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Scheduling a Three-machine Flow-shop Problem
with a Single Server and Equal Processing Times

Shi Ling* and Chen Xue-guang®*

Abstract

We consider the problem of three-machine flow-shop scheduling with a single
server and equal processing times, we show that this problem is NP -hard in the

strong sense and present an improved Y - H algorithm for it with worst-case

bound4/3.
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1 Introduction

In the three-machine flow-shop scheduling problem we study, the input instance

consists of n jobs with a single server and equal processing times. Each job J;
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requires three operations O,;,0,; and O, J-(j =12,...,n), which are performed

1j>
on machine M,,M, and M, respectively. The processing times of job J; on
machine M;, i.e., the duration of operationQ, ;,is p;; (i=1,2,3). In this paper we
will focus on equal processing times, that is p,; = p. For each job, the second

operation cannot be started before the first operation is completed. A setup times

s.; 1s needed before the first job is processed on machine M;. Each setup

operation must be performed by the server, which can only perform one operation
at a time. The objective is to compute a non-preemptive schedule of those jobs on

m machines that minimize makespan. In the standard scheduling notation [2], the

problem can be described as the F3, Sl‘ p; = p‘CmalX problem.

It is well known, S.M. Johnson [4], the F3| |C problem has a maximal

max

polynomial solvable. P. Brucker [1] show that the F2, Sl‘ p; = p‘Cmax problem is
NP -hard in the ordinary sense. In this paper, we will show that the
F3,Sl‘ p; = p‘CmaX problem is NP -hard in the strong sense.

The remainder of this paper is organized as follows. In section 2, we will discuss

the complexity of the F3,Sl‘pij = p‘Cmax problem and prove that this problem is

NP -hard in the strong sense. In section 3, we will present an improved Y -H [5]

algorithm and shown that the worst-case is4/3, the bound is tight.

2 Complexity of the F3,s1p; = p|C,, problem

max

In this section, we consider problem in which we have three machinesM,M, ,M,
a single server M and n jobs J; with processing times p,;,P,;,P;; and

server times S, ;,S,;,S;; onmachine M,, M, and M, respectively.
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Lemma 2.1 [6] Consider the F3,Sl‘ p; = p‘Cmax problem with processing times

p;; and server times S. ., where 1=123 and j=12,..,n. Then

i,j°
()

C(o,7) = max{ Z (Sl,o(i) + pl,a(i))+ z (SZ,r(i) + p2,r(i))

1<k<
" <o (k) i<r (k)

+ Z (53,7Z(|)+p3,7r(|))} (2.1

1277 ()
where o '(k),z'(k) and 77'(j) denote the positions of job k in sequence
o,7, «,respectively.

Theorem 2.1 The F3,Sl‘pij = p‘C problem is NP -hard in the strong sense.

max

Proof. We prove the F3,Sl‘ P; = p‘Cmax problem is NP -hard in the strong

sense through a reduction from the 3 — Partition problem [3], which is known to

be NP -hard in the strong sense, to the F3,Sl‘pij = p‘Cmax problem.

The 3 — Partition problem is then stated as:
3—Partition : Given a set of positive integers X ={X,X,,....,X;,}, and a

positive integer b with:

3r

D x;=rb, b/4<x;<b/2, Vj=12,.r (2.2)

J
j=1

Decide whether there exists a partition of X into r disjoint 3-element subset
{X,,X,,..., X, } suchthat i=12,..r (2.3)
Given any instance of the 3 - Partition problem, we define the following

instance of the F3,Sl‘ p; =P

C,.. problem with four types of jobs:

()P -job: s, =x;, p;=b,s,;=0, p,;=b, 5,;,=0, p,;=b (j=12,.,3r)
(2)U job: 5, ;,=0, p,;=b, s,;=2b, p,;=b, s;;=2b, p,;=b (j=12,.,r)
(3)V -job: s, =b, p;=b,s,;,=0, p,;=b, s,;=0, p,;=b (j=12,..,1)

(HW -job: s,;=0, p;=b, s,;=0, p,;=b, s;,;,=0, py;=b (j=12,.,r)
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The threshold y=4br+10b and the corresponding decision problem is: Is
there a schedule S with makespan C(S) not greater than y = 4br +10b ?
Observe that all processing times are equal to b .To prove the theorem we show

problem a schedule S,

that in this constructed if the F3, Sl‘ p; = p‘CmaX
satisfying

C,..(S,)<y=4br+10b
exists if and only if the 3 — Partition problem has a solution.
Suppose that the 3 — Partition problem has a solution, and X ;(j=1,2,...,r) are

the required subsets of set X . Notice that each set X, contains precisely

elements, since

b/4<x; <b/2,

and

X;=rb, forall j=12,..r.

=

Let o denote a sequence of the elements of set X for which
X;={0(3j-2),03j-1,0(3))},

for j=12,..,r.

The desired schedule S, exists and can be described as follows. No machine has

intermediate idle time. Machine M, process the P -jobs, U -jobs, V -jobs, and

W -jobs in order of the sequence o, i.e., in the sequence

o= (Pl,l ’ P1,2 ’ P1,3 ’U 1,1 ’Vl,l ’Wl,l LA Pl,3r—2 > Pl,3r—l ’ I:)1,3r ’U Vl,r ’Wl,r )

Irs
While machine M, process the P -jobs, U -jobs, V -jobs, and W -jobs in the
order of sequencer , i.c., in the sequence

r=U,,,P,,P,,P. VW, Uy P P P VL W )
machine M, process the P -jobs, U -jobs, V -jobs, and W -jobs in the order of

sequence r,1.e., in the sequence
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r=U 300 P3,1 , P3,2 > P3,3 aV3,1 5W3,1 s U 3, P3,3r—2 > P3,3r—l , P3,3r ’V3,r ’W3,r)
as indicated in Figure 1.
|| P11 || P12 | P13 Un |‘| Vi Wy, P1a p1s P1s U, Viz Wi,
|| “ Uz P21 P22 P23 Va Way U2 P24 P2s P26
Uiz P31 P32 P33 Va1 Wiy Uz,
Ulr || Vlr er
Wa, Uar Pasr2 | Pa2se1 | Poar Var Wa,
P3s P3s Va2 Wa, Usr Pssr2 | Pasr1 | Paar Vs
Figure 1: Gantt chart for the F3,Sl‘ Py = p‘Cmax problem

Then we define the sequences, 7 and 7 shown in Figure 1. Obviously, these
sequencec, 7 and 7z fulfills C(o,7,7)<Yy.
Conversely, assume that the flow-shop scheduling problem has a solution o, 7
and 7 withC(o,7,7)<Yy.
By setting

o()=i(1=123),7())=Lz()) =1
in (2.1), we get for all sequence o, 7 and x:

C(o,r,m)= (51,1 P, S, PS5t p1,3)
+U,, +U,, + D (s, +DP,, )=4rb+10b=y.
A=1
Thus, for the sequences, 7 and 7 with

Clo,r,m)=Y.

We may conclude that:
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(1) machine M, process jobs in the interval [ 0,4rb +4b ], without idle times,
(2) machine M, process jobs in the interval [3b,4rb + 7b ], without idle times,
(3) machine M, process jobs in the interval [ 6b,4rb +10b ], without idle times,
(4) server S process jobs in the interval [ 0,4rb + 4b ], without idle times.

Now, we will prove that the

Z(su +Py)= 4b.

ieX,

If Z(Su +Pp,;)=4b, then U, -job cannot start processing at time 4b, which

ieX,
contradicts (2). If Z:(Sl,i + p,;) < 4b, then there is idle time before machine M,
ieX,
process jobU,,, which contradicts (1). Thus, we have
Z(Sl,i + pl,i) =4b.
ieX,
Since pl,l = p1,2 = p1’3 = b, Sl,i = Xi , then

Z (Sl,i + p],i) = (31,1 + p1,1 + S1,2 + pl,z + 51,3 + pl,S) =3b+ Z X; =4b

ieX; ieX;
D x=b
ieX;

The set X, give a solution to the 3 — Partition problem.

Analogously, we show that the remaining sets X,, X,,..., X, separated by the

r

jobs 1,2,...,r contain 3-element and fulfill

ij =b, for j=12,..,r.

jeX;

Thus, X,,X,,..., X, define a solution of the 3 — Partition problem. O



Shi Ling and Cheng Xue-guang 23

3 Algorithm for the F3,s1p, = p|C,,, problem

max

For the F3,Sl‘pij = p‘Cmax problem, we consider an improved Y - H simple
algorithm.
Algorithm 1
Stepl If
min{s,; + P .Sy + P, <min{s, ; + P, ;,S,; + Py}
min{s,; + P;;,S;; + P ;$ <min{S, ; + P, ;.S;; + Py, }
min{s,; + P,;,S;; + Py} Smin{s, ; + P, ;,S;; + Py, }
Arrange job J; before job J;.

Step2 Repeat stepl until all jobs are scheduled.

Theorem 3.2 The F3,Sl‘ P; = p‘Cm,‘1X problem, let S, be a schedule created by

Algorithm 1, S* be the optimal solution for the F3,Sl‘pij = p‘Cmalx problem,

then
C (SO)/C

max max

(S)<4/3.
The bound is tight.
Proof. For a scheduleS, let 1,(S)(i=1,2,3) denote the total idle times on

machine M, .
Considering the path composed of machine M, operations of jobsl,2,...r,
machine M, operation of job r, and machine M, operation of job r, we

obtain that

Coa (S =D (5 + D)+ 1, (SY) +5,, + Py, +55, + Py,

i=l

Considering the path composed of machine M, operation of jobl, machine M,
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operations of jobs 1,2,...,r, and machine M, operation of job r, we obtain that

Cmax (SO) = Sl,l + pl,l + Z(Sz,i + p2,i)+ IZ(SO)+ S3,r + p3,r
i=l

Considering the path composed of machine M, operation of jobl, machine M,

operation of jobl and machine M, operations of jobs 1,2,...,r, we obtain that

Cora (S°) =81, + Pry Sy, + Py + 2 (S5 + Py) + 15(8°)

i=1

3Cmax(SO) = Z(Su + pl,i)+ |1(S’0)+ Syt Py +S85, P, +5, P, + Z(Sz,i + pz,i)

i=l1 i=1

)
0 0
+1,(S°) 45y, + Py, +S,+ P, +S,, + D,y +Z(s3)i +p,;)+1,(8%)

= (0 P+ LS+ (S + o)+ (S + (X5, + o) +1,(5%)

+(31,1 + p1,1 + 51,1 + p1,1 + S2,1 + pz,l + Sz,r + pz,r + S3,r + p3,r)

<4C_ (S))

C..(S%/C_ (S)<4/3.

To prove the bound is tight, introduce the following example as show in Figure 2

and Figure 3.

( 1 ) S = 0, P, = 1, SHi = 1, P, = 1, S5 = 1, Ps= 1,
( 2 ) Sip = 0, P, = 1, SHn = 0, P, = 1, S5, = 0, P, = 1,

( 3 ) Si53= 1, P = 1, S5 = 1, Ps = 1, S35 = 1, Pys = L.

‘ AERE J2 3 Js
|| I | Js s 3 Js

Ji | J3 Jz J1 || J;
Figure2: C_ (S) C_ (S)=6 Figure 3: C_ (S") C..(8")=8




Shi Ling and Cheng Xue-guang 25

So we have

C. (S°)/C. (S )=8/6=4/3,

max

the bound is tight. 0
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