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Abstract 

Known as one of the key risk measures, volatility has attracted the interest of many 

researchers. These aim, in particular, to estimate and explain its evolution over time. 

Several results reveal that volatility is characterized, among other things, by its 

asymmetric variations (Chordia and Goyal 2006, Mele 2007, Shamila et al 2009, 

etc.). In this article, we seek to analyze and predict the volatility of the BRVM 

through these two indices. The data used are daily and start from the period from 04 

January 2010 to 25 May 2016. We use three models of the GARCH family with 

asymmetric volatilities with different density functions. The results show a presence 

of asymmetry in the market yields. Also testifying to the presence of leverage in this 

market. The EGARCH model presents the best results in the analysis of the dynamics 

of market volatility behavior.  

JEL classification numbers: C22, C53, G17 

Keywords: Stock Market Volatility, GARCH models, Asymmetric Variation, 

Leverage, Forecasting. 

 

1. Introduction 
 

Charreaux (2001) argues that any financial phenomenon can be understood as a 

temporal transfer of wealth, which is fundamentally risky. He thus comes to the 

conclusion that there are two basic dimensions of financial reasoning. Which are on 

the one hand, time and on the other hand, the risk.  
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Traditionally, therefore, financial uncertainty is associated with statistical uncertainty 

about the change in the price of assets, and its canonical measure is volatility. That's 

when volatility sparked the interest of many researchers. The latter aim, in particular, 

to estimate and explain its evolution over time, Bezat and Nikeghbali (2000). For 

these authors, stock market volatility plays a central role in modern finance because it 

evokes the typical observed (or expected) magnitude of stock price movements over a 

given period of time. In addition, modern financial theory shows that the volatility of 

financial assets must be measured to build efficient portfolios.  

In the area of emerging markets2, the issues of market volatility are much greater than 

elsewhere. It should also be noted that reducing the uncertainty associated with the 

knowledge of the future, improves the quality of the information and the resulting 

decisions remain the main objectives of the forecast. Bezat and Nikeghbali (2000). 

The prediction of the volatility of financial time series has been widely examined over 

the last three decades. The theory predicts that an estimate and especially an accurate 

forecast of the volatility of asset prices would have important implications for 

investment, valuation security, risk management and monetary policy decision-

making, N'dri (2015).  

Market volatility therefore becomes a measure of risk that has a significant 

contribution to investment decisions and efficient3 portfolio selection. Finally, 

policymakers rely on the results of estimates and forecasts of market volatility as a 

barometer for containing the vulnerability of financial markets and the economy in 

the treatment of monetary policy, N'dri (2015).  

However, it should be noted that volatility has long been and continues to be of 

concern to researchers in economics, primarily in the financial sector. One of the 

main issues that volatility raises is the estimation method used.  

Indeed, the Brownian movement that conditions the normality of stock prices and the 

hypothesis of efficiency supported by Fama (1965, 1970) are hypotheses very often 

accepted in financial theory, but which struggle to respond to the actual dynamics of 

time series. Mandelbrot (2000). First, the assumption of normality is almost rejected 

in most studies conducted on financial assets (exchange rates, stock market indices, 

macroeconomic aggregates, etc.). Some researchers, such as Walter and Véhel 

(2002), have empirically argued that the introduction of normal Brownian motion 

generates an underestimation of risk4. For these authors, this is due to the shape of the 

normal law (which characterizes the Brownian motion), extremely flattened at the 

ends and whose tails are very thin, largely ignoring the extreme values. Thus the use 

of Gaussian processes in the estimates of financial series proves to be incapable in the 

prevention of the occurrence of crises and the advent of extreme risks. 

                                                           
2 These markets are known to have much higher volatility than developed markets, according to the 

International Finance Corporation (IFC). Thus the high volatility to which is added the absence of a 

compromise between the risk and the future profitability makes necessary the studies dealing with this 

phenomenon.  
3 For a good forecast of the volatility of asset prices over the holding period of the investment is the 

starting point for assessing investment risk.  
4 Several stock market shocks have occurred since the beginning of the 20th century to the present day 

knowing that their probability of occurrence was practically zero 
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Another hypothesis that is empirically refuted is that of homoscedasticity. Which 

states that volatility is a constant variable over time. However, the fluctuations and 

upheavals that the financial landscape is incessantly experiencing point to the 

existence of a conditional volatility autoregressive effect (ARCH effect) present in the 

stochastic component of financial series. Indeed, Alberg et al. (2008), think that it is 

the observation of certain phenomena such as Mandelbrot's excess of kurtosis (1963) 

and the leverage effect by Black (1976), which occurs when stock prices are 

negatively correlated fluctuations in volatility in financial time series, which has led 

to the use of a wide range of different variance models to estimate and predict 

volatility.  

In his seminal paper, Engle (1982) proposed a conditional variance model that varies 

over time and uses delayed perturbations (ARCH). This is due to the inability of 

ARMA models to estimate financial series due to the consistency of their conditional 

variance. The ARCH model in turn has two major drawbacks: the first, raised by 

Bollerslev (1986), which results from the large number of necessary parameters used 

in modeling. This may lead to the violation of the positivity constraint of the 

conditional variance. For this purpose he proposes to generalize the ARCH model to 

obtain the GARCH. The second problem is the inability of the ARCH model to 

account for the asymmetry of volatility (Nelson 1991, Glosten Jagannathan and 

Runkle 1993, Zakoian 1994, etc.).  

To try to solve these imperfections, an increasing volume of extensions of the ARCH 

model has been developed. We distinguish two main families: ARCH type models 

with symmetric volatility; these are linear models where the magnitude and not the 

sign of shocks influences the conditional variance. Thus, positive and negative shocks 

of the same magnitude have the same effect on volatility. The most innovative: 

(GARCH, IGARCH and GARCH-M). Then, ARCH models have asymmetric 

volatility. In these models, the authors introduce an explicit modeling of the 

conditional variance that responds asymmetrically to shock according to its sign. 

Thus, a negative shock will be followed by a more pronounced increase in the 

conditional variance than that caused by a positive shock of the same magnitude. The 

most innovative ones are the exponential GARCH (EGARCH), the APARCH model 

and the GARCH dual speed model (GJR-GARCH).  

It should also be noted that the estimation of volatility by the classical GARCH 

model, i.e. under the assumption of the normality of the errors, gives a positive excess 

of the flattening coefficient (kurtosis) of the non-linear conditional distribution. The 

major disadvantage of this model is that, in general, it fails to fully account for the 

leptokurtosis character of the modeled series, especially for the high frequency series 

according to Giot and Laurent (2003 and 2004). To overcome these problems, several 

authors have introduced the concept of conditional density to obtain thicker tails. 

[Bollerslev (1987), Baillie and Bollerslev (1989), and Beine et al. (2002)] who used 

the Student's distribution in the use of GARCH models. In the same way to capture 

the skewness (asymmetry coefficient), Liu and Brorsen (1995) use a stable 

asymmetric density. Fernandez and Steel (1998) use the asymmetric Student 

distribution to model both the asymmetry coefficient (skewness) and the flattening 
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coefficient (kurtosis). Then the asymmetric Student distribution was extended to the 

GARCH framework by Lambert and Laurent (2000 and 2001).  

Empirical studies have been conducted on developed and emerging stock markets by 

[Sandoval (2006); Chuang et al. (2007); Komain (2007); Kovacic (2008); Curto et al. 

(2009); Lee (2009); Shamiri and Isa (2009); Liu and Hung (2010); Su (2010); etc.]. 

The few studies that have attempted to analyze African stock markets, however, are 

limited to [Appiah and Menyah (2003), Ogun et al. (2005), Eskandar (2005), 

Alagidede and Panagiotidis (2009) and especially, N'dri (2015), Coffie (2015)].  

This article aims to complement and contribute to the existing empirical literature by 

analyzing the BRVM volatility forecast using the different asymmetric GARCH 

models by applying three density functions.  

The rest of the study is organized as follows: Section 2 deals with the description of 

the market with the presentation of the data. Section 3 presents the econometric 

methodology used. In section 4, the empirical results are highlighted and discussed. 

Finally Section 5 concludes this study.  

 

2. Description of the market and presentation of data 
 

This study focuses on the BRVM, an integrated market common to the 8 UEMOA 

countries (Benin, Burkina Faso, Côte d'Ivoire, Guinea-Bissau, Mali, Niger, Senegal 

and Togo.). Created on September 16, 1998, the capital of the BRVM is subscribed 

by regional economic actors of West Africa. The two stock market indexes (BRVM) 

represent the activity of stock market securities. The BRVM Composite which 

consists of all listed securities. The BRVM 10 is composed of the ten most active 

companies on the market. The formulation and selection criteria of the BRVM 

COMPOSITE and the BRVM 10 are based on the main stock market indices of the 

world, especially the FCG index of the International Financial Corporation, a World 

Bank affiliate. 

The index formula takes into account market capitalization, trading volume per 

trading session and trading frequency. We use daily data from the BRVM 10 and 

BRVM Composite indices during the period from 04 January 2010 to 25 May 2016, 

i.e. 1667 observations for the BRVM 10 and from 04 January 2010 to 31 March 2016, 

i.e. 1583 observations for the BRVM composite. They are extracted from the Official 

Bulletin of the Cote (BOC) which summarizes at the end of each trading session, 

statistics relating to BRVM 10, BRVM Composite, sectorial indices, and transaction 

volumes among others. 

Playing the role of barometers of economic activity in a market economy, the 

financial market indices reflect the evolution of the values that are quoted as shown in 

the following graphs: 
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     A: BRVM10 Index                                                    B: Composite BRVM index 

Figure 1: Daily evolution of the BRVM indexes from January 2010 to October 2016 

 

For the calculation of yields, it should be noted that we use the first differences of the 

logarithms of the raw series. 
1_Brvm ln(P ) ln( ) x100,t t tR P−= −  Where 

tP  

being the price of the BRVM index at the date t 

 

                   A: BRVM10 index                                              B: Composite BRVM index 

 
Figure 2: Daily evolution of BRVM indexes from January 2010 to October 2016. 

 

The descriptive statistics of our data are presented in Table 1 below. This table clearly 

indicates the nature and type of data we have available for our analysis. 
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Table 1: Descriptive statistics for logarithm differences 1100 [ ln (P ) ln ( ) ]t tP−−  of BRVM 

10 and BRVMC 

 Obs. Average Max Min SD Skewness Kurtosis 
Jarque-

Bera Stat. 

         

tr _brvm10 1667 0.0324 21.697 -20.237 1.370 -0.0615 86.67 
486213.4                                    

(0.000) 

tr _brvmC 1583 0.0537 10.354 -9.3017 0.911 0.255 33.804 
62606.40                              

(0.000) 
  

 

Table 1, above, gives kurtosis coefficients of 86.67 and 33.804 which are well above 

3 for a normal distribution. This indicates a high probability of extreme points that is 

to say that the tails of the distribution are therefore thicker than those of the normal 

distribution which is consistent with one of the characteristics (leptokurtic 

distribution) of the financial series. There is also a skewness (asymmetry coefficient) 

of -0.061 for the BRVM10 and 0.255 for the composite BRVM compared to zero (0) 

for the normal distribution, this shows that the distribution of the series is asymmetric 

and bent respectively towards the left and right according to the index. This 

asymmetry may be a sign of the presence of non-linearity in the process of evolution 

of returns. This possible non-linearity can testify to the presence of an ARCH effect 

(autoregressive conditionally heteroscedastic), frequently encountered in the financial 

series. Finally, the Jarque-Bera statistic confirms the non-normality of the studied 

series through the probability associated with this statistic. We will test the ARCH 

effect which could be the cause of the non-linearity in the process of evolution of the 

profitability through 2 different methods. The one proposed by Engle (1982) which 

consists of estimating t  par t̂  (les residues). That is, regression of the model 

2 2 2

0 1 1
ˆ ˆ ˆ...t t p t p t   − −=  + + + +

         and calculate 
2TR   with T, with T, the sample 

size and ( )2T R m . McLeod and Li (1983), which is a test similar to the Ljung-

Box test, but here it is the squared residuals that are evaluated. That is to say 

2

1

ˆ
( ) ( 2)

m j

j

e
Q m T T

T j−
= +

−
  . 

The results obtained with the McLeod test for the two indices shows that with an 

optimal delay of 1 day for the BRVM10 and 5 days for the composite BRVM, we 

have statistical values of 244.63 for the BRVM10 and 212.77 for the BRVM 

composite with p-value less than 5%. This allows us to reject the null hypothesis of 

the absence of heteroscedasticity. The Engle test confirms in turn a strong presence of 

the ARCH effect through its F-statistics of 21.18 for the BRVM10 and 15.75 for the 

composite index with p-values lower than 5% (Table 2). Following). 
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Table 2: Test of the ARCH effect according to the McLeod test and that of the Engle 

Lagrange Multiplier 

ARCH 

effect test 

Ljung-Box test according to Macleod Engle Lagrange Multiplier Test 

 

   

Rbrvm10 Q2(m)=244.63, m=1, p-value=0.000 F-stat=21.18, m=1,p-value=0.000 

RbrvmC Q2(m)=212.77, m=5,p-value=0.000 F-stat=15.75, m=5,p-value=0.000 

 

H0: 0 1 ... 0 = = =   presence of unit root (non-stationarity). 

Before beginning the econometric estimations, we proceeded to several tests of 

stationarity, to reassure us or to eliminate any presence of unit root in the series 

studied. The t-statistic values are compared to the different critical values in brackets. 

The statistical values of all 4 tests are lower than the different critical values. Hence 

the rejection of the null hypothesis of non-stationarity (presence of unit root). The 4 

tests carried out all confirm the stationarity of the yield level of our two indices, 

namely the BRVM10 and the BRVM composite. (See table 3 next). 

 

Table 3: Unit Root Tests 

Indices Stat.ERS Stat.ADF Stat.pp                         Stat.KPSS 

     

BRVM10 -22.616 **(-1.94) -26.125**(-2.56) -28,100**(-2.56)            0.063**(0.463) 

BRVMC -8.320**(-1.94) -13.524**(-2.56) -27,134*(-2.56)           0.137(0.463) 
Notes: Stat. ADF is the value of the Augmented Dickey-Fuller statistic to be compared with the critical 

value of -2.56 at the 5% threshold. Asterisks indicate significant values. Stat.pp is the value of the 

Philips and Perron statistic. Stat. ERS is the value of the Elliott-Rothenberg-Stock statistic to compare 

with the critical value of -1.94 at the 5% threshold. 

 
 

3. Econometric methodology  
 

We draw inspiration from the work of Alberg et al. (2008). Who presented a model 

for estimating volatility by its ability to predict and capture stylized facts received on 

conditional volatility. Such as the persistence of volatility and the impact of shocks 

according to their different signs, by studying the prediction performance of models 

GARCH, EGARCH, GJR and APARCH through their different density functions.  

To do this, we start from the fact that Engle (1982) proposes the first ARCH model in 

two equations. The first describes the relationship that exists, at a given date t, 

between the Y yield and the vector of the variables that explain X.  

 

1t t tY X  = +  
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With t t tz = , such as 2

1 (0, )t tI N −  . Where   represents the vector of the 

real,  is the shock,  the conditional variance, Z , is i.i.d. random variable with mean 

zero and variance one. 1tI −  is the information available at time  t-1. 

The second equation links, through an autoregressive process, the conditional 

variance 2 , shock ε to the squares of the past values of this shock, that is:   

2 2

0

1

(2)
q

t i t i

i

    −

=

= +  

Where t t tz = , such as (0,1)tZ N  . tz follows a Gaussian distribution 

law and is independently and identically distributed (i.i.d). As restrictions, we have: 

0 0, 0 0i for i   
 Reducing the high number of parameters required in the modeling will lead us to the 

use of a GARCH (p, q) presented in the following form: 

(3)t tr  = +  

With t t tz = , such as (0,1)tZ N .
 

2 2 2

1 1

(4)
q p

t i t i j t j

i j

     − −

= =

= + +   

, ,i j and   , are the parameters to estimate. tr ,   and t  are respectively the return 

on the asset at the date t, the average yield and the term of the innovation.  

Equation (4) also shows that the variance is: 

2 2

1 1

( ) (5)

1
t q p

i j

i j

E


 

 
= =

 =

− − 
 

Like ARCH, some restrictions are needed to ensure that 2

t  is positive for all t. 

Bollerslev (1986) shows that imposing 

0, 0, 1... 0, 1...i ji q and j p    =  =  is sufficient for the conditional 

variance to be positive. 

To capture the asymmetry observed in the data, a new class of ARCH models was 

introduced: the GJR-GARCH by Glosten and al. (1993), the exponential GARCH 

(EGARCH) by Nelson (1991) and the APARCH model by Ding, and al. (1993). This 

last model that has the feature to generate many ARCH models by varying the 

parameters is expressed as:  

 

APARCH (1, 1):  

1 1

1 1

( ) (6)
q p

t i t i t j t j

i j

         − − −

= =

= + − +   

With 0 0, 0, 0, (j 1,..., p), 0 1 1 (i 1,...,q)j i iand       =  −   = .  

Where and   are the parameters allow us to capture the asymmetric effects. The 

presence of a leverage effect can be investigated by testing the hypothesis that 0i  . 
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With a number of variations of the parameters of the APACH model, we obtain the 

following models:  

✓ ARCH of Engle (1982), when

( )2, 0 (i 1,...,p) 0 1,...,pi jand j  = = = = =  

✓ GJR-GARCH, Glosten and al. (1993) when 2 =   

✓ TGARCH of Zakoian (1994), when  1 =  

✓ TS-GARCH of Taylor (1986) and Schwert (1990), for 

( )1, 0 1,...,iand i q = = =   

✓ N-ARCH of Higgins and Bera, when 

( ) ( )0 1,..., 0 1,...,pi ji q and j = = = =  Etc. 

Nelson (1991) investigated asymmetric variance trends using the EGARCH models, 

highlighting that rising and falling movements give different effects on volatility 

dynamics by using logarithm of the conditional variance. 

EGARCH(1,1): 

12 2 1
1

1 1

2
ln( ) ln( ) ( ) (7)

t t
t t

t t

 
     

  

− −
−

− −

 
= + + − − 

 
 

Where  is the asymmetry parameter and is supposed to be positive so that a negative 

shock increases future volatility ie has more impact on volatility while the opposite 

effect is observed for a positive shock. This model is all the more interesting for the 

simple reason that it imposes no restriction on the estimated parameters. 

The negative correlation between shocks and returns is a salient feature of the stock 

market. The sign and magnitude of shocks have asymmetrical effects on returns. 

Therefore, Glosten, Jagannathan and Runkle in (1993), introduced a GARCH model 

with the diverging effects of negative and positive shocks taking into account the 

phenomenon of leverage. Due to asymmetric effects, asymmetric distributions are 

used in the modeling of market returns. This model assumes a specific parametric 

form for conditional heteroscedasticity. Called GJR-GARCH and is as follows:  

GJR-GARCH (1,1): 
2 2 2

1 1 1

1

1

1

( ) (8)

1 0

0 0

t t t t

t

t t t t

t

I

if
with z and I

if

      


 



− − −

−

−

−

= + + +


= = 



 

As restrictions, we have: 
1

1, 0, 0, 0
2

      + +    +    

 

3.1. Estimation methods 

If the prediction of volatility using the GARCH model is simple, the one using the 

asymmetric models must take into account the law of innovations. When the 

distribution is Gaussian, the probability of having a negative shock is 50%. When the 

distribution is of the asymmetric Student type, the probability will depend on the 

asymmetry and flattening parameters. 
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Since GARCH models are parametric, the maximum likelihood and quasi-maximum 

likelihood methods proposed by Bollerslev and Wooldridge (1992) are usually used 

for estimation. For this, it is necessary to impose a law on innovations. Because in 

practice, the use of a Gaussian law does not correspond to the behavior of shocks, whi 

ch favors non-normal distributions with additional parameters for asymmetry and 

kurtosis. 

Gaussian Conditional Likelihood is derived from equation (2): 
2 2 2

0 1 1 ... (9)t t m t m     − −= + + +
 

By posing that 2 2

t t t  = −  , we will have: 2 2 2

0 1 1 ...t t m t m t      − −= + + + + . So 

the likelihood function will be of the following form: 

1 1 1 2 1 1

2

1221

( ,..., ) ( ) ( )... ( ) ( ,..., )

1
exp( ) ( ,..., ) (10)

22

T T T T T m m m

T
t

m
t m

tt

f f F f F f F f

f

        


  



− − − +

= +

=

=  −
 

With '

0 1 1( , ,..., ) ( ,..., )m mand f      = , being the density function of the joint 

probability of 1,..., m  . This likelihood function can also be written as follows:  

2

1 221

1
( ) L ( , ,..., ) exp( ) (11)

22

T
t

T T T
t

tt

L


   
=

= =  −  

Where the 2

t  are defined recursively, for 1t   by equation (4). For a given value of 

 , under the assumption of second-order stationarity, the unconditional variance 

(corresponding to this value of  ) is a reasonable choice for unknown initial values 
2 2 2 2

0 1 0 1...q p    − −= = = = = or 
2 2 2 2 2

0 1 0 1...q p    − −= = = = = . Maximizing the 

conditional likelihood function is like maximizing its logarithm, which is easier to 

manage. The conditional log likelihood function is: 
2

2

1 1 2
1

1 1 1
( ,..., , ,.., ) ln(2 ) ln( ) (12)

2 2 2 2

T
t

m T m t

t m t

l


      


+

= +

 
= − − − 

 
  

 Since the first term ln (2π) does not involve any parameters, and then the log 

likelihood function transforms and becomes: 
 

2
2

1 1 2
1

1 1
( ,..., , ,..., ) ln( ) (13)

2 2 2

T
t

m T m t

t m t

l


     


+

= +

 
= − + 

 
  

Where 2 2 2

0 1 1 ...t t m t m     − −= + + + , can be evaluated recursively. In general, and in 

some applications, it is more appropriate to assume that tZ   follows a thick-tailed 

distribution such as a standardized Student distribution. Let x , the Student's 

distribution with  the degree of freedom, the density function of Student's 

asymmetric distribution is as follows: 
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2
( 1)/2(( 1) / 2)

(z ; ) (1 ) (14)
2( / 2 ( 2)

vt
t

zv
D

vv


 

− + +
= +

− −
 

Where 2  , is the degree of freedom. With 1

0
, ( ) x v

t t tz and e x dx  


− −=  =   is 

the gamma function and   is the parameter that measures the tail thickness.  

 

3.2. Normal distribution 

The normal distribution is by far the most used distribution in the estimation and 

prediction of GARCH models. If we express the equation of the mean, that is 

equation (1), with t t tz = , the log-likelihood function of the normal distribution 

is given by:  

2 2

1

1
ln(2 ) ln( ) , (15)

2

T

T t t

t

L z 
=

 = − + +   

With T, the number of observations.  

 

 

3.3. Student’s t-distribution 

For (z ; )tD  , the log-likelihood function of ( ) ty  for the Student’s t-distribution is 

given by:  

 ( ) ( )( ) ( ) ( ) ( )
2

2

1

1 1 1
; ln ln ln 2 ln 1 ln 1 16

2 2 2 2 2

T
t

T t t

t

zv v
L y T v v

v
  

=

   +   
=  − − − − + + +        −       



Where   is the vector of parameters to be estimated for the conditional mean, the 

conditional variance and the density function. When    we have a normal 

distribution, so that the lower  is, the fatter are the tails. 

 

3.4. skewed Student’s t-distribution 

Asymmetry and flattening are important phenomena in financial applications in many 

respects (in asset valuation models, portfolio selection, option price theory or Value-

at-Risk among others). Therefore, a distribution that can model these two moments 

seems appropriate.  

Recently, Lambert and Laurent (2000, 2001) extended the skewed Student’s t-

distribution proposed by Fernandez and Steel (1998) to the GARCH framework. 

Using (Z ; )
t

D  , the log-likelihood function of  ( )ty   for the skewed Student’s t 

distribution is given by: 

 

2
22

1

1 1 2
( ; ) T(ln ( ) ln( ) ln( ( 2)) ln( ) ln(s))

12 2 2 ( )

( )1
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

  −

=

+
=  − − − + +

+

+
− + + +

−

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Where   is the asymmetry parameter, and v  the degree of freedom of the distribution 

and:  

2 2

1 1(( )) 2 12 1( ) ( 1)
( )

0 2

t

t

m
si z v vs

I with m and s m
vm

si z
s

 
 


 −  + −

= = − = + − −
  −



Different distributions such as the normal, Student and asymmetric student 

distribution are used in this article for estimating ARCH / GARCH models. Although 

we use various distributions, we will present the results of the best fit only, ignoring 

the rest. For the estimation, we use the software R according to Tsay (2014).

 

 

3.5  Prediction 
For forecasting, it should be noted that the predictive ability of GARCH models has 

been widely discussed by Poon and Granger (2003). We evaluate 20 forecasts in one 

step using a 1667 window and 1587 observations for the BRVM10 and BRVMC. 

This is done for both the mean equation and the variance equation. The forecasts we 

will obtain will be evaluated using four different measures5. 

 

3.6  Measures of the quality of the forecast  

The advantage of using many predictive measures lies in the robustness in choosing 

an optimal predictor model. We consider the following measures:   

 

✓ Mean squared error  (MSE) 

2 2 21
ˆ( ) (18)

1

S h

t tt S
MSE

h
 

+

=
= −

+
  

Median squared error  (MedSE) 
2 2ˆ( ( )), ( ) (19)Med t t t tMedSE Inv f e avec e  = = −  

 

 

✓ Mean absolute error  (MAE) 

2 21
ˆ ˆ (20)

1

S h

t tt S
MAE

h
 

+

=
= −

+
  

✓ Adjusted mean absolute percentage error  (AMAPE) 
2 2

2 2

ˆ1
(21)

ˆ1

S h t t

t S
t t

AMAPE
h

 

 

+

=

−
=

+ −
  

Where h is the number of step, S is the sample size, 2ˆ
t  is the forecasted variance and 

2

t  is the actual variance.  

                                                           
5 Indeed, the daily squared returns may not be the appropriate measure to evaluate the forecast 

performance of the different GARCH models for the conditional variance according to Andersen and 

Bollerslev (1998).  
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MSE and MAE are generally affected by larger errors, as in the case of outliers. But 

the MedSE and AMAPE have the advantage of reducing the effect of outliers. 

 

4. Results and discussions 
 

We present in Tables 4 and 5 below the results obtained from our estimates. The basic 

estimation model consists of two equations. One for the mean which is a simple 

autoregressive AR model and the other for the variance that is identified by a 

particular ARCH specification.  Such as GARCH (1, 1),  EGARCH (1, 1), GJR (1, 1)  

and, APARCH (1, 1) for the two indices of the BRVM. The models are estimated 

using the approximate quasi-maximum likelihood estimator assuming Student, 

Normal, or Student asymmetric errors.  

Note that it is obvious that the recursive evaluation of the maximum likelihood 

depends on the unobserved values and that, therefore, the estimate can not be 

considered perfectly accurate. To compare the different models, we apply several 

standard criteria: The Q (.) And Q2 (.) Which are the statistics of Box-Pierce with the 

delay of the standardized standardized residuals and squares, the AIC which is the 

criterion of Akaike information and the Log-Lik value of log-likelihood. 

Tables 4 and 5 present the results of the estimates. Indeed, the Akaike Information 

Criteria (AIC) and log-likelihood values reveal that the EGARCH, APARCH and 

GJR models estimate the series better than the traditional GARCH. 

When we analyze the densities, we find that the two Student distributions (symmetric 

and asymmetric) far exceed the normal distribution. Indeed, the log likelihood 

function increases when using the asymmetric Student distribution.  

This leads to AIC criteria of  2,413 and  2,909 for  normal density versus 2,007 and 

2,487 for non-normal densities for BRVMC and BRVM10, respectively. For all 

models, the dynamics of the first two moments of the series are tested with the Box-

Pierce statistics for residues and square residues that reject no serial correlation at the 

5% level. 

In addition, stationarity is satisfied for each model selected and for each density.  

With one exception, all results are in the 95% predictive intervals. 

All estimates are significantly different from zero at the 5% level. The model control 

statistics show that these models used are adequate for the BRVM series of returns. 

The EGARCH and APARCH models are selected as the best estimate results. 

It should be noted that for both indices, the beta parameter   is positive and 

significant in most cases. This reflects a strong presence of persistence that can be 

interpreted as the persistence of the price differential with respect to the fundamental 

value. 

In terms of portfolio management, we can then assume that this persistence could be 

explained by the prolongation of a climate of pessimistic uncertainty fueled by bad 

news. Or by persistent valuation errors on the part of investors.  

There is also asymmetry of the impact of negative and positive shocks on volatility 

since the gamma coefficient is significant and since it is negative in the GJR-GARCH 
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model, we can deduce that there is a negative relationship between the stock market 

returns and their volatilities and therefore that there is a good and a leverage effect on 

the BRVM market like most financial markets.  Our results corroborate those found 

by Alberg et al. (2008), Loudon and al. (2000), Mele (2007), and Shamila and al. 

(2009). Etc. 

 

 See Table 4 and 5 for the Results of estimation. 
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Table 4: Results of the BRVM 10 estimates by the different GARCH models with the three density functions. 
 DISTRIBUTION 

 Normal Student’s t Asymmetric student’s t (Skewed t) 

 GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH 
 

 

            

  0.046** 

(0.031) 

0.030** 

(0.029) 

0.022** 

(0.029) 

0.029** 

(0.029) 

0.022** 

(0.019) 

0.014** 

(0.018) 

0.013*** 

(0.001) 

0.011** 

(0.018) 

0.036** 

(0.024) 

0.033** 

(0.025) 

0.063** 

(0.027) 

0.025 

(0.025) 

  0.0008 

(0.000) 

0.074 

(0.029) 

0.652 

(0.094) 

0.485 

(0.090) 

0.002 

(0.001) 

0.089 

(0.088) 

0.478 

(0.158) 

0.388 

(0.113) 

0.423 

(0.149) 

0.086 

(0.087) 

0.005 

(0.001) 

0.381 

(0.112) 

  0.000 

(0.000) 

-0.135 

(0.031) 

0.044 

(0.025) 

0.109 

(0.024) 

0.000 

(0.001) 

-0.071 

(0.057) 

0.295 

(0.137) 

0.423 

(0.117) 

0.507 

(0.175) 

-0.064 

(0.057) 

0.001 

(0.000) 

0.410 

(0.113) 

  0.999*** 

(0.000) 

0.525* 

(0.085) 

0.294* 

(0.087) 

0.467* 

(0.089) 

0.999*** 

(0.000) 

0.684* 

(0.072) 

0.403* 

(0.095) 

0.478* 

(0.093) 

0.445 

(0.102) 

0.687* 

(0.072) 

0.999*** 

(0.000) 

0.485* 

(0.094) 

  - 0.255** 

(0.046) 

-0.200* 

(0.061) 

1.00*** 

(0.000) 

- 0.542 

(0.101) 

-0.457 

(0.034) 

0.235 

(0.105) 

- 0.536 

(0.101) 

-0.006*** 

(0.000) 

0.225 

(0.107) 

  - - - 1.126 

(0.239) 

- - - 1.302 

(0.366) 

- - - 1.288 

(0.351) 

  - - - - 2.421 

(0.152) 

2.613 

(0.235) 

2.599 

(0.235) 

2.582 

(0.228) 

2.586 

(0.231) 

2.613 

(0.233) 

2.504 

(0.118) 

2.586 

(0.226) 

Log-Lik -1882.8 -1792.78 -1797.049 -1791.102 -1567.522 -1531.064 -1533.212 -1532.064 -1535.855 -1530.589 -1563.39 -1531.726 

AIC 3.053 2.909 2.916 2.919 2.545 2.487 2.490 2.490 2.494 2.488 2.541 2.491 

BIC 3.0697 2.929 2.936 2.904 2.565 2.512 2.515 2.519 2.519 2.517 2.570 2.524 

Q(1) 10.84** 

(0.006) 

1.760 

(0.676) 

1.612 

(0.712) 

1.876 

(0.648) 

20.7*** 

(0.000) 

2.246 

(0.056) 

2.544 

(0.496) 

2.505 

(0.504) 

2.418 

(0.523) 

2.158 

(0.581) 

31.01*** 

(0.000) 

2.444 

(0.517) 

Q2(1) 233.6 

(0.000) 

0.274 

(0.999) 

0.390 

(0.999) 

2.857 

(0.782) 

260.8 

(0.000) 

0.478 

(0.999) 

0.386 

(0.999) 

0.409 

(0.999) 

0.304 

(0.999) 

0.477 

(0.999) 

164.1 

(0.000) 

0.000 

(0.999) 
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Table 5: Results of the BRVM Composite Index estimates by the different GARCH models with the three density functions. 

 DISTRIBUTION 

 Normal  Student’t Asymmetric student’t (Skewed t) 

 GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH 
              

  0.036** 

(0.022) 

0.049** 

(0.017) 

0.039** 

(0.024) 

0.039** 

(0.022) 

0.029** 

(0.014) 

0.026** 

(0.014) 

0.026** 

(0.014) 

0.026** 

(0.014) 

0.044** 

(0.019) 

0.039** 

(0.020) 

0.038** 

(0.020) 

0.038** 

(0.020) 

  0.287** 

(0.041) 

-0.129** 

(0.040) 

0.280** 

(0.041) 

0.188** 

(0.044) 

0.018** 

(0.071) 

-0.035** 

(0.078) 

0.218** 

(0.085) 

0.212** 

(0.077) 

0.176 

(0.069) 

-0.039* 

(0.074) 

0.207* 

(0.083) 

0.205* 

(0.079) 

  0.171** 

(0.033) 

0.012** 

(0.030) 

0.187** 

(0.043) 

0.109** 

(0.037) 

0.415** 

(0.149) 

-0.058** 

(0.054) 

0.323 

(0.132) 

0.424 

(0.141) 

0.398 

(0.143) 

-0.048  

(0.053) 

0.319 

(0.130) 

0.416 

(0.144) 

  0.432* 

(0.068) 

0.542* 

(0.076) 

0.444* 

(0.068) 

0.412* 

(0.072) 

0.583* 

(0.086) 

0.740* 

(0.075) 

0.538* 

(0.095) 

0.550 

(0.102) 

0.599* 

(0.088) 

0.750* 

(0.074) 

0.553* 

(0.098) 

0.567 

(0.103) 

  - 0.370** 

(0.043) 

-0.039** 

(0.052) 

-0.073** 

(0.059) 

- 0.598 

(0.113) 

-0.263 

(0.093) 

0.149* 

(0.092) 

- 0.585 

(0.109) 

-0.229 

(0.085) 

0.137 

(0.103) 

  - - - 3.500 

(0.777) 

- - - 1.847 

(0.536) 

- - - 1.029** 

(0.035) 

  - - - - 2.546 

(0.217) 

2.560 

(0.218) 

2.537 

(0.217) 

2.554 

(0.212) 

2.549 

(0.215) 

2.571 

(0.218) 

2.543 

(0.216) 

2.542 

(0.215) 

Log-Lik -1491.47 -1493.608 -1490.982 -1485.565 -1238.995 -1234.712 -1237.598 -1237.558 -1238.354 -1234.177 -1237.241 -1237.19 

AIC 2.419 2.424 2.423 2.413 2.012 2.007 2.012 2.013 2.013 2.0084 2.013 2.014 

BIC 2.436 2.445 2.452 2.438 2.033 2.032 2.037 2.042 2.038 2.0374 2.042 2.048 

Q(5) 3.000 

(0.407) 

3.447 

(0.331) 

2.582 

(0.733) 

2.449 

(0.516) 

2.869 

(0.431) 

3.492 

(0.324) 

3.177 

(0.375) 

3.258 

(0.361) 

2.888 

(0.427) 

3.435 

(0.333) 

3.146 

(0.381) 

3.243 

(0.364) 

Q2(5) 1.300 

(0.970) 

1.024 

(0.985) 

0.945 

(0.871) 

0.602 

(0.997) 

0.709 

(0.995) 

0.885 

(0.999) 

0.921 

(0.989) 

0.965 

(0.987) 

0.731 

(0.994) 

0.863 

(0.999) 

0.923 

(0.989) 

0.978 

(0.987) 
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4.2. Discussions of the results of the forecasts 

The predictive ability is indicated by ranking the different models against the five measures 

used in the analysis. This is done in Tables 6 and 7 below which compare the distributions for 

the BRVM10 and BRVMC indices. For the BRVM10 index, the results confirm that the use 

of the EGARCH model with asymmetric student distribution is adequate to obtain the best 

forecast results. For most measures of the variance equation, the EGARCH model 

outperforms the APARCH model. The GARCH model provides much less satisfactory results 

and the GJR model provides the poorest forecasts.  

For the BRVMC index, the EGARCH model gives better forecasts than the GARCH model 

while the APARCH and GJR models give the poorest forecasts. The asymmetric Student 

distribution is the most successful in predicting the conditional variance of the BRVM10, 

unlike the BRVMC which shows better results with the Student distribution. 

Indeed, our results are in line with those of Lambert and Laurent (2001). Which have shown 

that the asymmetric Student distribution functions are the most appropriate for modeling the 

NASDAQ index with respect to symmetrical densities. Those of J.J. Peter (2001), Chordia 

and Goyal 2006; Mele 2007; Shamila et al. 2009; etc. who found results revealing that 

volatility is characterized, among other things, by its asymmetric variations. The EGARCH 

and APARCH models had the best estimation and forecasting results. Tables 6 and 7 below 

shows the results of the quality of the forecast.  

 
Table 6: BRVM10 forecast results with the 4 GARCH models according to the best decision criteria. 

BRVM10 
GARCH EGARCH GJR APARCH 

std Dist-sstd Dist-sstd Dist-sstd Dist-std Dist-sstd 

       

MSE 0.657 0.588 0.3045 0.909 0487 0.4034 

RMSE 0.708 0.702 0.508 0.807 0.606 0.543 

MAE 0.455 0.364 0.345 0.878 0.466 0.274 

MedSE 0.304 0.252 0.245 0.955 0.354 0.300 

AMAPE 0.984 0.983 0.568 0.974 0.906 0.349 
Note: Dist-std, is the student distribution and Dist-sstd is the asymmetric student distribution. 

 

 
Table 7: Summary of the BRVMC forecast results with the 4 GARCH models according to the best 

decision criteria. 

BRVMC GARCH-std EGARCH-std GJR-std APARCH-std 

     

MSE 0.376 0.116 0.404 0.400 

RMSE 0.605 0.5509 0.630 0.641 

MAE 0.562 0.502 0.666 0.704 

MedSE 0.306 0.2001 0.664 0.656 

AMAPE 0.649 0.621 0.666 0.679 

 

7. Conclusion 
 

We have shown through our results that the BRVM is a volatile market. This trend volatility 

has varied and persisted while taking into account the asymmetric nature of new information 

(shocks). Asymmetric returns and the presence of leverage clearly indicate that market 
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volatility is negatively correlated with BRVM index returns. This would mean that bad news 

would tend to have more impact on volatility or generate greater volatility than good news. 

We compared the prediction performance of several GARCH models using different 

distribution functions. This for the returns of the two stock indexes of the BRVM. We found 

that the exponential GARCH model (EGARCH) proposed by Nelson in 1991 used with the 

asymmetric Student distribution is the most promising for characterizing the dynamic 

behavior of these returns.  

Because it reflects their underlying process in terms of serial correlation, clustering of 

asymmetric volatility (clustering) and leptokurtic innovation. 

The results also show that asymmetric GARCHs improve prediction performance. Among the 

predictions tested, the EGARCH model with the asymmetric Student distribution 

outperformed the GARGH, GJR and APARCH models. This result implies that the EGARCH 

model could be more useful than the other three models when implementing risk management 

strategies for the returns of the two BRVM indices. 
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