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Abstract 

An analysis was carried out to study the motion of an incompressible viscoelastic 

dusty fluid through a horizontal circular pipe placed under a transverse magnetic 

field such that the pressure gradient is varying in magnitude. The partial 

differential equations governing the flow are converted into ordinary differential 

equations which are then solved numerically by finite element method. The effects 

of the viscoelastic and magnetic field parameter on the velocity profile of both the 

fluid and particles are thoroughly examined. 
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1  Introduction  

The flow of a dusty viscoeleastic fluid through the circular pipes has many 

applications in various fields of science and engineering. For example, in the field 

of bio-engineering, this investigation is of particular interest since blood in veins 

is forced by a periodic pressure gradient. Some problems that involve the dynamic 

response of the fluid to the frequency of the periodic pressure gradient are 

normally occurring in chemical and petroleum industries. Fluids such as honey, oil, 

blood and some polymer solutions exhibit both viscous and elastic properties. 

These types of fluid are often refers to as viscoelastic fluids. It is very difficult to 

choose models that will exhibit all the properties of viscolelastic fluids. There 

exist many viscoelastic models and constitution equations among those the 

Maxwell Model which consists of a series arrangement of a purely viscous 

element assigned as dashpot and a perfectly elastic body is assigned as a spring. 

However, the Maxwell Model is a linear viscoelastic rheological model and it is 

proper only under the condition that non-linear effects are negligible, such as very 

low strain and stress.  

Andrienko et. Al [1] studied the unidirectional oscillating flow of 

viscoelastic fluid with the Maxwell Model in a tube; they found that the 

instantaneous velocities drastically increase at certain frequencies of the 

oscillating pressure gradient and called this phenomenon as the resonance-like 

behaviour of viscoeleastic fluids. Attia and Ewis [2] investigate the unsteady 

MHD couette flow of a viscoelastic fluid under exponential decaying pressure 

gradient. They found that the viscoeleastic parameter has a marked effect on the 

velocity and their steady state times for all values of magnetic field and the suction 

velocity. Mohyuddin [3] discussed the oscillating poisueille flow of a linear 

viscoelastic fluid for small radii of the pipe. Approximate resonance frequency 

and possible velocity enhancement are obtained and observed graphically. 

Tan et al [4] studied unsteady flow of a viscoeleastic fluid with the 

traditional Maxwell model between two infinite parallel plates. The oscillating 



Oluwafemi Waheed Lawal and Chris Oladapo Loyinmi  131  

flow of a viscoelastic fluid in a pipe with the traditional Maxwell model was 

studied by Yin and Zhu [5]. They discussed amplitudes of resonance peaks which 

decay rapidly with frequency. 

The development in the study of dusty viscoelastic fluid flow in a circular 

channel has been continuously going on because of its unavoidable applications in 

various fields. Therefore in this paper we would try to evolve a mathematical 

model for a dusty viscoelastic fluid flow in a circular channel. As the magnetic 

field (both natural and artificial) plays an important role in the motion of fluids, 

we have considered flows in horizontal circular channel subjected to applied 

magnetic field so that the results obtained may be applied in different branches of 

science and technology, industries and problems of medical sciences. 

 

 

2 Formulation of the Problem 

Consider the flow of a dusty viscoelastic incompressible fluid through a 

circular channel placed under transverse applied magnetic field taking along the 

axis of the channel. 

If we considered that the flow is to be fully developed and symmetric and 

the velocity of fluid and particle phase are function of radial distance r and time t 

only. The governing equation of motion of a dusty viscoelastic incompressible 

fluid are given by 
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with initial and boundary condition 
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where 

),( tru : Axial velocity of fluid 

),( tru p : Axial velocity of dust particles 

)(tP : Pressure 

K : Stokes resistance coefficient 

m : Mass of each particle 

N : Number density of particles assumed to be constant 

ρ : Density of fluid 

σ : Electrical Conductivity 

0B : Magnetic Inductor 

),(, trzrττ = is the shear stress. 

We assume a linear viscoelastic fluid represented by the Maxwell Model. 

This model is obtained by thought of the Maxwell element which is subjected to a 

sudden elongation and the force is then calculated as a function of time. As seen 

from the mechanical assembly in Figure 1, the Maxwell element has no unique 

reference length and it will determine indefinitely when a force (per unit area) 

τ is applied. This behavour is analogous to the liquid-like behaviour of a melt of 

an uncross-linked polymeric material over its glass transition. 

Assume that the stress τ  (the force per unit area) in the spring 1γG  and 

the stress 2τ  in the dashpot is 
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Hence, we have a relationship between τ 1 and τ 2 where 
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21 τττ ==                (4) 

Since these are connected is series. In the system where the total strain of the 

system is written as 
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Figure 1: Maxwell element 
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By differentiating equation (5) with represent to time t , we have  
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So that with equation (4), we are able to write an equation relating the stress and 

strain rate 
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Equation (7) can be further reduced as an expression for τ  where 
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∂
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G
µλ =  is called the relaxation time and G  represents young modulus. 
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Equation (8) is the Maxwell model of a viscoelastic fluid such is a first order 

ordinary differential equation of τ . Since τ  is only a function of time, equation 

(8) can be solved for τ  to give 
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and using γ  
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Equation (8) is the differential equation for Maxwell Model and equation (10) is 

the integral equation for the Maxwell model, both of which are equivalent. 

By apply integration by part of equation (10) it can be reduced to 
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In this study, we assume a linear viscoelastic fluid represented by the Maxwell 

Model from equation (11), setting yx,ττ = as follows 
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Substitute equation (12) into (1) gives 
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Since the flow is purely oscillatory, where 1λ  is a constant and w  is the 

frequency of oscillations. 

Due to the selected form of pressure gradient we assume the solution of the 

form 
iwtrftru )(),( =                  (15) 
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Introducing the following dimensionless variable 
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Substituting (17) into equation (13) and (2), then remove the caps, gives 
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for fluid phase and 
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for dust particle phase, where 
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Substituting equation (15) and (16) into (18) and (19) to obtain 
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where 
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The initial and boundary condition becomes 
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Weak formulation 

In developing the weak formulation for equation (20), we multiply with 

weight function )(rv  and integrate over the volume of the cylindrical channel of 

the unit element. This gives 
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where ),( ba rr  is the domain of a typical element along the radial direction 









∂
∂

−=
r
frAQ e

11 2π   at arr = , 







∂
∂

−=
r
frAQ e

11 2π  at brr = .     (24) 

 

Finite Element Model 

The finite element model is obtained by substituting the approximation 
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e
iψ   are the interpolation functions expressed in term of the radial coordinate r  

and the linear interpolation function used in the studies are of the form 
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Finite Element Computation 

We consider a mean of four linear elements to solve equation (26) and 

obtained the following results 
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3  Results and Discussion 

The aim of this study is to investigate the effect of magnetic field parameter 

aH (magnetic Hartmann number) and viscoelastic parameter ( Q ) at different 
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constant values on the velocity of both the fluid and particles. This effect will be 

examined at different values of radius r  in the medium (cylindrical channel). 

Figures 2-5 show the graphical representation of the velocity profile ( f ) with 

radius r  for various values of magnetic and viscoelastic parameter. 

It is noticed that at low value of magnetic field and viscoelastic parameter, 

the velocity of both the fluid and particles is not affected. But as the magnetic field 

and viscoelastic parameter increases, the horizontal velocity of fluid and particle 

decrease rapidly. When the radius is one (i.e at boundary of the channel), the 

velocity is zero at each value of magnetic field and viscoelastic parameter. This 

shows that increasing in magnetic field decrease the velocity of fluid and particle 

because the dust particle experiences an additional force while moving in a 

magnetic field 

 

 

 

 

 

 

 

 

 

 

   
 
 
Figure 2:  Velocity profile of fluid for different values of aH ,   
          when ,1.0,1 == ωλ 100, 1, 1,eR R Q= = =  and 1pR =   
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    Figure 3: Velocity profile of particle for different values of aH , 
            when ,1.0,1 == ωλ 100, 1, 1,eR R Q= = =  and 1pR =   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 4: Velocity profile of fluid for different values of Q ,  
            when 1.0,1 == ωλ , 100, 1, 5,e aR R H= = =  and 1pR =  
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    Figure 5: Velocity profile of fluid for different values of Q ,  
            when 1.0,1 == ωλ , 100, 1, 5,e aR R H= = =  and 1pR =  

 

 

4  Conclusion  

The flow of dusty viscoelastic fluid in a circular channel under the influence 

of an applied uniform magnetic field has been studied. The effect of magnetic 

field and viscoelastic parameter on both the fluid and particles has been 

investigated. It is interest to find that increase in the value of magnetic field and 

viscoelastic parameter reduce the horizontal velocity of the fluid and particles and 

thereby reducing the boundary layer thickness and hence induces an increase in 

the absolute value of the velocity gradient at the surface. 

This shows that the thickness of the boundary layer is much larger for higher 

values of viscoelastic parameter than that of magnetic field parameter. This is 

because the rate of transport is considerably reduced with increase in magnetic 

field parameter which shows clearly that the transverse magnetic field opposes the 

transport phenomena.  
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