Theoretical Mathematics & Applications, vol.3, no.2, 2013, 15-28
ISSN: 1792-9687 (print), 1792-9709 (online)
Scienpress Ltd, 2013

Estimates eigenvalues of fourth-order
weighted polynomial operator
on a hyperbolic space

Feng Du'! and Yanli Li?

Abstract

In this paper, we consider the eigenvalue problem of fourth-order
weighted polynomial operator on bounded domains in a hyperbolic
space, and get a general inequality. By using this inequality, we ob-
tain some universal inequalities of the eigenvalues. Moreover, by these
universal inequalities, we can get some results for the biharmonic oper-

ator.
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16 Estimates eigenvalues of fourth-order weighted polynomial operator

1 Introduction

Let 2 be a bounded domain in an n-dimensional complete Riemannian
manifold M. Let A be the Laplacian operator acting on functions on M and

consider the following eigenvalue problem for the biharmonic operator

A%y = —)\u, in ,

(1.1)

_ Ou _
u=%5"=0, on 0f),

where v denotes the outward unit normal vector field of 9. It is known that

this eigenvalue problem has a discrete spectrum
O< A <A< <A< ee

where each eigenvalue is repeated with its multiplicity. When M = R™, A =

S a 97 Payne-Pdlya-Weinberger [9] in 1956 proved
8n+2
et = A € = > (1.2)

i=1

In 1984, Hile and Yeh [6] strengthened (1.2), and proved

k )\
8n+2 (ZA> SZ::)\kHl— i (1.3)

In 2006, Cheng-Yang [3] gave the following much stronger inequality

Akﬂ_%i (””) (ZA Ot — Ay ) (1.4)

These inequalities are called universal inequalities because they do not involve

domain dependence.
When M is a hyperbolic H"(—1), Cheng-Yang[4] have proved the following
inequality

k

Z (A1 — Ni)?

1,j=1

< 2 Zk:(AkH — ) ()\ _ @) ()\J _ w) S (15)

i.j=1
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In this paper, we consider the following eigenvalue problem of fourth-order
weighted polynomial operator on a bounded domains €2 in the hyperbolic space
H"(—1) such that

(A? — aA +b)u = Mpu, in

(1.6)
w=" =y, on 99,

where p is a positive and continuous function on 2, and the constants a,b > 0.

Then we obtain.

Theorem 1.1. Let ) be a bounded domain in n-dimensional hyperbolic
H"™(—1) and let )\; be the i*" eigenvalue of the eigenvalue problem (1.6). If
Vo € Q,p1 < p(x) < pa, then we have

k

D> Ak = A)?

i=

= { (A1 = A)? (szAi Co(n 1y 4 22 —p11>2 + a)) }

N

[NIES

X {Z(Ak—f—l —Ai) ! (4p2Ai — (n — 1)2)} : (L.7)

i=1 1

—a+4 /a2+4()\i—%)

2p1
From Theorem 1.1, we can get the following weaker but more explicit in-

where A; =

equality.

Corollary 1.2. Under the assumption of Theorem 1.1, if p =1, we have

k
> (k1 = A)?
ij=1
k
n—1)> n—1)2%—a
< 24”2—:10%—1—1 =) (Ai - %) (Aj - %) - (1.8)
—a+q/a?+4{x—L —aty /a2 +4( N -2
where A; = . 2+p1( p2),Aj _ ;l( ,,2)'
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Remark. By (1.9), when a = b =0, (1.8) becomes (1.5), in fact, problem
(1.1) is the special case of problem (1.6).

2 A key lemma

In this section, we will introduce a lemma which play a key role in the

proofs of the main results of this paper.

Lemma 2.1. Let (M, (,)) be an n-dimensional compact Riemannian man-
ifold with boundary OM (possibly empty). Let \; be the it eigenvalue of the
eigenvalue problem of fourth-order weighted polynomial operator with weight p
such that

(A% — aA +b)u = \pu, in M,
u:g—:ﬁ:o) on aM7

and u; be the orthonormal eigenfunction corresponding to \;, that is,

(A% + aA + b) u; = \ipuy, in M,
u; = 0, on 0f2,
fMPUin:%', Vi, g=12,--

Then for any h € C*(M), we have

(Mest — ) / 2|V
M

. .
Il = | B
— —

< 5(>\k+1—/\i)2/ hu;p;
M
P N1 w AR\ 2
k+1 — 4 7
+§:—/—(Vh,Vui + ) , 2.1
275 - ( )+ =5 (2.1)

where

+A (u;Ah) — 2a(Vh, Vu;) — au; Ah.
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Proof. Let ¢; = hu; — Zk

J=1

k
iy = E / phuiu; = aj;,
j=17M

a;ju; for any integer k > 1, where

then we have
©ilom =0, and/ ppiu; =0V, 5 =1,--- k,
M

from the Rayleigh-Ritz inequality, we get

)\k+1/ P} S/ Pi(A% 4 alA + b)e;.
M M

By directly computation, we have

and

By (2.3) and (2.4), we have
(A% + aA + b)(hu;) = Niphu; + pi,
where

+A (w;Ah) — 2a(Vh, Vu;) — au; Ah.

Because of | o Ppin; = 0, we can get

/ gpi(AQ +aA+b)p;, = / goi(AQ + aA + b)(hu;)
M M

= )\i/ %’phuri‘/ PiDi
M M

19

(2.2)

(2.3)

(2.4)

(2.5)

k
= )\i/ 090224‘/ huipi_zaijbija (2.6)
M M ey
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where b;; = [, piu;.
By (2.2) and (2.6), we have

k
()\k+1_/\i)/ pp; S/ huipi_zaijbijy (2.7)
M M =
Using integration by parts, we have
M M
= —/ hdiV(AujVui)qL/ hdiv(Aw;Vu,)
M M
M M
M M
M M
_ / widiv(hV(Auy)) — / wydiv(hV (Auy))
M M
= /huiAQUj /uz(Vh V(Au,)) — /hu]AZUZ /uj<Vh,V(Aui)>
M M M
= / thAQUJ / hu]A2ul Auj ((Vu;, Vh) —u;Ah) +
M M
/ A (Vg VR — w;Ah) (2.8)
M
which implies that

M M

= —/ huiAQUj—l—/ hujA2ui+/ uiAujAh—/ ujAu;Ah. (2.9)
M M M M

We also have
UJA<Vh, Vuz
(

Jy
= / Auj Vh7 VUJ@
M

+ / u;(Vh, V(Auw,;))

)
- /M Aus(Vh, Vi) + /M wAwAR,  (2.10)

/ujA(uiAh):/ w; Au;Ah, (2.11)
M M
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and

/ w; {=2(Vh, Vus) + uAh}
M

= /Qh(Vuj,VuZ)—/ QhUjAuH—/ hA(u;u;)
M M M

= /huiAuj—/ hu; Au;.
M M

Combining (2.9)-(2.12), we get

bij = /piuj
M

_ / s {2(Vh, V(Aug)) + AhAus + 24 (Vh, Vu))}
+/ u; {A (w;Ah) — 2a(Vh, Vu;) — au;Ah}

= —/ huiAQUj—/ hujAQui+/ ahuiAuj—/ ahu;Au;
M M M M

_ / hus(A2 + al + b)(u;) —/ huy (A + aA + b) ()
= ()\] — )\Z-)aij.

It follows from (2.7) and (2.13) that

k

(A1 — Ai)/ pp; < / huipi = > (A — A)ag,
M M

J=1

Settlng tij = fM U ((Vh, Vuz> + uiQAh), then tij = _tjz' and

AR
/ —2p; ((Vh, Vu;) + Y )
M 2

k
— /M (—=2hu;(Vh, Vu;) — hui Ah) + 2 Z aits;

j=1

k
M j=1

21

(2.12)

(2.13)

(2.14)

(2.15)
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By (2.14), (2.15) and Schwartz inequality, we get

k
(M1 = Ai)? (/ wVA+2) az‘ﬁz‘j)
M

= (Mot1 — )/—2\/_%<\/ﬁ (<Vh Vu;) + UZAh) Xk:twf“a>

< (M —)\1)3/ pe;
M

S et )
< (A — M) (/M huipi — Zk:O‘j - Ai)a?j)

J=1

+@ (/M; (<Vh Vi) + “zAh> Zt ) (2.16)

where ¢ is any positive constant. Summing over i from 1 to k in (2.16) and

noticing a;; = aj;, t;; = —t;;, we have
k k
SOkt = AP [ aVAE =2 37 (et = M) = Aagt
i=1 M ij=1
. SN — A 1 w AR\
< — )2 D Skt A2 , :
< Zé(xkﬂ i) /M huip; + Z 5 S (Vh, Vi) + =
i=1 i=1
k E et — A,
=D 00k = Ay = APl - D T, (2.17)
i,j=1 i,j=1

which gives
O s
M

Aest — Ai
S(Nes1 — Ai)? / huzpﬁzk“—/

=1 M

< % ((Vh, Vu;) +

. <.
Il = |l S
— —

Hence (2.1) is true, this completes the proof of Lemma 2.1. O
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3 Proofs of the main results

In this section, we will give the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Using the upper half-space model, H"(—1) is
given by
R = {(z1, 22, -+ ,2n)|x, > 0}

with the standard metric

Set f =1Inz,, we can get |[Vf| =1, Af =1—n.
Taking h = f in (2.1), and noticing |V f| = 1, we can get

k k
SO = AP [ < 300w = AP [ Fun,
i=1 Q i=1 Q

k

+Z@/gl (<vf, V) + uiQAf) (3.1)

i=1 P

Because of p; < p(x) < p and [, pu? = 1, we have

1
/ ui > — (3.2)
M P2

Taking (3.2) into (3.1), we have

k k

1

—_ Z(Ak—&-l - /\i)2 < 25()‘k+1 - >\i)2/ fuip;
Q

P2 i=1
k

2
+) —Ak“{ & /Q ! <<Vf, V) + “Z'QM ) (3.3)

1=1 P
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Since (A? — aA + b)(u;) = \ipu;, then we have
/uiAzui — a/ w; Au; + b/ up = /ui(AQ — aA + b)(u;)
Q Q Q Q
Q

and by Schwartz inequality, we have

/Q g < ( /Q (Au;)? /Q ug)é < ( /Q %(Aum)é _ ( Q%uiAQUi)é(Bﬁ)

by (3.5) and (3.6), we can get

2
b

Ai = p1 (/ uiAui) — Cl/ wAu; + —,
Q Q P2

this is a quadratic inequality of fQ u; Au;, solving it, we obtain

a—\/a2—{—4()\i—p%) a+\/a2‘|‘4<)\i—p%>

S/uiAui < s
2p1 Q 2p1

setting

Ai = )
2p
which imply that
Q
Since [, u;Au; = — [, [Vu;|*, we have

/ |Vu;|* < A (3.7)
Q
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From |Vf| =1,Af =n—1, (3.6)-(3.7) and by the definition of p;, we can get

and

IN

IN

/Q fuip;

(/jﬂ&ﬂVfﬁNAqu+AfAuf+mSMVﬂVMQ)
Q
+A (w;Af) — 2a(V f, Vu;) — aw; Af}
l/—Q{mAuAVﬁVU)+fAUMVu@Vf>+fWAfAW}
Q

Q Q

X{2(V f,Vu;) + w;Af} + / —2afu{V [, Vu;)
Q
+ /Q 2afui(Vf, Vi) + /Q w2 (VY f)
Q Q
+ (uiAf)Q n / a2 (VY f)
Q

A+ 2V + [ du(n — 1)(Vf, Vu,

2uAu /ZHVﬂ|Vu|—%K;u(n (V. V)

«n—nmf+/au

2
Q KA

2(n — 1)? n—12—|—a

(12 (n-1)

P2 P1

_|_

b\»b\:o\

6A; —

2
(Vf, Vu;) + 1UZAJC)

S—

%
i)
et g
< pil(/ﬂwfﬁlwz—( ;”2/9103)

4py
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Taking (3.8) and (3.9) into (3.3), we obtain

k k
1 e
=3 e =A< Y60 - A (GAZ- C2An—17 (-1 a)
P2 = — P o
k
A1 — A 1 ( (n— 1)2)
T2 o\ AT : 3.10
; 5 p A0y (3.10)
In (3.10), taking
1 (. _ =1)?%))?2
5= <”1 <A‘ Ap2 ) (3.11)
1 .
_ 2(n—1)2 | (n—1)2+a) 2
(64 — 2202 4 (o)
we can get
k
Z(Akﬂ - )\i)2
i=1
< {Zo‘kﬂ -\ <602A¢ —2(n — 1)+ P2 ; ) }
i=1 .

N

k
x {Z(AM -\) ! (4p2A; — (n — 1)2)} . (3.12)

i=1 P1
This completes the proof of Theorem 1.1. n

We introduce the following lemma to complete the proof of Corollary 1.2.

Lemma 3.1. (Reverse Chebyshev inequality [5]). Suppose {a;}f_, and

{b;}¥_, are two real sequences with {a;} increasing and {b;} decreasing, then
we have

Z;aibi < % (2_1: ai) (; bi> (3.13)
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Proof of Corollary 1.2. Taking p; = p» = 1 in (3.12), we obtain

{Z(Ak—&-l - )\i)Q} < Z A1 — A)? (64; — (n —1)* +a)

XY (et — A) (44, — (n—1)%) . (3.14)

=1

Since {\r11 — A\i}5_, is decreasing and {64; — (n — 1)2 + a}r_, is increasing, it
follows from (3.13) that

By (3.14) and (3.15), we can get

k k
D k= A <> (k= A) (44— (n = 1)%) (64, — (n— 1)* +a) .
ij=1 ij=1

This completes the proof of Corollary 1.1. O

ACKNOWLEDGEMENTS. The research work is supported by Key Lab-
oratory of Applied Mathematics of Hubei Province and The research project
of Jingchu University of Technology.

References

[1] M.S. Ashbaugh, Isoperimetric and unversal inequalities for eigenvalues,
In: Davies, E.B., Safalov, Y.(eds.) Spectral theory and geometry (Edin-
burgh, 1998), London Math. Soc. Lecture Notes, Cambridge University
Press, Cambridge 1999, pp. 95-139.



28

2]

3]

[10]

[11]

Estimates eigenvalues of fourth-order weighted polynomial operator

D. Chen and Q.M. Cheng, Extrinsic estimates for eigenvalues of the
Laplace operator, J. Math. Soc. Jpn., 60, (2008), 325-339.

Q.M. Cheng and H.C. Yang, Inequalities for eigenvalues of a clamped
plate problem, Trans. Amer. Math. Soc., 262(3), (2006), 663-675.

Q.M. Cheng and H.C. Yang, Inequalities for eigenvalues of a clamped plate
problem on a hyperbolic space, Proc. Am. Math. Soc., 139(2), (2011),
461-471.

G. Hardy, J.E. Littlewood and G. Pdlya, Inequality, 2nd edn., Cambridge
University Press, Cambridge, 1994.

G.N. Hile and R.Z. Yeh, Inequalities for eigenvalues of the biharmonic
operator, Pacific. J. Math., 112, (1984), 115-133.

G.N. Hile and M.H. Protter, Inequalities for eigenvalues of the Laplacian,
Indiana Univ. Math. J., 29, (1980), 523-538.

E.M. Harrel and J. Stubbe, On trace inequalities and the universal eigen-
value estimates for some partial differntial operators, Trans. Am. Math.
Soc., 349, (1997), 1797-18009.

L.E. Payne, G. Pdlya and H.F. Weinberger, On the ratio of consecutive
eigenvalues, J. Math. Phys., 35, (1956), 289-298.

Q. Wang and C. Xia, Inequalities for eigenvalues of a clamped plate prob-
lem. Cale. Var. PDE., 40(1-2), (2011), 273-289.

H.C. Yang, An estimate of the difference between consecutive eigenvalues,
preprint 1C/91/60 of ICTP, Trieste, 1991.



