 is also

an unknown conditional scale function representing heteroscedasticity, defined

on the range of Xi , εi is independent of Xi, and εi is an independent and

identically distributed (iid) innovation process with E(εi) = 0, Var(εi) = 1

and distribution function Fε is unknown.

From (1)

QY |X(τ |x) = m(Xi) +
√

h(Xi)q(τ) (2)

where QY |X(τ |x) is the conditional τ−quantile associated with F (y|x) and

q(τ) = F−1
ε (τ) is the τ−quantile associated with unknown Fε.

It follows from (2) that our estimator given by

Q̂Y |X(τ |x) = m̂(Xi) +

√
ĥ(Xi)q̂(τ) (3)

Next, we discussed the estimation of m(Xi), h(Xi) and q(τ).

3.1 Local Linear Estimation (Regression)

In [4], the problem of estimating m(X) in (2) is the same as LLR, estimating

the intercept α. Suppose that the second derivative of m(X) exist in a small
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neighborhood of x, then

m(X) ≈ m(x) + m′(x)(X − x) ≡ α + β(X − x) (4)

Now, let us consider a sample {Xi, Yi}n
i=1 and LLR: find α and β to mini-

mize
n∑

i=1

(Yi − α− β(Xi − x))2K1

(x−Xi

b1

)
(5)

Let α̂ and β̂ be the solution to the Weighted Least Square (WLS) problem

in (5). Then

α̂ =

∑n
i=1 WiYi∑n
i=1 Wi

(6)

where

W (x; b1) = K1

(x−Xi

b1

)
[Sn,2 − (x−Xi)Sn,1] (7)

and

Sn,j =
n∑

i=1

K1

(x−Xi

b1

)
(x−Xi)

j, j = 1, 2 (8)

Thus, the LLR estimator for m(X) is defined as

m̂(x) =

∑n
i=1 WiYi∑n
i=1 Wi

(9)

Which is the first step in our estimation procedure. The second step follows,

for the estimation of h(X) in (2), the procedure proposed by [5] is used, and

is outlined below: the estimator of h(x) is

ĥ(x) := Γ̂ (10)

where

(Γ̂, Γ̂1) = arg min

n∑
i=1

(ri − Γ− Γ1(Xi − x))2K2

(Xi − x

b2

)
(11)

Now, with the estimator in (9), we have the sequence of squared residuals

{ri = {Yi − m̂(x)}2}n
i=1. Therefore,

Γ̂ =

∑n
i=1 Wiri∑n
i=1 Wi

(12)
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where

W (x; b2) = K2(
x−Xi

b2

)[Sn,2 − (x−Xi)Sn,1] (13)

and

Sn,j =
n∑

i=1

K2

(x−Xi

b2

)
(x−Xi)

j, j = 1, 2 (14)

Hence, the smooth estimator for h(X) is

ĥ(x) =

∑n
i=1 Wiri∑n
i=1 Wi

(15)

The estimators in (9) and (15) are then used to get a sequence of Stan-

dardized Nonparametric Residuals (SNR) {ε̂i}n
i=1, where

ε̂i =


Yi − m̂(X)√

ĥ(X)
, if ĥ(X) > 0

0, if ĥ(X) ≤ 0

(16)

In the third step, we use these SNR to obtain the conditional cumulative

density estimator of Fε and then set

F̂n,z(x) =
1

n

n∑
i=1

1(zi ≤ x), putting zi = ε̂i (17)

which is the unconditional cumulative distribution estimator for Fn,z(x), the

UCDF of the error innovation.

3.2 Assumptions

A: Bandwidth

1. b −→ 0, as n −→∞

2. nb −→∞, as n −→∞

B: Kernel

1. K has compact support
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2. K is symmetric

3. K is Lipschitz continuous

4. K is
∫∞
−∞ K(u)du = 1 and

∫∞
−∞ uK(u)du = 0 with µ2(K) =

∫∞
−∞ u2K(u)du

and R(K) =
∫∞
−∞ K(u)2du being the second moment (Variance) and

Roughness of the kernel function respectively.

5. K is bounded and there is K̄ ∈ R, with K(u) ≤ K̄ < ∞ and K(u) ≥
0,∀u ∈ R

C:

(1 + b2C)−1 ≈ (1− b2C), as b −→ 0

4 Asymptotic Properties of the Estimator

4.1 Asymptotic Properties of the Unconditional Cumu-

lative Distribution Estimator

Given the observations {Xi, Yi}n
i=1, we compute the mean and variance of

(17) to show the Asymptotic Properties:

Mean:

E[F̂n,z(x)] = E

[
1

n

n∑
i=1

1(zi ≤ x)

]

= E

[
1

n

n∑
i=1

1

(
Yi − m̂(X)√

ĥ(X)
≤ x

)]

=
1

n
E

[
n∑

i=1

1

(
Yi − m̂(X)√

ĥ(X)
≤ x

)]

=
1

n

n∑
i=1

P

(
Yi − m̂(X)√

ĥ(X)
≤ x

)

=
1

n
.nP
(
zi ≤ x

)
using the iid assumption over the innovations

= Fz(x)

(18)
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Remark: F̂n,z(x) is an unbiased estimator of Fz(x).

Variance:

V ar[F̂n,z(x)] = V ar

[
1

n

n∑
i=1

1(zi ≤ x)

]

= V ar

[
1

n

n∑
i=1

1

(
Yi − m̂(X)√

ĥ(X)
≤ x

)]

=
1

n2

n∑
i=1

V ar

[
1

(
Yi − m̂(X)√

ĥ(X)
≤ x

)]

=
1

n
V ar

(
Yi − m̂(X)√

ĥ(X)
≤ x

)

=
1

n

{
E

[
12

(
Yi − m̂(X)√

ĥ(X)
≤ x

)]
−

(
E

[
1

(
Yi − m̂(X)√

ĥ(X)
≤ x

)])2}

=
1

n

{
E

[
1

(
Yi − m̂(X)√

ĥ(X)
≤ x

)]
−
(
Fz(x)

)2}

=
1

n

{
Fz(x)−

(
Fz(x)

)2}
=

1

n
Fz(x)

[
1− Fz(x)

]
= σ2

z

(19)

Hence, by central limit theorem

√
n
(
F̂n,z(x)− Fz(x)

) d−→ N(0, σ2
z) (20)

Mean Square Error:

MSE[F̂n,z(x)] = E
[
F̂n,z(x)− Fz(x)

]2
= V ar

(
F̂n,z(x)

)
+
[
Bias(F̂n,z(x))

]2
= V ar

(
F̂n,z(x)

)
+
[
0
]2

= V ar
(
F̂n,z(x)

)
=

1

n
Fz(x)

[
1− Fz(x)

]
= σ2

z

(21)
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We weighted (17) to have

F̃n,z(x) =

∑n
i=1 K

(
Xi−x

b

)
1(zi ≤ x)∑n

i=1 K
(

Xi−x
b

)
=

∑n
i=1 K

(
Xi−x

b

)
Zi∑n

i=1 K
(

Xi−x
b

) , putting Zi = 1(zi ≤ x)

=
(nb)−1

∑n
i=1 K

(
Xi−x

b

)
Zi

f̂(x)

:=
A

B

(22)

where f̂(x) is the estimator of the kernel function. Hence, (22) is the Condi-

tional Cumulative Distribution Estimator (CCDE).

4.2 Asymptotic Properties of Conditional Cumulative

Distribution Estimator

We obtained the asymptotic properties of (22). to do so, we assume that

the variance of the ratio of the two random variables (A and B) exist. Let

Assumption A to C hold, then the mean and variance of our estimator are:

Consider the denominator (B).

Mean:
E[B] := E[f̂(x)]

= E

[
1

n

n∑
i=1

1

b
K
(Xi − x

b

)]

=
1

n

n∑
i=1

E

[
1

b
K
(Xi − x

b

)]

=

∫ ∞

−∞

1

b
K
(t− x

b

)
f(t)dt

(23)

using change of variable u = t−x
b

E[f̂(x)] =

∫ ∞

−∞
K(u)f(x + bu)du

We approximate the integral by using second order Taylor’s expansion of
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f(x + bu), for small b.

f(x + bu) = f(x) + f (1)(x) +
1

2
f (2)(x)(bu)2 + o(b2)

=⇒ ∫ ∞

−∞
K(u)f(x + bu)du = f(x) +

b2

2
f (2)(x)µ2(K) + o(b2)

∴

E[f̂(x)] = f(x) +
b2

2
f (2)(x)µ2(K) + o(b2) (24)

Hence,

Bias(f̂(x)) = E[f̂(x)]− f(x)

=
b2

2
f (2)(x)µ2(K) + o(b4)

(25)

Remark: For second order kernels (ν = 2), the bias is increasing in the square

of the bandwidth [6].

Variance:

The kernel estimator is a linear estimator and K
(

Xi−x
b

)
is iid,

V ar[B] := V ar[f̂(x)]

= V ar

[
1

nb

n∑
i=1

K

(
Xi − x

b

)]

=
1

(nb)2

n∑
i=1

V ar

[
K

(
Xi − x

b

)]
=

1

nb2
V ar

[
K

(
Xi − x

b

)]
=

1

nb2

{
E

[
K

(
Xi − x

b

)2
]}

− 1

n

{
1

b
E
[
K

(
Xi − x

b

)]}2

(26)

But the second term; 1
b
E
[
K
(

Xi−x
b

)]
= f(x) + o(1), which is O(n−1). Con-
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sider the first term, do change of variable and a first order Taylor’s expansion

1

b
E
[
K
(Xi − x

b

)2]
=

1

b

∫ ∞

−∞
K
(t− x

b

)2

f(t)dt

=

∫ ∞

−∞
K(u)2f(x + bu)du

=

∫ ∞

−∞
K(u)2[f(x) + O(b)]du

= f(x)R(K) + O(b)

(27)

Therefore,

V ar[f̂(x)] =
f(x)R(K)

nb
+ O(n−1) (28)

Remark: The remainder O(n−1) is of smaller order than the O( 1
nb

) leading

term, since b−1 −→∞. Now, the numerator (A):

Mean:

E[A] := E

[
1

n

n∑
i=1

1

b
K
(x−Xi

b

)
Zi

]

=

∫ ∞

−∞

∫ ∞

−∞

v

b
K
(x− u

b

)
f(u, v)dudv

=

∫ ∞

−∞

∫ ∞

−∞
vK(t)f(x− bt, v)dtdv

(29)

but

f(v|x− bt) =
f(x− bt, v)

f(x− bt)

hence

f(x− bt, v) = f(v|x− bt)f(x− bt)

Therefore,

E[A] =

∫ ∞

−∞

∫ ∞

−∞
vK(t)f(v|x− bt)f(x− bt)dtdv

=

∫ ∞

−∞
vK(t)f(x− bt)

{∫ ∞

−∞
f(v|x− bt)dv

}
dt

=

∫ ∞

−∞
vK(t)f(x− bt)Fz(x− bt)dt

(30)
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By second order Taylor’s expansion of f(x− bt) and Fz(x− bt), we have

f(x− bt) = f(x) + f (1)(x)bt +
1

2
f (2)(x)(bt)2 + o(b2)

Fz(x− bt) = Fz(x) + F (1)
z (x)bt +

1

2
F (2)

z (x)(bt)2 + o(b2)

Therefore,

E
[

1
n

∑n
i=1

1
b
K
(

x−Xi

b

)
Zi

]
= f(x)Fz(x) +

+b2µ2(K)

[
f (1)(x)F (1)

z (x) +
1

2
f (2)(x)F (2)

z (x) +
1

2
f(x)F (2)

z (x) + o(b2)

]
Hence,

E[F̃n,z(x)] =
E
[ ∫∞

−∞ f̂(x, Z)dxdZ
]

E[f̂(x)]

≈
f(x)

{
Fz(x) + b2µ2(K)

[
f−1(x)f (1)(x)F

(1)
z (x) + 1

2
f−1(x)f (2)(x)Fz(x) + F

(2)
z (x)

]}
f(x)

[
1 + b2

2
µ2(K)f−1(x)f (2)

]
= Fz(x) +

b2

2
µ2(K)

[
F (2)

z (x) + 2f−1(x)f (1)(x)F (1)
z (x)Fz(x)

]
(31)

by Assumption C, for the term in the denominator. Hence,

Bias[F̃n,z(x)] =
b2

2
µ2(K)

[
F (2)

z (x) + 2f−1(x)f (1)(x)F (1)
z (x)Fz(x)

]
(32)

If the first derivative of the probability distribution function of x is zero

(f (1)(x) = 0) as often assumed by some authors, this bias yield that of a

fixed design [11]

Bias[F̃n,z(x)] ≈ b2

2
µ2(K)F (2)

z (x) (33)

The variance of our estimator (22) is obtained using the following approxima-

tion [12, 11],

V ar
(A

B

)
≈ [E(A)]2

[E(B)]2

{
V ar(A)

[E(A)]
− 2Cov(A, B)

[E(A)][E(B)]
+

V ar(B)

[E(B)]

}
(34)
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Now,

V ar(A) := V ar

[
1

n

n∑
i=1

1

b
K
(Xi − x

b

)
Zi

]

=
1

(nb)2

n∑
i=1

V ar

[
K
(Xi − x

b

)
Zi

]

=
1

nb2
V ar

[
K
(Xi − x

b

)
Zi

]

=
1

nb2

{
E

[
K2
(Xi − x

b

)
Z2

i

]
−

(
E

[
K
(Xi − x

b

)])2}

≈ 1

nb

∫ ∞

−∞

∫ ∞

−∞
v2K2(t)f(v|x− bt)f(x− bt)dtdv − o(n−1)

=
1

nb

∫ ∞

−∞
K2(t)f(x− bt)

[∫ ∞

−∞
v2f(v|x− bt)dv

]
dt− o(n−1)

=
1

nb
R(K)f(x)[σ2

z + F (2)
z (x)]

(35)

The Covariance:

Cov(A, B) = Cov

[
1

n

n∑
i=1

1

b
K
(Xi − x

b

)
Zi,

1

n

n∑
i=1

1

b
K
(Xi − x

b

)]

=
1

nb2
Cov

[
K
(Xi − x

b

)
Zi, K

(Xi − x

b

)]

=
1

nb2
E

[
K2
(Xi − x

b

)
Zi

]
− E

[
K
(Xi − x

b

)
Zi

]
E

[
K
(Xi − x

b

)]
≈ 1

nb
R(K)f(x)Fz(x)

(36)

The above results are based on first order Taylor’s expansion. Substitution

into (34) yields,

V ar
(
F̃n,z(x)

)
=

R(K)σ2
z

nbf(x)
(37)
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Hence, by central limit theorem

√
nb
(
F̃n,z(x)− Fz(x)−Bias

(
F̃n,z(x)

)) d−→ N

(
0,

R(K)σ2
z

nbf(x)

)
(38)

The Asymptotic Mean Square Error (AMSE)

A very good way of checking the performance of F̃n,z(x) is by its AMSE

AMSE(F̃n,z(x)) = E
[{

F̃n,z(x)− Fz(x)
}2
]

= E
[{

F̃n,z(x)− E[F̃n,z(x)]
}2
]

+
{
E[F̃n,z(x)]− Fz(x)

}2

= V ar
(
F̃n,z(x)

)
+
{
Bias[F̃n,z(x)]

}2

=
R(K)σ2

z

nbf(x)
+

b4

4
µ2

2(K)
(
F (2)

z (x)
)2

(39)

Optimal Bandwidth Selection

The smoothing parameter (bandwidth) that minimizes (39) is optimal for

estimating (22), hence

bopt = arg minAMSE(F̃n,z(x)), b > 0 (40)

Therefore,
d

db
AMSE(F̃n,z(x)) = 0

this yields

bopt =

{
R(K)Fz(x)[1− Fz(x)]

µ2
2(K)f(x)

(
F

(2)
z (x)

)2
} 1

5

∗ n−
1
5 (41)

5 Simulation Study

The unconditional cumulative distribution function

To examine the performance of our estimators, we conducted a simulation
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study considering the following data generating location-scale model

Yt = m(Yt−1) + h(t)1/2εt, t = 1, 2, ..., n (42)

where

m(Yt−1) = sin(0.5Yt−1), εt ∼ t(ν = 3)

h(t) = hi(Yt−1) + θh(t− 1), i = 1, 2

and

h1(Yt−1) = 1 + 0.01Y 2
t−1 + 0.5sin(Yt−1)

h1(Yt−1) = 1− 0.9exp
(
− 2Y 2

t−1

)
Yt and h(t) are set to zero (0) initially, then Yt is generated recursively from

(42) above. To reduce the effect of the choice of our initial values on the

samples, the first 1000 observations are discarded, the above data generating

process was also considered by [9].

In this section, using the mean square error (MSE) we compared the two

estimators of the innovation; the unconditional cumulative distribution (UCD)

estimator (17) and the conditional cumulative distribution (CCD) estimator

(22). We found that the MSE of UCDE was 0.0 and that of CCDE was

0.07853961. The mean and variance of the error term was also verified to

be approximately 0 and 1, confirming the assumption made. A sample of

10000 observations was considered in this study, with 20 replications. Figure

1 - 3 shows the evolution of the simulated data, the unconditional cumulative

distribution (UCD) estimator (17) and the conditional cumulative distribution

(CCD) estimator (22), respectively.
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6 Conclusion

Assuming the distribution function of the innovation is unknown in a location-

scale model, we proposed two estimators.The first one was unconditional and

the second was conditioned. We compared the two estimators using their

MSEs, the unconditional one performed better.
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Figure 1: Plot of the simulated data showing its evolution.
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Figure 2: The unconditional cumulative distribution function taking single
values of x.
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Figure 3: The conditional cumulative distribution function, the values of x
binned at 100.


