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Abstract 

A body undergoing a rotational motion under the influence of an attractive force 

may equally oscillate vertically about its own axis of rotation. The up and down 

vertical oscillation will certainly cause the body to possess another different 

generalized coordinates in addition to the rotating coordinate. We have shown 

analytically and qualitatively in this work, the effect of the vertical oscillating 

motion of a body caused by the vibrational effect of the attractive central force. 

The total energy possess by the body is now the sum of the radial energy and the 

oscillating energy. The results show that the total energy is negative and highly 

attractive. 
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1  Introduction 

A central force is a conservative force [1]. It is a force directed always 

toward or away from a fixed center O , and whose magnitude is a function only of 

the distance from O . In spherical coordinates, with O  as origin, a central force is 

given by rrfF ˆ)(= . Physically, such a force represents an attraction if 

( )0)( rf  and repulsion if ( )0)( rf  , from a fixed point located at the origin 

0=r . 

Examples of attractive central forces are the gravitational force acting on a 

planet due to the sun. Nuclear forces binding electrons to an atom undoubtedly 

have a central character. The force between a proton or an alpha particle and 

another nucleus is a repulsive central force. 

The relevance of the Central - force motion in the macroscopic and 

microscopic frames warrants a detailed study of the theoretical mechanics 

associated with it. So far, researchers have only considered central - force motion, 

as motion only in the translational and rotational plane with coordinates ),( θr , for 

example, see Keplerian orbits [2, 3]. However, the theoretical knowledge 

advanced by these researchers in line with this type of motion is scientifically 

restricted as several possibilities are equally applicable. 

There exist four standard formulations of classical mechanics: (i) Isaac 

Newton’s formulation – Newtonian mechanics (ii) Lagrange’s formulation – 

Lagrange’s mechanics (iii) Hamilton’s formulation – Hamiltonian mechanics (iv) 

De Alambert’s formulation – De Alambertian mechanics. All these formulations 

are utilized in the theory of mechanics where applicable. 

Some of the conditions satisfied by a body undergoing a Central - force 

motion is as follows: (i) the motion of the body can be translational and rotational 

in the elliptical plane with polar coordinates ),( θr , (ii) the body can be rotating 

and revolving about its own axis in the elliptic plane ),( θr , (iii) the body can be 

translating and rotating in the elliptical plane ),( θr , at the same time, oscillating 
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up and down about its own axis (iv) the body can be translating and rotating in the 

elliptic plane ),( θr , at the same time, oscillating up and down above the axis of 

rotation but not below the axis of rotation (v) the combination of any of these 

conditions form another class of a central - force motion.  

In order to make the mechanics of a Central - force motion sufficiently 

meaningful, we have in this work extended the theory which has only been that of 

translational and rotational in the elliptical plane with polar coordinates ),( θr , by 

including spin oscillation. 

 Under this circumstance, we shall be contending with a total of 6 - 

generalized coordinates or degrees of freedom; 2 from the translational and 

rotational motion in the elliptical plane ),( θr , 2 from the orbital spin oscillations

),( αβ and 2 from the tangential spin oscillations ),( φµ . Consequently, these 

parameters form the basis of our classical theory of 6-dimensional motion. 

The number of independent ways in which a mechanical system can move 

without violating any constraints which may be imposed is called the number of 

degrees of freedom of the system. The number of degrees of freedom is the 

number of quantities which must be specified in order to determine the velocities 

of all particles in the system for any motion which does not violate the constraints 

[4].  

There is a single source producing the force that depends only on distance in 

the theory of central-force motion and the force law is symmetric [5]. If this is the 

case, then, there can be no torques present in the system as there would have to be 

a preferred axis about which the torques acts.  

In this work, we are solving the problem of oscillating central force motion 

in a resistive non-symmetric system. That is, the upward displacement is not equal 

to the downward displacement in the tangential spin oscillating phase. 

Consequently, the radii distances from the central point are not equal. This 

however, causes torques thereby making the system under study non-spherically 

symmetric. 

 
 



102                           Lagrange’s equations of motion for oscillating central-force field  
 

Meanwhile, I hereby request the permission of the reader to excuse the lack 

of intensive references to the current literature. I don’t know of other current 

authors who have studied these questions before now. I believe this is the first 

time this work is under investigation. 

This paper is outlined as follows. Section 1, illustrates the basic concept of 

the work under study.  The mathematical theory is presented in section 2. While in 

section 3, we present the analytical discussion of the results obtained. The 

conclusion of this work is shown in section 4 and this is immediately followed by 

appendix and list of references. 
 

 

2  Mathematical theory 

2.1 Evaluation of the velocity and acceleration 

We have elaborately shown in (A. 6) in the appendix that the position vector 

r  of a body whose motion is translational and rotational in a plane polar orbit as 

well as oscillating about a given equilibrium position in a central-force motion is 

given by the equation 

         ),,,,(ˆˆ φαµβθrrrrr ==


                                                                        (2.1) 

        








+++++==

td
d

d
rd

dt
d

d
rd

dt
d

d
rd

dt
d

d
rd

dt
d

d
rdrr

td
rd

dt
rdv φ

φ
α

α
µ

µ
β

β
θ

θ
ˆˆˆˆˆˆ



          (2.2)          

       φφααµµββθθ ˆˆˆˆˆˆ 





 rrrrrrrv +++++=                                               (2.3) 



A.E. Edison, E.O. Agbalagba, Johnny A. Francis and Nelson Maxwell                          103 

2

2

2 2

2 2

ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆˆ

d r d v d r d dr d d r d dr d d r da r r r
dt d t d dt d dt d dt d dt d d t

d dr r r r r r r
d d

d dr r r r r
d d

θ β µ α ϕ
θ β µ α ϕ

θ βθ θ θ θ θ β β β β β µ µ
θ β

µ αµ µ µ αα αα α
µ α

 
= = = + + + + + 

 
   

+ + + + + + +      
   

   + + + + +  
 



 

     

   

    

2 ˆˆ ˆ dr r r
d
ϕϕϕ ϕϕ ϕ
ϕ

 
+ + +  
  

  

   (2.4)                               

   

( ) ( ) ( )
( )
( ) ( )

2 2

2 2

2 2 2

ˆ ˆˆ 2 2 tan

ˆ2 tan 2 cot

ˆ ˆ2 tan 2 tan 2 cot

a r r r r r r r r

r r r r

r r r r r r r

θ θ θ θ β β β β β

µ µ µ µ µ µ µ

α α α α α ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= − + + + + −

+ + − −

+ + − + + − −

     

  

    

       

        (2.5)  

while the symbols appearing in (2.1) - (2.5) have been clearly defined in the 

appendix. However, β  is the upper radial orbital oscillating angle and α  is the 

lower radial orbital oscillating angle. Note that both of them are projections of the 

tangential oscillating plane onto the orbital elliptical plane.  

However, let us disengage the acceleration equation in (2.5) with the view 

that the 5th and the 8th terms have the elements of angular momentum and the 

orbital oscillating phases. Thus 
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         (2.6) 

Equation (2.6) is now the new acceleration equation which governs the 

motion of a body undergoing a central-force motion when the effect of vertical 

oscillation is added. 
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2.2 Evaluation of the central- force field 

In classical mechanics, a central force is a force whose magnitude only 

depends on the distance r , of the body from the origin and is directed along the 

line joining them [5]. Thus, from the analytical geometry of the central-force 

motion shown in Figure A. 1, in the appendix, permits us to write in terms of 

vector algebra that  

                    amrfrfrrfrrfrF =++== αβαβ ˆ)(ˆ)(ˆ)()ˆ,ˆ;ˆ()()(           (2.7) 

where F is a vector valued force function, f is a scalar valued force function, r is 

the position vector, r  is its length, and rrr /ˆ = , is the corresponding unit 

vector. 

We can convert (2.6) to force by simply multiplying it by the mass m of the 

body and equate the resulting expression to (2.7). Note that we are utilizing the 

orbital oscillating phase in (2.6), which is acting radially in the directions of β̂

andα̂  in our calculation. Once this is done, we obtain the following sets of 

canonical equations of motion.  

                       ( ) ( ){ }ααββθ tantan)( 222




 rrrrmrf +−−=                             (2.8) 

                        ( ) 02 =+ θθ 



 rrm                                                                           (2.9) 

                        ( ) 02 =+ µµ  rrm                                                                        (2.10)                                                                       

                        ( ) 02 =+ ββ 



 rrm                                                                        (2.11) 

                         ( ) 02 =+ αα  rrm                                                                       (2.12) 

                         ( ) 02 =+ φφ 



 rrm                                                                        (2.13) 

The sets of canonical equation (2.9)-(2.13) determines the angular 

momentum which are constants of the motion acting in the directions of increasing 

coordinate, µβθ ,, ,α  and φ . Equation (2.8) is the required new central-force field 

which we have developed in this study. It governs the motion of a body under a 

central-force when the effect of vertical spin oscillation is added.  
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2.3 Evaluation of the oscillating energy oscE  in the tangential 

phase  

There is no force acting in the direction of the orbital angular acceleration, 

the lower and upper tangential oscillating phase. Since the force acting is a central 

force, it is always in the direction of the radial acceleration. The orbital angular 

acceleration, the lower and upper tangential oscillating phase are perpendicular to 

the line OP and it is in the increasing order ofθ , µ andφ . As a result, by 

converting the tangential oscillating phase of the acceleration to force and equate 

the result to zero, we get 

                        ( ) 0cot2tan2 22 =−−+ µµµµµµ  rrrrm                                 (2.14) 

                        ( ) 0cot2tan2 22 =−−+ φφφφφφ 



 rrrrm                                  (2.15) 

Because of the similarity in the two equations, we shall only solve (2.14) and 

assume the same result for the other one. Hence from (2.14) 

            
( ) 0cot2tan2 22222 =−−+ µµµµµµ  rrrrr

r
m

         
                        (2.16) 

            
( ) ( ) 0cot2tan 22222 =+− ∫ µµµµµ  rr

dt
dr

dt
d ;      ( )0≠rm              (2.17) 

            
( ) ( ){ } 0cot2tan 22222 =+− ∫ µµµµµ  rrr

dt
d                                     (2.18) 

           ( ) IErrr =+− ∫ µµµµµ cot2tan 22222
                                              (2.19) 

and with a similar equation for (2.15) in frame II  as  

                      
( ) IIErrr =+− ∫ φφφφφ cot2tan 22222



            
                        (2.20) 

                                             IIIosc EEE +=                                                     (2.21) 

 
( ) ( ) ( )∫ ∫ +−+−+= φφµµφφµµφµ cotcot2tantan 2222222











 rrrEosc       
    (2.22) 

The oscillating energy is a function of the radius vector and it increases 

negatively as the vertical oscillating angles are increased. Hence, the oscillating 
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energy posses by the body in terms of µ  and φ  in the oscillating phase is given 

by (2.22). This equation determines how energy is conveyed up and down in the 

vertical oscillating phase.  

 

 

2.4  Relationship between the radial velocity and the tangential  

       oscillating angles 

To determine the tangential oscillating angles we consider (2.14) and 

assume possibly that for 0≠m                                            

                  ( ) 0cot2tan2 22 =−−+ µµµµµµ  rrrr                                          (2.23) 
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                            (2.24) 
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                          (2.25) 

The discriminate of (2.25) is zero provided  

                      ( )µµµ cot2tan22 +−=  rr                                                         (2.26) 

                       ( )µµµ cot2tan +=  rr                                                       (2.27) 

Similarly, by following the same algebraic procedure for (2.15), we obtain  

                        
( )

( )φφ

φφφ
φ

cot2tan2

cot2tan122 2

2

+









++±

=
r

r
rrr 





                                  (2.28) 

and 

                         ( )φφφ cot2tan += 

 rr                                                       (2.29) 

Thus the radial velocity is directly proportional to the radius vector and 

directly proportional to the square root of the vertical oscillating angles. The radial 

velocity decreases as the vertical spin oscillating angles are increased. 
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2.5 Evaluation of the Lagrange’s equations of motion 

From equation (2.3) we realize that the kinetic energy T of the body can be 

written as 

                ( )222222222222

2
1

2
1 φαµβθ 





 rrrrrrmvmT +++++==
           

(2.30) 
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                   ( )φαµβθ ,,,,,rqk =    ;    ( )φαµβθ 





 ,,,,,rqk =                  (2.37) 

where kq  are the generalized coordinates, kq are the associated velocity 

counterparts, kqL ∂∂ /  generalized velocity, kqL ∂∂ /  generalized momentum. 

Remember that the only requirement for the generalized coordinates is that they 

span the space of the motion and be linearly independent.  

Since the force is radially symmetric, let us evaluate (2.36) first with respect 

to the generalized coordinate kq = r .  

Then the Lagrange’s equations of motion is
                                                                  

                      
( ) ( ) 0)(22222 =+++++−

rd
rdVrmrm

td
d φαµβθ 





                 (2.38) 
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( ) ( ) 0)(22222 =−++++− rfrmrm

td
d φαµβθ 







 
                    (2.39) 

Also from (2.36), since L   and )(rV are not functions of the generalized 

coordinates kq , then we have  

                                             
0)(

==
∂
∂

kk dq
rdV

q
T

         
                                         (2.40) 

and as a result (2.36) becomes, 

                                               
0=








∂
∂

kq
T

td
d

              
                                      (2.41) 

Hence, after some straightforward algebra we obtain the following generalized 

momenta. 

                               ( ) 02 =θrm
dt
d    ;  ( ) lmr =θ2    ;    2mr

l
=θ                       (2.42)                                 

                              
( ) 02 =βrm

dt
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l
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( ) 02 =µrm

dt
d    ;   ( ) lrm =µ2     ;    2rm

l
=µ                   (2.44) 

                               
( ) 02 =αrm

dt
d     ;   ( ) lrm =α2

     ;    2rm
l

=α                 (2.45) 

                              
( ) 02 =φrm

dt
d     ;   ( ) lrm =φ2       ;    2rm

l
=φ

 
                (2.46) 

The canonical set of equations given by (2.42) – (2.46) are referred to as the 

Lagrange’s equations of motion for the body of mass m . Suppose we now replace 

(2.42) – (2.46) into (2.39) so that we realize 

            
( ) 0)(42

2
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2
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3
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lrm
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d
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3

2

=−− rrfr
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                                    (2.50) 

                              
( ) dtdrrfdr
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3

2
2 =−−
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
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




 ∫ )(

2
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2
1

2

2
2
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                     (2.53) 

Equation (2.53) gives the radial energy posses by the body as it oscillates 

tangentially and translates rotationally round the central point. The equation 

provides the energy of the body in terms of the translational radial velocity, the 

angular momentum and the radial force. The reader is directed to (A.22) in the 

appendix, where the factor of half which appears in (2.52) is discussed. However, 

for a conservative field 

                        ∫−= drrfrV )()(
              

                                                       (2.54) 

                        








−−= 2

2

2
5)(2

rm
lrVE

m
r

           
                                        (2.55) 

from which 

                      






 −−= 2

2
2

2
)(

5
2 rmrVEmrl                                                      (2.56) 

It is evident from (2.55) that the translational radial velocity of the body 

depends only upon the radius vector. This of course defines the third property of 

central force motion. The translational radial velocity is determined by the energy 

as a constant of the motion, the effective potential and the angular momentum. 

Therefore, the total energy tE  possess by the body is now the sum of the 

radial energy rE and the oscillating energy oscE . 
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
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








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3  Discussion of results 

The oscillating energy oscE is made up of three independent generalized 

coordinates and two major parts. The first part is the vertical spin oscillating 

velocities which is perpendicular to the direction of the radius vector. The second 

part in (2.22) is the unbounded oscillating phase. The unrestricted nature of the 

integrals of oscE , means that the oscillating phase has several possibilities of 

oscillation. However, the second term of oscE  increases as the vertical spin 

oscillating angles is increased. Whereas, the third term decreases as the vertical 

spin oscillating angles is increased. 

The total energy tE  comprises of the radial and the oscillating part. The 

angular momentum part of tE  has a higher appreciable value compared to the 

usual equation of central-force motion and a negative effective potential. The last 

integrand of tE  becomes negatively small and negligible as the vertical spin 

oscillating angles is increased. 

 

 

4  Conclusion 

In general, we have in this study solved the problem of the motion of a body 

in a plane polar coordinate system that is subject to a central attractive force which 

is known and, in addition, a drag oscillating force which acts tangentially. The 

oscillating energy oscE which determines how energy is conveyed up and down in 
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the oscillating phase is relatively determined by the vertical spin oscillating 

angles.  

The new force law now comprises of the radial and the tangential oscillating 

parts which reduces the strength of the attractive central force field. The 

knowledge of this type of central force motion which we have investigated in this 

work can be extended from plane polar coordinate system to that of spherical and 

cylindrical polar coordinate systems.   

 

 

Appendix 

Let us consider the rotational motion of a body of mass m  about a fixed 

origin say, O , in an elliptic polar coordinate ),( θr  system. Suppose the body is 

also oscillating up and down about its equilibrium position as it translates 

rotationally round the fixed origin. The body thus possesses translational and 

rotational elliptical motion with polar coordinates ),( θr  and tangential spin 

oscillating motion described by the vertical displacement CBCDC →→→→

and repeatedly in the y -direction. The geometry of the analytical requirements is 

shown in Figure A. 1.  

The reader should take note that the oscillation of the body is not entirely 

out of the elliptical orbit of rotation. Rather the displacement D and B  above and 

below C  is very small. The oscillation is still within the limits of the axis of 

rotationC . We have only decided to stretch D and B  above and below C

considerably enough in order to reveal the geometrical concept required for the 

analytical calculation.  

There are six possible degrees of freedom or generalized coordinates 

exhibited by the motion body under this circumstance: (i) translational and 

rotational in the elliptical plane ),( θr , (ii) the plane of upward oscillations ),( µβ

and (iii) the plane of downward oscillations ),( φα . 
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We shall compute separately the tangential spin oscillating motions in both 

oscillating frames and eventually combine the result with the orbital elliptical 

plane motion. In this study, we assume that the angular displacements in the 

tangential spin oscillating frames are not equal and so the system under study is 

not radially symmetric. Consequently, there is the existence of torque due to the 

non uniformity of the radii distances. 

Accordingly, we can now develop relationships between the various areas 

indicated on Figure A. 1, with the goal to find the formula for the area swept out 

by the elliptical plane polar motion, and the result obtained from this is then added 

to the tangential oscillating triangle sections COD ˆ and BOC ˆ respectively. 

From the figure, P  and Q are very small upward and downward 

displacements from the equilibrium axis of rotation C , that is, regions in the upper 

and lower triangular swept segments of the upper and lower elliptical plane. Our 

first task would be to connect all these oscillating spin angular degrees of freedom 

into an expression in terms of P  and Q .  

For clarity of purpose, let us define the various symbols which we may 

encounter in our calculations : (i) the elliptical radius  r  (ii) the plane of upward 

oscillations ),( µβ , that is subtended from the upper elliptical plane (iii) the plane 

of downward oscillations ),( φα , that is subtended from the bottom or the lower 

part of the elliptical plane (iv) the elliptical orbital angle θ  (vi) the  upper 

tangential oscillating spin angle µ  (v) the  lower tangential oscillating spin angle 

φ  (vi) the upper and lower orbital spin oscillating angles β  and α   
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Figure A.1: Represents the elliptical and oscillating motion of a body in a central-

force field. The body is oscillating up and down about the axis of rotationC . 

Where  COD ˆ∆  (frame I) and BOC ˆ∆ (frame II) are the upper and lower projections 

onto the plane of the ellipse, line DC  ( P ) and CB  (Q ) are very small 

displacements from the axis C , we have only stretched them to make the 

geometry of the figure clear enough for the calculation. However, β  is the upper 

orbital oscillating angle and α  is the lower orbital oscillating angle. Note that 

both of them are projections of the tangential oscillating plane onto the orbital 

plane of the ellipse. 

 

In frame I : we obtain from COD ˆ∆  

                     µecrr cos1 =    ;   µββ ecrrP cossinsin1 ==                             (A.1) 

In frame II : we obtain from BOC ˆ∆  

                      φecrr cos2 =     ;     φαα ecrrQ cossinsin2 ==                         (A.2) 

In the orbital plane of rotational and translational motion, the position vector r of 

the body is given by 

                                                   irixr θcos==


                                               (A.3) 

However, the combination of the rotational and translational motion, with the 

vertical spin oscillating frames (acting in the y -direction), will yield   
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  ( )cos sin cos sin cosr x i y j x i Pj Q j r i ec j ec jθ β µ α ϕ↑ ↓ ↑ ↓= + = + + = + +
   (A.4) 

                 =
∂
∂

=
r
rr


ˆ  ( )↓↑ ++ jecjeci φαµβθ cossincossincos                      (A.5) 

                  ),,,,(ˆˆ φαµβθrrrrr ==


                                                              (A.6) 

                  ir θ
θ

θ sin
ˆˆ −=

∂
∂

=     ;    ri ˆcos
ˆ

−=−=
∂
∂ θ
θ
θ                                    (A.7)

                        
                                               

                 ↑=
∂
∂

= jecr µβ
β

β coscos
ˆˆ

 
;  

                 ( )↑↑ −=−=
∂
∂ jecjec µβ

β
βµβ

β
β cossin

cos
coscossin

ˆ
                          (A.8) 

                 
( )↑−=

∂
∂ jecµβ

β
β

β
β coscos

cos
sinˆ

 ββ ˆtan−=                                      (A.9) 

           
↑−=

∂
∂

= jecr µµβ
µ

µ 2coscossin
ˆˆ

     
                                                   (A.10) 

           
↑=

∂
∂ jec µµβ
µ
µ 2cossinsin
ˆ ↑+ jec µµµβ 2coscotcossin2                  (A.11) 

           
( )↑=

∂
∂ jec µµβ

µ
µ

µ
µ 2cossinsin

cos
cosˆ ( )↑+ jec µµβµ 2coscossincot2    (A.12) 

           
( )↑=

∂
∂ jec µµβ

µ
µ

µ
µ 2coscossin

cos
sinˆ ( )↑+ jec µµβµ 2coscossincot2   (A.13) 

          
µµµµ

µ
µ ˆcot2ˆtan
ˆ

−−=
∂
∂

              
                                                        (A.14) 

           
↓=

∂
∂

= jecr φα
α

α coscos
ˆˆ  ;  

           ( )↓↓ −=−=
∂
∂ jecjec φα

α
αφα

α
α cossin

cos
coscossin

ˆ                               (A.15) 

          ( )↓−=
∂
∂ jecφα

α
α

α
α coscos

cos
sinˆ  αα ˆtan−=                                           (A.16) 

           
↓−=

∂
∂

= jecr φφα
φ

φ 2coscossin
ˆˆ                                                           (A.17) 
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          ↓=
∂
∂ jec φφα
φ
φ 2cossinsin
ˆ

↓+ jec φφφα 2coscotcossin2                     (A.18) 

         
( )↓=

∂
∂ jec φφα

φ
φ

φ
φ 2cossinsin

cos
cosˆ

                                                          (A.19) 

        
( )↓=

∂
∂ jec φφα

φ
φ

φ
φ 2coscossin

cos
sinˆ ( )↓+ jec φφαφ 2coscossincot2         (A.20) 

                              
φφφφ

φ
φ ˆcot2ˆtan
ˆ

−−=
∂
∂                                                     (A.21) 

We also know from the rule of differentiation that 

                         
( ) ( )2

2
2

. 2

12
2

d d dr dr drm r m r r m r r m r
dt dt dt dt dt

dr dm mr
dt dt

   = = + =   
   

   = =   
  

               (A.22) 

Hence, in order to remove the factor of 2 which appears in (A.22), usually a factor 

of half is introduced.  
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