Journal of Applied Mathematics & Bioinformatics, vol.8, no.2, 2018, 17-28
ISSN: 1792-6602 (print), 1792-6939 (online)
Scienpress Ltd, 2018

Fast control of a gun-turret
using shortcuts to adiabaticity

Dionisis Stefanatos!

Abstract

In this article we use the inverse engineering method of shortcuts to
adiabaticity, extensively used for the control of various quantum sys-
tems, to design fast and smooth controls (torques) which can drive a
gun-turret system to a desired final orientation. The obtained con-
trols are less sensitive to small errors in the initial orientation than the
minimum-time controls and easier to implement since they do not con-
tain discontinuities, while they have a moderately longer duration. The
presented methodology is not restricted to the specific example under
consideration, but it can also be used for the control of other mechanical

systems.
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1 Introduction

The method of shortcuts to adiabaticity [?] provides an efficient way to
design fast but effectively adiabatic transitions for classical and quantum sys-
tems [?]. The main idea behind the method is that the system of interest
does not follow the adiabatic path at each moment, thus the evolution can be
faster, but the final state is the same with that obtained by a slow adiabatic
process. Shortcuts to adiabaticity is actually an inverse engineering method,
where the path of the system state variables is prescribed first, usually with
polynomial interpolation between the initial and the desired final state, and it

is subsequently used to derive the controls which can implement this transition.

This general and very useful method has found a wide spectrum of ap-
plications. These include the cooling of trapped atoms [?] and Bose-Einstein
condensates [?], manipulation of two- and three-level quantum systems [7],
quantum computation [?], fast cooling of mechanical resonators [?], design of
optical [?] and Glauber-Fock photonic lattices [?], fast transport of trapped
ions [?], efficient scaling of quantum heat engines [?], design of optical waveg-
uides [?], cutting a spin chain [?], and even the fast relaxation towards equi-

librium of a brownian particle [?], to name a few.

In the present article we use this inverse engineering approach to find
smooth controls which can quickly drive a gun-turret system from some initial
to a desired final orientation, under kinematic constraints stemming from a
popular real world system, the Oto Melara 76 mm gun [?], which is currently
installed in most ships of the Greek navy. For comparison reasons, we also
find the minimum-time optimal control strategy under the same constraints.
The torques obtained with the inverse engineering method are smooth, have
smaller amplitude and are less sensitive to errors in the initial conditions com-
pared to the discontinuous minimum-time controls. The price paid for these
advantageous characteristics is, as expected, a moderately longer duration.
The method is not restricted to the particular example studied here but is

expected to find applications in the area of control of mechanical systems.
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2 The gun-turret as a mechanical system with

two degrees of freedom

In a simplified description, we can consider the gun-turret as a mechanical
system with two degrees of freedom which describe the orientation of the gun,

the azimuth angle ¢ and the elevation angle 6, see Fig. 1.

Az

X

Figure 1: The orientation of the gun is determined by the azimuth angle ¢ and

elevation angle 6

Let I; denote the turret moment of inertia around z-axis, I, = %ml?’ the
gun moment of inertia around a horizontal axis perpendicular to the elevation
plane, m the mass and [ the length of the gun. The Lagrangian of the system

1S

1., 1. . 1
L= 51@2 + 512(92 + cos? 0¢*) — 5mglsin, (1)

where the first term expresses the kinetic energy of the turret, the second term
the kinetic energy of the gun due to rotations on the #-plane and around the
z-axis, while the last one corresponds to the potential energy of the gun. Note
that the gun is treated as a uniform rod.

Using the Euler-Lagrange equations

d (OL\ OL d (OL\ 0L
My=—(Z) -2, M== (=) -=
v dt<a¢> g’ dt(ag) 90’
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we obtain the following expressions for the torque My around the vertical axis
and the torque My around the horizontal axis perpendicular to the elevation

plane at each moment

My = DL[(r+ cos?6)d — sin (20)¢8],
.1 . 1
My = L0+ 512 sin (26)¢? + §mgl cos 0,

where I
1

= — 2
- @)

is the ratio of the moments of inertia. If we normalize the torques with mgl/2,

r

the maximum torque of the gun weight, M} = %, My = %, and the time
with w = Z”T’;l = \/%a the angular frequency of the gun as a physical pen-

dulum, ¢ = wt, but for simplicity we use the previous symbols My, My, t for
My, My, t', we obtain the equations

My = (r+cos®8)¢ — sin (260)¢9, (3)
My = 0+ % sin (26)¢? + cos 6. (4)

3 Design of fast and smooth controls using

shortcuts to adiabaticity

According to the inverse engineering method of shortcuts to adiabaticity,
the paths of the state variables 0(t), ¢(t) connecting the initial states

$(0) = ¢o, 0(0) =0 (5)
to the desired final states at t =71
O(T) = ¢r, O(T)="0r (6)

are prescribed first, and then system equations (3), (4) are used to find the
corresponding control torques My(t), My(t). Note that the desired final ori-

entation (6) can be provided for example from a dedicated system estimating
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the location of the target. In order to obtain smooth states and controls,
the following boundary conditions are imposed on the first and second time

derivatives of the angles

0(0) = (T) = ¢(0) = $(T) =0, (7)
0(0) = O(T) = ¢(0) = ¢(T) = 0. (8)
If we fix the final time T to a desired short value and define the normalized
time ;
§= 0<s<1,

then the following polynomial satisfies the boundary conditions [?] for both
angles ¢ and f, so we use the symbol 1 for both, while ¢, 17 denote the

initial and final values of the corresponding angle (6 or ¢)

Y(s) = b+ (Yr —1bp)(10s* — 155" + 65°), (10)
b= DWW hlag g (1)
. 2 —
b = aclltzf _ 60(1?:;2 7/)0)8(1 — 5)(1—2s), (12)

where we have also calculated the derivatives of ) with respect to time ¢, since
we will need then in finding the torques from system equations.

In theory, the duration 7' can be made arbitrarily small. In practise, there
are always realistic constraints which limit this value to a finite time. For
example, from the technical specifications of the Oto Melara 76 mm gun we

find the following kinematic constraints for the angular velocities

. 60° . 35°
0] < 6] < (13)
s s
and the angular accelerations
. e T2°
31 16 < 5 (14)

From the expressions (11), (12) for the time derivatives of the angle path (10)
we can easily obtain the following maximum values for the angular velocities
and accelerations, which depend on the difference between the initial and final

angles and the duration T’

o 15(¢r — ¢o) . 15(0p — 6)
9] < — a7 0] < — <7 (15)
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From (15), (16) and for fixed initial and final angle values, we can find the min-

imum duration 7" such that the kinematic constraints (13), (14) are satisfied.

4 Specific example and comparison with the

minimum-time optimal control strategy

We now demonstrate the presented methodology with a specific example.

For initial and final angles
¢0 = 00 = OO, ¢T = 900, HT = 450 (17)

we find that the minimum duration satisfying the constraints (15), (16) is
T = 2.81s. The effective constraint for this example is the bound for qS
Having specified the initial and final angles and determined the duration 7',
the time dependence of ¢(t),0(t) is prescribed. In order to use equations (3),
(4) for the torques, we further need the ratio r of the moments of inertia (2).
From the technical specifications of the Oto Melara 76 mm gun we find the
mass m = 765 kg and the length | = 4.724 m of the gun, while the turret mass
is M = 7439 kg and we can take its average radius to be about R = 1.5m. By
assuming the turret to be a homogeneous cylinder we have I; = M R?, while
by considering the gun as a uniform cylindrical rod we have I, = %ml2. The
corresponding value of the ratio is r = % = 1.47. We would like to point out
that our analysis does not rely on these assumptions and it can be carried out
using the real values of I}, I, which can be obtained by measurement. We make
these assumptions in order to obtain some realistic estimates of the moments
of inertia for the example that we present. In Fig. 2 we plot with red solid
line the azimuth and elevation angles, velocities and accelerations derived from
the shortcuts to adiabaticity equations (10), (11) and (12), for the boundary
conditions given in (17), corresponding to a minimum duration 7" = 2.81 s.
Observe that only the azimuth velocity attains at some point the maximum
allowed value given in (13), and thus is the limiting factor on how fast can be
obtained the final orientation.

For comparison reasons, we also discuss the minimum-time optimal control

strategy under the kinematic constraints (13) and (14). For this kind of angu-
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Figure 2: (Color online) Azimuth and elevation angles (a, b), velocities (c, d)
and accelerations (e, f), for the shortcut (red solid line) and the minimum-
time strategies (blue dashed line), for the parameter values given in the text.

For the shortcut strategy 7" = 2.81 s, while for the minimum-time strategy
T =2.33s.

lar rate constraints and with unbounded controls (torques), the minimum-time
strategy is relatively simple. First note that each angle (azimuth, elevation)
can be controlled independently by the corresponding torque. The minimum-

time strategy for each angle is to move with the maximum angular acceleration
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Figure 3: (Color online) Azimuth (a) and elevation (b) torques for the shortcut

(red solid line) and the minimum-time (blue dashed line) strategies.

until the maximum angular velocity is reached, then maintain this maximum
angular velocity for some time, and finally apply the maximum angular de-
celeration until the angular velocity vanishes and the desired final angle is
reached. The minimum time is determined by the maximum time needed to
reach the final value of both angles. For the angle where the final value is
reached first, the applied control maintains this value until the final value of
the other angle is also reached. In terms of angular accelerations of the two
angles, the minimum-time strategy is bang-off-bang for the “slow” one and
bang-off-bang-off for the “fast” one. Note that if the difference between the
initial and the final angles is lower than a certain threshold, then the interme-
diate off pulse (zero angular acceleration-constant angular velocity) is omitted.

In Fig. 2 we plot with blue dashed line the azimuth and elevation angles, ve-
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Figure 4: (Color online) (a) Shortcut (red solid line) and minimum-time (blue
dashed line) trajectories. (b) Azimuth (two upper lines) and elevation (two
lower lines) final error for the shortcut (red solid line) and the minimum-time
(blue dashed line) strategies, as a function of a small initial error which is

taken for simplicity to be the same in both angles.

locities and accelerations corresponding to the minimum-time strategy, for the
same parameter values as before. Note that the duration corresponding to the
minimum-time strategy is 7" = 2.33 s, about half a second less than before.
Observe the trapezoidal shape of the angular velocity for the “slow” azimuth
angle, while for the “fast” elevation angle a zero tail is appended so the ob-
tained final value is maintained until the final value of the slow angle is also
reached. Also observe the bang-off-bang shape of the azimuth angular accel-
eration, and the bang-off-bang-off profile of the elevation angular acceleration.

If the difference between the initial and final angles is smaller than a specific
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threshold, the intermediate off pulse is absent and the slow angle acceleration
has the bang-bang form.

In Fig. 3 we plot the corresponding azimuth and elevation torques for the
shortcut (red solid line) and the minimum-time (blue dashed line) strategies.
Observe that the shortcut torques are smooth functions of time while the
minimum-time torques have discontinuities, due to the discontinuities in the
optimal accelerations. Another advantage of the shortcut torques is that their
extremal values (minimum and maximum) are smaller than the corresponding
values of the minimum-time torques. The price paid for these advantages is of
course the extra time needed to reach the target orientation with the shortcut
strategy, which is about 0.5 s.

In Fig. 4(a) we plot the trajectory of the gun tip for the shortcut (red
solid line) and the minimum-time (blue dashed line) strategies. In Fig. 4(b)
we make an elementary sensitivity analysis. The upper two lines represent
the azimuth final error for the two strategies while the lower two lines the
elevation final error, corresponding to a small error in the initial conditions
(horizontal axis), taken for simplicity to be the same for both angles. Observe
that the shortcut strategy is less sensitive to small perturbations in the initial

conditions for the angles.

5 Conclusion

In the present work we employed a modern inverse engineering method,
which is currently widely used to control quantum dynamics, in order to find
smooth controls (torques) which can drive a gun-turret system from some ini-
tial to a desired target orientation, under realistic kinematic constraints. The
derived controls are less sensitive to errors in the initial conditions when com-
pared to the minimum-time controls and easier to implement since they do
not have discontinuities, while they possess a moderately larger duration. The
above analysis can be carried out even in the more complicated case where
the servomechanisms driving the gun-turret system are incorporated in the
description. Finally, we would like to point out that the presented methodol-
ogy, originated from Physics, can be of great interest for the Mechanical and

Control Engineering communities.
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