Theoretical Mathematics & Applications, vol.3, no.2, 2013, 15-28 ISSN: 1792-9687 (print), 1792-9709 (online) Scienpress Ltd, 2013

Estimates eigenvalues of fourth-order weighted polynomial operator on a hyperbolic space

Feng $\mathbf{D}\mathbf{u}^1$ and Yanli $\mathbf{L}\mathbf{i}^2$

Abstract

In this paper, we consider the eigenvalue problem of fourth-order weighted polynomial operator on bounded domains in a hyperbolic space, and get a general inequality. By using this inequality, we obtain some universal inequalities of the eigenvalues. Moreover, by these universal inequalities, we can get some results for the biharmonic operator.

Mathematics Subject Classification: 35P15, 53C40

Keywords: Fourth-order weighted polynomial operator, eigenvalues, universal inequalities, hyperbolic space

Article Info: Received : April 20, 2013. Revised : May 30, 2013 Published online : June 25, 2013

¹ School of Mathematics and Physics Science, Jingchu University of Technology, Hubei Jingmen 448000, P.R. China.

² School of Electronic and Information Science, Jingchu University of Technology, Hubei Jingmen 448000, P.R. China.

1 Introduction

Let Ω be a bounded domain in an *n*-dimensional complete Riemannian manifold M. Let Δ be the Laplacian operator acting on functions on M and consider the following eigenvalue problem for the biharmonic operator

$$\begin{cases} \Delta^2 u = -\lambda u, & \text{in } \Omega, \\ u = \frac{\partial u}{\partial \nu} = 0, & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where ν denotes the outward unit normal vector field of $\partial\Omega$. It is known that this eigenvalue problem has a discrete spectrum

$$0 < \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots,$$

where each eigenvalue is repeated with its multiplicity. When $M = R^n, \Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$, Payne-Pólya-Weinberger [9] in 1956 proved

$$\lambda_{k+1} - \lambda_k \le \frac{8n+2}{n^2} \sum_{i=1}^k \lambda_i.$$
(1.2)

In 1984, Hile and Yeh [6] strengthened (1.2), and proved

$$\frac{n^2 k^{\frac{3}{2}}}{8n+2} \left(\sum_{i=1}^k \lambda_i\right)^{\frac{1}{2}} \le \sum_{i=1}^k \frac{\lambda_i^{\frac{1}{2}}}{\lambda_{k+1} - \lambda_i}.$$
(1.3)

In 2006, Cheng-Yang [3] gave the following much stronger inequality

$$\lambda_{k+1} \le \frac{1}{k} \sum_{i=1}^{k} \lambda_i + \left(\frac{8(n+2)}{n^2}\right)^{\frac{1}{2}} \frac{1}{k} \left(\sum_{i=1}^{k} \lambda_i (\lambda_{k+1} - \lambda_i)\right).$$
(1.4)

These inequalities are called universal inequalities because they do not involve domain dependence.

When M is a hyperbolic $H^n(-1)$, Cheng-Yang[4] have proved the following inequality

$$\sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \le 24 \sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i) \left(\lambda_i^{\frac{1}{2}} - \frac{(n-1)^2}{4}\right) \left(\lambda_j^{\frac{1}{2}} - \frac{(n-1)^2}{6}\right). \quad (1.5)$$

In this paper, we consider the following eigenvalue problem of fourth-order weighted polynomial operator on a bounded domains Ω in the hyperbolic space $H^n(-1)$ such that

$$\begin{cases} (\Delta^2 - a\Delta + b) u = \lambda \rho u, & \text{in } \Omega, \\ u = \frac{\partial u}{\partial \nu} = 0, & \text{on } \partial \Omega, \end{cases}$$
(1.6)

where ρ is a positive and continuous function on Ω , and the constants $a, b \ge 0$. Then we obtain.

Theorem 1.1. Let Ω be a bounded domain in n-dimensional hyperbolic $H^n(-1)$ and let λ_i be the *i*th eigenvalue of the eigenvalue problem (1.6). If $\forall x \in \Omega, \rho_1 \leq \rho(x) \leq \rho_2$, then we have

$$\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \\
\leq \left\{ \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \left(6\rho_2 A_i - 2(n-1)^2 + \frac{\rho_2((n-1)^2 + a)}{\rho_1} \right) \right\}^{\frac{1}{2}} \\
\times \left\{ \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \frac{1}{\rho_1} \left(4\rho_2 A_i - (n-1)^2 \right) \right\}^{\frac{1}{2}}.$$
(1.7)

where $A_i = \frac{-a + \sqrt{a^2 + 4\left(\lambda_i - \frac{b}{\rho_2}\right)^2}}{2\rho_1}$

From Theorem 1.1, we can get the following weaker but more explicit inequality.

Corollary 1.2. Under the assumption of Theorem 1.1, if $\rho \equiv 1$, we have

$$\sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \le 24 \sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i) \left(A_i - \frac{(n-1)^2}{4}\right) \left(A_j - \frac{(n-1)^2 - a}{6}\right). \quad (1.8)$$
where $A_i = \frac{-a + \sqrt{a^2 + 4\left(\lambda_i - \frac{b}{\rho_2}\right)}}{2\rho_1}, A_j = \frac{-a + \sqrt{a^2 + 4\left(\lambda_j - \frac{b}{\rho_2}\right)}}{2\rho_1}.$

Remark. By (1.9), when a = b = 0, (1.8) becomes (1.5), in fact, problem (1.1) is the special case of problem (1.6).

2 A key lemma

In this section, we will introduce a lemma which play a key role in the proofs of the main results of this paper.

Lemma 2.1. Let (M, \langle, \rangle) be an n-dimensional compact Riemannian manifold with boundary ∂M (possibly empty). Let λ_i be the *i*th eigenvalue of the eigenvalue problem of fourth-order weighted polynomial operator with weight ρ such that

$$\begin{cases} (\Delta^2 - a\Delta + b) u = \lambda \rho u, & \text{in } M, \\ u = \frac{\partial u}{\partial \nu} = 0, & \text{on } \partial M, \end{cases}$$

and u_i be the orthonormal eigenfunction corresponding to λ_i , that is,

$$\begin{aligned} \left(\Delta^2 + a\Delta + b \right) u_i &= \lambda_i \rho u_i, & \text{in } M, \\ u_i &= 0, & \text{on } \partial\Omega, \\ \int_M \rho u_i u_j &= \delta_{ij}, & \forall i, j = 1, 2, \cdots \end{aligned}$$

Then for any $h \in C^4(\overline{M})$, we have

$$\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \int_M u_i^2 |\nabla h|^2$$

$$\leq \sum_{i=1}^{k} \delta(\lambda_{k+1} - \lambda_i)^2 \int_M h u_i p_i$$

$$+ \sum_{i=1}^{k} \frac{\lambda_{k+1} - \lambda_i}{\delta} \int_M \frac{1}{\rho} \left(\langle \nabla h, \nabla u_i \rangle + \frac{u_i \Delta h}{2} \right)^2, \qquad (2.1)$$

where

$$p_i = 2\langle \nabla h, \nabla(\Delta u_i) \rangle + \Delta h \Delta u_i + 2\Delta \left(\langle \nabla h, \nabla u_i \rangle \right) + \Delta \left(u_i \Delta h \right) - 2a \langle \nabla h, \nabla u_i \rangle - a u_i \Delta h.$$

Proof. Let $\varphi_i = hu_i - \sum_{j=1}^k a_{ij}u_j$ for any integer $k \ge 1$, where

$$a_{ij} = \sum_{j=1}^{k} \int_{M} \rho h u_i u_j = a_{ji},$$

then we have

$$\varphi_i|_{\partial M} = 0$$
, and $\int_M \rho \varphi_i u_j = 0, \forall i, j = 1, \cdots, k$,

from the Rayleigh-Ritz inequality, we get

$$\lambda_{k+1} \int_{M} \rho \varphi_{i}^{2} \leq \int_{M} \varphi_{i} (\Delta^{2} + a\Delta + b) \varphi_{i}.$$
(2.2)

By directly computation, we have

$$\Delta(hu_i) = h\Delta u_i + 2\langle \nabla h, \nabla u_i \rangle + u_i \Delta h, \qquad (2.3)$$

and

$$\Delta^{2}(hu_{i}) = \Delta (h\Delta u_{i} + 2\langle \nabla h, \nabla u_{i} \rangle + u_{i}\Delta h,)$$

= $h\Delta^{2}u_{i} + 2\langle \nabla h, \nabla(\Delta u_{i}) \rangle$
+ $\Delta h\Delta u_{i} + 2\Delta (\langle \nabla h, \nabla u_{i} \rangle) + \Delta (u_{i}\Delta h).$ (2.4)

By (2.3) and (2.4), we have

$$(\Delta^2 + a\Delta + b)(hu_i) = \lambda_i \rho hu_i + p_i, \qquad (2.5)$$

where

$$p_i = 2\langle \nabla h, \nabla(\Delta u_i) \rangle + \Delta h \Delta u_i + 2\Delta \left(\langle \nabla h, \nabla u_i \rangle \right) + \Delta \left(u_i \Delta h \right) - 2a \langle \nabla h, \nabla u_i \rangle - a u_i \Delta h.$$

Because of $\int_M \rho \varphi_i u_j = 0$, we can get

$$\int_{M} \varphi_{i} (\Delta^{2} + a\Delta + b) \varphi_{i} = \int_{M} \varphi_{i} (\Delta^{2} + a\Delta + b) (hu_{i})$$
$$= \lambda_{i} \int_{M} \varphi_{i} \rho hu_{i} + \int_{M} \varphi_{i} p_{i}$$
$$= \lambda_{i} \int_{M} \rho \varphi_{i}^{2} + \int_{M} hu_{i} p_{i} - \sum_{j=1}^{k} a_{ij} b_{ij}, \quad (2.6)$$

where $b_{ij} = \int_M p_i u_j$.

By (2.2) and (2.6), we have

$$(\lambda_{k+1} - \lambda_i) \int_M \rho \varphi_i^2 \le \int_M h u_i p_i - \sum_{j=1}^k a_{ij} b_{ij}, \qquad (2.7)$$

Using integration by parts, we have

$$\int_{M} \Delta u_{j} \langle \nabla h, \nabla u_{i} \rangle - \int_{M} \Delta u_{i} \langle \nabla h, \nabla u_{j} \rangle$$

$$= -\int_{M} h \operatorname{div}(\Delta u_{j} \nabla u_{i}) + \int_{M} h \operatorname{div}(\Delta u_{i} \nabla u_{j})$$

$$= -\int_{M} h \langle \nabla(\Delta u_{j}), \nabla u_{i} \rangle + \int_{M} h \Delta u_{j} \Delta u_{i}$$

$$+ \int_{M} h \langle \nabla(\Delta u_{i}), \nabla u_{j} \rangle - \int_{M} h \Delta u_{i} \Delta u_{j}$$

$$= -\int_{M} h \langle \nabla(\Delta u_{j}), \nabla u_{i} \rangle + \int_{M} h \langle \nabla(\Delta u_{i}), \nabla u_{j} \rangle$$

$$= \int_{M} u_{i} \operatorname{div}(h \nabla(\Delta u_{j})) - \int_{M} u_{j} \operatorname{div}(h \nabla(\Delta u_{i}))$$

$$= \int_{M} h u_{i} \Delta^{2} u_{j} + \int_{M} u_{i} \langle \nabla h, \nabla(\Delta u_{j}) \rangle - \int_{M} h u_{j} \Delta^{2} u_{i} - \int_{M} u_{j} \langle \nabla h, \nabla(\Delta u_{i}) \rangle$$

$$= -\int_{M} h u_{i} \Delta^{2} u_{j} + \int_{M} h u_{j} \Delta^{2} u_{i} - \int_{M} \Delta u_{j} (\langle \nabla u_{i}, \nabla h \rangle - u_{i} \Delta h) + \int_{M} \Delta u_{i} (\langle \nabla u_{j}, \nabla h \rangle - u_{j} \Delta h), \qquad (2.8)$$

which implies that

$$2\int_{M} \Delta u_{j} \langle \nabla h, \nabla u_{i} \rangle - 2\int_{M} \Delta u_{i} \langle \nabla h, \nabla u_{j} \rangle$$

= $-\int_{M} h u_{i} \Delta^{2} u_{j} + \int_{M} h u_{j} \Delta^{2} u_{i} + \int_{M} u_{i} \Delta u_{j} \Delta h - \int_{M} u_{j} \Delta u_{i} \Delta h.$ (2.9)

We also have

$$\int_{M} u_{j} \Delta \langle \nabla h, \nabla u_{i} \rangle + \int_{M} u_{j} \langle \nabla h, \nabla (\Delta u_{i}) \rangle$$
$$= \int_{M} \Delta u_{j} \langle \nabla h, \nabla u_{i} \rangle - \int_{M} \Delta u_{i} \langle \nabla h, \nabla u_{j} \rangle + \int_{M} u_{j} \Delta u_{i} \Delta h, \quad (2.10)$$

$$\int_{M} u_j \Delta(u_i \Delta h) = \int_{M} u_i \Delta u_j \Delta h, \qquad (2.11)$$

and

$$\int_{M} u_{j} \{-2\langle \nabla h, \nabla u_{i} \rangle + u_{i} \Delta h\}$$

$$= \int_{M} 2h \langle \nabla u_{j}, \nabla u_{i} \rangle - \int_{M} 2h u_{j} \Delta u_{i} + \int_{M} h \Delta(u_{i} u_{j})$$

$$= \int_{M} h u_{i} \Delta u_{j} - \int_{M} h u_{j} \Delta u_{i}.$$
(2.12)

Combining (2.9)-(2.12), we get

$$b_{ij} = \int_{M} p_{i}u_{j}$$

$$= \int_{M} u_{j} \{2\langle \nabla h, \nabla(\Delta u_{i}) \rangle + \Delta h \Delta u_{i} + 2\Delta (\langle \nabla h, \nabla u_{i} \rangle)\}$$

$$+ \int_{M} u_{j} \{\Delta (u_{i}\Delta h) - 2a\langle \nabla h, \nabla u_{i} \rangle - au_{i}\Delta h\}$$

$$= -\int_{M} hu_{i}\Delta^{2}u_{j} - \int_{M} hu_{j}\Delta^{2}u_{i} + \int_{M} ahu_{i}\Delta u_{j} - \int_{M} ahu_{j}\Delta u_{i}$$

$$= \int_{M} hu_{i}(\Delta^{2} + a\Delta + b)(u_{j}) - \int_{M} hu_{j}(\Delta^{2} + a\Delta + b)(u_{i})$$

$$= (\lambda_{j} - \lambda_{i})a_{ij}.$$
(2.13)

It follows from (2.7) and (2.13) that

$$(\lambda_{k+1} - \lambda_i) \int_M \rho \varphi_i^2 \le \int_M h u_i p_i - \sum_{j=1}^k (\lambda_j - \lambda_i) a_{ij}^2.$$
(2.14)

Setting $t_{ij} = \int_M u_j \left(\langle \nabla h, \nabla u_i \rangle + \frac{u_i \Delta h}{2} \right)$, then $t_{ij} = -t_{ji}$ and

$$\int_{M} -2\varphi_{i} \left(\langle \nabla h, \nabla u_{i} \rangle + \frac{u_{i} \Delta h}{2} \right)$$

$$= \int_{M} \left(-2hu_{i} \langle \nabla h, \nabla u_{i} \rangle - hu_{i}^{2} \Delta h \right) + 2\sum_{j=1}^{k} a_{ij} t_{ij}$$

$$= \int_{M} u_{i}^{2} |\nabla h|^{2} + 2\sum_{j=1}^{k} a_{ij} t_{ij}.$$
(2.15)

By (2.14), (2.15) and Schwartz inequality, we get

$$(\lambda_{k+1} - \lambda_i)^2 \left(\int_M u_i^2 |\nabla h|^2 + 2 \sum_{j=1}^k a_{ij} t_{ij} \right)$$

$$= (\lambda_{k+1} - \lambda_i)^2 \int_M -2\sqrt{\rho} \varphi_i \left(\frac{1}{\sqrt{\rho}} \left(\langle \nabla h, \nabla u_i \rangle + \frac{u_i \Delta h}{2} \right) - \sum_{j=1}^k t_{ij} \sqrt{\rho} u_j \right)$$

$$\leq \delta(\lambda_{k+1} - \lambda_i)^3 \int_M \rho \varphi_i^2$$

$$+ \frac{\lambda_{k+1} - \lambda_i}{\delta} \int_M \left(\frac{1}{\sqrt{\rho}} \left(\langle \nabla h, \nabla u_i \rangle + \frac{u_i \Delta h}{2} \right) - \sum_{j=1}^k t_{ij} \sqrt{\rho} u_j \right)^2$$

$$\leq \delta(\lambda_{k+1} - \lambda_i)^2 \left(\int_M h u_i p_i - \sum_{j=1}^k (\lambda_j - \lambda_i) a_{ij}^2 \right)$$

$$+ \frac{\lambda_{k+1} - \lambda_i}{\delta} \left(\int_M \frac{1}{\rho} \left(\langle \nabla h, \nabla u_i \rangle + \frac{u_i \Delta h}{2} \right)^2 - \sum_{j=1}^k t_{ij}^2 \right), \qquad (2.16)$$

where δ is any positive constant. Summing over *i* from 1 to *k* in (2.16) and noticing $a_{ij} = a_{ji}, t_{ij} = -t_{ji}$, we have

$$\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \int_M u_i^2 |\nabla h|^2 - 2 \sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i) (\lambda_i - \lambda_j) a_{ij} t_{ij}$$

$$\leq \sum_{i=1}^{k} \delta (\lambda_{k+1} - \lambda_i)^2 \int_M h u_i p_i + \sum_{i=1}^{k} \frac{\lambda_{k+1} - \lambda_i}{\delta} \int_M \frac{1}{\rho} \left(\langle \nabla h, \nabla u_i \rangle + \frac{u_i \Delta h}{2} \right)^2$$

$$- \sum_{i,j=1}^{k} \delta (\lambda_{k+1} - \lambda_i) (\lambda_j - \lambda_i)^2 a_{ij}^2 - \sum_{i,j=1}^{k} \frac{\lambda_{k+1} - \lambda_i}{\delta} t_{ij}^2, \qquad (2.17)$$

which gives

$$\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \int_M u_i^2 |\nabla h|^2$$

$$\leq \sum_{i=1}^{k} \delta(\lambda_{k+1} - \lambda_i)^2 \int_M h u_i p_i + \sum_{i=1}^{k} \frac{\lambda_{k+1} - \lambda_i}{\delta} \int_M \frac{1}{\rho} \left(\langle \nabla h, \nabla u_i \rangle + \frac{u_i \Delta h}{2} \right)^2$$

Hence (2.1) is true, this completes the proof of Lemma 2.1.

3 Proofs of the main results

In this section, we will give the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Using the upper half-space model, $H^n(-1)$ is given by

$$\mathbf{R}^{n}_{+} = \{(x_{1}, x_{2}, \cdots, x_{n}) | x_{n} > 0\}$$

with the standard metric

$$ds^2 = \frac{dx_1^2 + \dots + dx_n^2}{x_n^2}.$$

In this case, by a simple computation, we have the Laplacian in $H^n(-1)$:

$$\Delta = x_n^2 \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} + (2-n)x_n^2 \frac{\partial}{\partial x_n}$$

Set $f = \ln x_n$, we can get $|\nabla f| = 1, \Delta f = 1 - n$.

Taking h = f in (2.1), and noticing $|\nabla f| = 1$, we can get

$$\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \int_{\Omega} u_i^2 \leq \sum_{i=1}^{k} \delta(\lambda_{k+1} - \lambda_i)^2 \int_{\Omega} f u_i p_i + \sum_{i=1}^{k} \frac{\lambda_{k+1} - \lambda_i}{\delta} \int_{\Omega} \frac{1}{\rho} \left(\langle \nabla f, \nabla u_i \rangle + \frac{u_i \Delta f}{2} \right)^2 (3.1)$$

Because of $\rho_1 \leq \rho(x) \leq \rho_2$ and $\int_{\Omega} \rho u_i^2 = 1$, we have

$$\int_{M} u_i^2 \ge \frac{1}{\rho_2} \tag{3.2}$$

Taking (3.2) into (3.1), we have

$$\frac{1}{\rho_2} \sum_{i=1}^k (\lambda_{k+1} - \lambda_i)^2 \leq \sum_{i=1}^k \delta(\lambda_{k+1} - \lambda_i)^2 \int_{\Omega} f u_i p_i + \sum_{i=1}^k \frac{\lambda_{k+1} - \lambda_i}{\delta} \int_{\Omega} \frac{1}{\rho} \left(\langle \nabla f, \nabla u_i \rangle + \frac{u_i \Delta f}{2} \right)^2 (3.3)$$

Since $(\Delta^2 - a\Delta + b)(u_i) = \lambda_i \rho u_i$, then we have

$$\int_{\Omega} u_i \Delta^2 u_i - a \int_{\Omega} u_i \Delta u_i + b \int_{\Omega} u_i^2 = \int_{\Omega} u_i (\Delta^2 - a\Delta + b)(u_i)$$
$$= \lambda_i \int_{\Omega} \rho u_i^2 = \lambda_i, \qquad (3.4)$$

and by Schwartz inequality, we have

$$\int_{\Omega} u_i \Delta u_i \le \left(\int_{\Omega} (\Delta u_i)^2 \int_{\Omega} u_i^2 \right)^{\frac{1}{2}} \le \left(\int_{\Omega} \frac{1}{\rho_1} (\Delta u_i)^2 \right)^{\frac{1}{2}} = \left(\int_{\Omega} \frac{1}{\rho_1} u_i \Delta^2 u_i \right)^{\frac{1}{2}} (3.5)$$

by (3.5) and (3.6), we can get

$$\lambda_i \ge \rho_1 \left(\int_{\Omega} u_i \Delta u_i \right)^2 - a \int_{\Omega} u_i \Delta u_i + \frac{b}{\rho_2},$$

this is a quadratic inequality of $\int_{\Omega} u_i \Delta u_i$, solving it, we obtain

$$\frac{a-\sqrt{a^2+4\left(\lambda_i-\frac{b}{\rho_2}\right)}}{2\rho_1} \le \int_{\Omega} u_i \Delta u_i \le \frac{a+\sqrt{a^2+4\left(\lambda_i-\frac{b}{\rho_2}\right)}}{2\rho_1},$$

setting

$$A_i = \frac{-a + \sqrt{a^2 + 4\left(\lambda_i - \frac{b}{\rho_2}\right)}}{2\rho_1},$$

which imply that

$$-\int_{\Omega} u_i \Delta u_i \le A_i. \tag{3.6}$$

Since $\int_{\Omega} u_i \Delta u_i = -\int_{\Omega} |\nabla u_i|^2$, we have

$$\int_{\Omega} |\nabla u_i|^2 \le A_i. \tag{3.7}$$

From $|\nabla f| = 1, \Delta f = n - 1$, (3.6)-(3.7) and by the definition of p_i , we can get

$$\begin{split} &\int_{\Omega} f u_{i} p_{i} \\ &= \int_{\Omega} f u_{i} \{ 2 \langle \nabla f, \nabla (\Delta u_{i}) \rangle + \Delta f \Delta u_{i} + 2\Delta (\langle \nabla f, \nabla u_{i} \rangle) \\ &+ \Delta (u_{i} \Delta f) - 2a \langle \nabla f, \nabla u_{i} \rangle - au_{i} \Delta f \} \\ &= \int_{\Omega} -2 \{ u_{i} \Delta u_{i} \langle \nabla f, \nabla f \rangle + f \Delta u_{i} \langle \nabla u_{i}, \nabla f \rangle + f u_{i} \Delta f \Delta u_{i} \} \\ &+ \int_{\Omega} f u_{i} \Delta f \Delta u_{i} + \int_{\Omega} \{ \Delta f u_{i} + f \Delta u_{i} + 2 \langle \nabla f, \nabla u_{i} \rangle \} \\ &\times \{ 2 \langle \nabla f, \nabla u_{i} \rangle + u_{i} \Delta f \} + \int_{\Omega} -2a f u_{i} \langle \nabla f, \nabla u_{i} \rangle \\ &+ \int_{\Omega} 2a f u_{i} \langle \nabla f, \nabla u_{i} \rangle + \int_{\Omega} au_{i}^{2} \langle \nabla f, \nabla f \rangle \\ &= -\int_{\Omega} 2u_{i} \Delta u_{i} \langle \nabla f, \nabla f \rangle + \int_{\Omega} 4 \langle \nabla f, \nabla u_{i} \rangle^{2} + \int_{\Omega} 4u_{i} \Delta f \langle \nabla f, \nabla u_{i} \rangle \\ &+ \int_{\Omega} (u_{i} \Delta f)^{2} + \int_{\Omega} au_{i}^{2} \langle \nabla f, \nabla f \rangle \\ &\leq -\int_{\Omega} 2u_{i} \Delta u_{i} + \int_{\Omega} 4 |\nabla f|^{2} |\nabla u_{i}|^{2} + \int_{\Omega} 4u_{i} (n-1) \langle \nabla f, \nabla u_{i} \rangle \\ &+ \int_{\Omega} ((n-1)u_{i})^{2} + \int_{\Omega} au_{i}^{2} \\ &\leq 6A_{i} - \frac{2(n-1)^{2}}{\rho_{2}} + \frac{(n-1)^{2} + a}{\rho_{1}}. \end{split}$$
(3.8)

and

$$\int_{\Omega} \frac{1}{\rho} \left(\langle \nabla f, \nabla u_i \rangle + \frac{1}{2} u_i \Delta f \right)^2 \\
= \int_{\Omega} \frac{1}{\rho} \left(\langle \nabla f, \nabla u_i \rangle + \frac{n-1}{2} u_i \right)^2 \\
\leq \frac{1}{\rho_1} \left(\int_{\Omega} \langle \nabla f, \nabla u_i \rangle^2 - \frac{(n-1)^2}{4} \int_{\Omega} u_i^2 \right) \\
\leq \frac{1}{\rho_1} \left(\int_{\Omega} |\nabla f|^2 |\nabla u_i|^2 - \frac{(n-1)^2}{4} \int_{\Omega} u_i^2 \right) \\
\leq \frac{1}{\rho_1} \left(A_i - \frac{(n-1)^2}{4\rho_2} \right),$$
(3.9)

Taking (3.8) and (3.9) into (3.3), we obtain

$$\frac{1}{\rho_2} \sum_{i=1}^k (\lambda_{k+1} - \lambda_i)^2 \leq \sum_{i=1}^k \delta(\lambda_{k+1} - \lambda_i)^2 \left(6A_i - \frac{2(n-1)^2}{\rho_2} + \frac{(n-1)^2 + a}{\rho_1} \right) \\
+ \sum_{i=1}^k \frac{\lambda_{k+1} - \lambda_i}{\delta} \frac{1}{\rho_1} \left(A_i - \frac{(n-1)^2}{4\rho_2} \right).$$
(3.10)

In (3.10), taking

$$\delta = \frac{\left(\frac{1}{\rho_1} \left(A_i - \frac{(n-1)^2}{4\rho_2}\right)\right)^{\frac{1}{2}}}{\left(6A_i - \frac{2(n-1)^2}{\rho_2} + \frac{(n-1)^2 + a}{\rho_1}\right)^{\frac{1}{2}}},\tag{3.11}$$

we can get

$$\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \\
\leq \left\{ \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \left(6\rho_2 A_i - 2(n-1)^2 + \frac{\rho_2((n-1)^2 + a)}{\rho_1} \right) \right\}^{\frac{1}{2}} \\
\times \left\{ \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \frac{1}{\rho_1} \left(4\rho_2 A_i - (n-1)^2 \right) \right\}^{\frac{1}{2}}.$$
(3.12)

This completes the proof of Theorem 1.1.

We introduce the following lemma to complete the proof of Corollary 1.2.

Lemma 3.1. (Reverse Chebyshev inequality [5]). Suppose $\{a_i\}_{i=1}^k$ and $\{b_i\}_{i=1}^k$ are two real sequences with $\{a_i\}$ increasing and $\{b_i\}$ decreasing, then we have

$$\sum_{i=1}^{k} a_i b_i \le \frac{1}{k} \left(\sum_{i=1}^{k} a_i \right) \left(\sum_{i=1}^{k} b_i \right)$$
(3.13)

Proof of Corollary 1.2. Taking $\rho_1 = \rho_2 = 1$ in (3.12), we obtain

$$\left\{\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2\right\}^2 \leq \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \left(6A_i - (n-1)^2 + a\right) \times \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \left(4A_i - (n-1)^2\right). \quad (3.14)$$

Since $\{\lambda_{k+1} - \lambda_i\}_{i=1}^k$ is decreasing and $\{6A_i - (n-1)^2 + a\}_{i=1}^k$ is increasing, it follows from (3.13) that

$$\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \left(6A_i - (n-1)^2 + a \right)$$

$$\leq \frac{1}{k} \left(\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \right) \left(\sum_{j=1}^{k} \left(6A_j - (n-1)^2 + a \right) \right). \quad (3.15)$$

By (3.14) and (3.15), we can get

$$\sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \leq \sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i) \left(4A_i - (n-1)^2 \right) \left(6A_j - (n-1)^2 + a \right).$$

This completes the proof of Corollary 1.1.

ACKNOWLEDGEMENTS. The research work is supported by Key Laboratory of Applied Mathematics of Hubei Province and The research project of Jingchu University of Technology.

References

 M.S. Ashbaugh, Isoperimetric and unversal inequalities for eigenvalues, In: Davies, E.B., Safalov, Y.(eds.) Spectral theory and geometry (Edinburgh, 1998), London Math. Soc. Lecture Notes, Cambridge University Press, Cambridge 1999, pp. 95-139.

- [2] D. Chen and Q.M. Cheng, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Jpn., 60, (2008), 325-339.
- [3] Q.M. Cheng and H.C. Yang, Inequalities for eigenvalues of a clamped plate problem, *Trans. Amer. Math. Soc.*, **262**(3), (2006), 663-675.
- [4] Q.M. Cheng and H.C. Yang, Inequalities for eigenvalues of a clamped plate problem on a hyperbolic space, *Proc. Am. Math. Soc.*, **139**(2), (2011), 461-471.
- [5] G. Hardy, J.E. Littlewood and G. Pólya, *Inequality*, 2nd edn., Cambridge University Press, Cambridge, 1994.
- [6] G.N. Hile and R.Z. Yeh, Inequalities for eigenvalues of the biharmonic operator, *Pacific. J. Math.*, **112**, (1984), 115-133.
- [7] G.N. Hile and M.H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J., 29, (1980), 523-538.
- [8] E.M. Harrel and J. Stubbe, On trace inequalities and the universal eigenvalue estimates for some partial differntial operators, *Trans. Am. Math. Soc.*, **349**, (1997), 1797-1809.
- [9] L.E. Payne, G. Pólya and H.F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys., 35, (1956), 289-298.
- [10] Q. Wang and C. Xia, Inequalities for eigenvalues of a clamped plate problem. Calc. Var. PDE., 40(1-2), (2011), 273-289.
- [11] H.C. Yang, An estimate of the difference between consecutive eigenvalues, preprint *IC/91/60 of ICTP*, Trieste, 1991.