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Abstract 

As a further improvement on Ridge regression estimation in Generalized Linear Models 

where near dependencies exists among explanatory variables, a new estimation procedure 

is here proposed. The new procedure perturbs the weighted matrix directly to enlarge the 

eigenvalues of the information matrix, thereby yielding smaller variances of parameter 

estimates. The method combines the idea of Iterative Weighted Least Squares and the 

Ridge Regression methods. The new method proves to be superior to the existing Ridge 

methodby further reducing the variances of parameter estimates and the residual variance. 

 

Keywords: Inexact collinearity, information matrix, residual variance, singular value 

decomposition, condition number, condition index. 

 

 

1  Introduction 

The Ridge regression estimation method is the traditional and well acclaimed estimation 

procedure in both General and Generalized Linear Models where collinearity or near 

dependence (near collinearity) is an issue. This is because collinearity among the 

explanatory variables inflates the variances of parameter estimates and the well known 

estimation methods which include the Newton-Raphson, Fisher’s scoring and the Iterative 

Weighted Least Squares do not have the capacity to deal with it. To solve the problem of 

inflated variances, the Ridge estimator was introduced by Hoerl and Kennard [3]. The 

proposed method further reduces variances of parameter estimates thus making it superior 

to the Ridge regression technique. For the Ridge regression model, the variance-

covariance matrix is obtained as 𝑉 𝛽  = 𝜎2(𝑋′𝑊𝑋 + 𝐾𝐼)−1 and for the proposed method 

it is  𝑉 𝛽  = 𝜎2[𝑋′(𝑊 + 𝐾𝐼)𝑋]−1 . The Ridge estimation method for obtaining the 

parameter estimates 𝛽  is given as: 

𝛽 = (𝑋′𝑊𝑋 + 𝐾𝐼)−1𝑋′𝑊𝑍 
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where𝜎2 =
𝑆𝑆𝑅

𝑛−𝑘
 for sample size n and k number of samples. 𝑆𝑆𝑅is the regression sum of 

squares. This derives from the Iterative Weighted Least Squares update given as: 

 

𝛽 = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑍 

 

In both General Linear and Generalized Linear Models, collinearity exists among two or 

more independent variables when such variables are highly correlated (Mason, [5]). The 

effect of this is to produce regression estimates with inflated variances. Collinearity is 

said to exist among columns of 𝑋 = (𝑥1 , 𝑥2 , … , 𝑥𝑝) if for a suitably predetermined 𝑒𝑛 > 0 

there exist constants𝑐1 , 𝑐2 , … , 𝑐𝑝 , not all zero, such that 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑝𝑥𝑝 = 𝑆 with 

| 𝑆 | < 𝑒𝑛 | 𝑐 | (Gunst [2]). 

If the goal is simply to predict Y from a set of X variables, then collinearity is not a 

problem. The predictions will still be accurate, and the overall 𝑅2 (or adjusted  𝑅2 ) 

quantifies how well the model predicts the Y values (Motulskey [8]). If the goal is to 

understand how the various X variables impact on Y, then collinearity is a big problem. 

One problem is that the individual P values can be misleading (a P value can be high, 

even though the variable is important). The second problem is that the confidence 

intervals on the regression coefficients will be very wide. This renders both the regression 

coefficients and their standard errors unstable. 

Collinearity can be exact (perfect) or inexact (near dependency). When there is an exact 

(perfect) collinearity in the 𝑛𝑥𝑝 data matrix: 

 

𝑋 = (𝑥1 , 𝑥2 , … , 𝑥𝑝) 

 

we find a set of values 

𝐶 = (𝑐1 , 𝑐2 , … , 𝑐𝑝) , not all zero such that the linear combination: 

 

𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑝𝑥𝑝 = 0 

 

otherwise, we have various degrees of collinearity in descending order. 

When there is no exact collinearity but some near dependencies in the design matrix, one 

can find one or more non-zero vector 𝑣 such that: 

 

𝑋𝑣 = 𝑎 

 

with  𝑎 ≠ 0  but small (close to 0). That is a near dependency exists if the length of 

vector 𝑎, | 𝑎 | is small. 

| 𝑎 |is the positive square root of the smallest eigenvalue of 𝑋′𝑋. Near dependencies exist 

when the condition indices of 𝑋 and 𝑋′𝑋 are high. 

Collinearity and its various degrees can be detected using variance inflation factor, 

dependency of explanatory variables, condition number and by performing the singular 

value decomposition on the information matrix. 

The condition number is the square root of the highest condition index. The condition 

index 𝜂𝑘  is defined as 𝜂𝑘 = 𝜆𝑚𝑎𝑥 𝜆𝑘 , 𝑘 = 1, … , 𝑝 where 𝜆𝑘  is one of the singular values 

of  𝑋 . The condition number is defined as  𝑘 = (𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛 )
1

2 . When there is no 

collinearity at all, the eigenvalues, condition index and condition number willall be equal 
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to zero. As collinearity increases, the condition number increases. The condition index 

can be used to signal the existence of “near” dependencies (near collinearity) in the data 

matrix 𝑋 (Belsley et al [1]). Near dependence occurs when the correlation matrix C is 

near-singular (Sundberg [9]). 

 

 

2  Singular Value Decomposition 

To assess the extent to which  “near dependencies degrade the estimated variance of each 

regression coefficient, Belsley et al [1] decomposed a coefficient variance into a sum of 

terms each of which is associated with a singular value. In Ordinary Least Square 

estimation, the model Variance-Covariance matrix of the estimator 𝛽  is: 

 

𝑉𝑎𝑟𝑀  𝛽  =  𝜎2(𝑋′𝑋)−1 

 

The Singular value decomposition of  𝑋 is 𝑈1𝐷𝑈2
′  

Thus 𝑉𝑎𝑟𝑀  𝛽   =  𝜎2   𝑈1𝐷𝑈2
′  

′
(𝑈1𝐷𝑈2

′ ) 
−1

 

= 𝜎2𝑈2𝐷
−2𝑈2

′                                                                                                                    (1) 

 

where 𝐷 = 𝑑𝑖𝑎𝑔(𝜆1 , 𝜆2 , … , 𝜆𝑝) is a (𝑝 × 𝑝) non-negative diagonal matrix of singular 

values of 𝑋.  𝑈1 is (𝑛 × 𝑝) and column orthogonal. 𝑈2 𝑖𝑠  𝑝 × 𝑝  and both row and 

column orthogonal. 

The 𝑘𝑡ℎ diagonal element of 𝑉𝑎𝑟𝑀(𝛽 ) is the estimated variance for the 

𝑘𝑡ℎ coefficient 𝛽 𝑘 . 

The diagonal elements of  𝑈2𝐷
−2𝑈2

′   are: 

 

 
𝑢2𝑘𝑗

2

𝜆𝑗
2

𝑝

𝑗=1

  ,       𝑗 = 1,2, … . 𝑝 

𝑈2 = (𝑢2𝑘𝑗 )(𝑝×𝑝)     ,    𝑉𝑎𝑟𝑀 𝛽𝑘
  = 𝜎2  

𝑢2𝑘𝑗
2

𝜆𝑗
2

𝑝

𝑗=1

 

where 𝜆𝑗  is 𝑗𝑡ℎ singular value. 

It is obvious that a small 𝜆𝑗  leads to a large component of  𝑉𝑎𝑟𝑀(𝛽 𝑘). If both 𝑢2𝑘𝑗  and 𝜆𝑗  

are small, 𝑉𝑎𝑟𝑀(𝛽 𝑘) may not be affected. 

In Generalized Linear Models, the interest is in the collinear relations among the columns 

in the matrix 𝑋 = 𝑈1𝐷𝑈2
′  

where 𝐷 = 𝑑𝑖𝑎𝑔 𝜆1 , 𝜆2 , …  , 𝜆𝑝  a diagonal matrix of singular matrix values of 

𝑊
1

2 𝑋 , 𝑈1 , 𝑈2are  as previously defined. 

 

𝐾 𝑋  =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
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Where 𝜆𝑚𝑎𝑥  and 𝜆𝑚𝑖𝑛  are maximum and minimum singular values of 𝑋 . Based on the 

extrema of the ratio of quadratic forms Liao and Valliant [4] bounded the condition 

number in the range 

𝑤
𝑚𝑖𝑛

1
2 

𝑤𝑚𝑎𝑥

1
2 

𝐾(𝑋) ≤ 𝐾(𝑋 ) ≤
𝑊𝑚𝑎𝑥

1
2 

𝑊
𝑚𝑖𝑛

1
2 

 

 

where 𝑤𝑚𝑎𝑥  = max weight   , 𝑤𝑚𝑖𝑛 = min weight 

 

 

3  Estimation Methods for Generalized Linear Models in the Presence 

of Collinearity 

3.1 The Ridge Procedure 

This procedure is derived from the Iterative Weighted Least Squares which is a maximum 

likelihood method McCullagh and Nelder [7]. It is given as: 

 

𝛽 = (𝑋′𝑊𝑋 + 𝐾𝐼)−1𝑋′𝑊𝑍                                                                                               (2) 

 

Where 𝐾 is a biasing constant, 𝐼 is an identity matrix, W is a diagonal matrix of weights 

with diagonal elements: 

 

𝑤𝑖 = 𝑚𝑖𝜇𝑖(1 − 𝜇𝑖)                                                                                                            (3) 

 

Where𝜇𝑖 =
exp ⁡( 𝑋𝑖𝑗 𝛽𝑗 )

1+exp ⁡( 𝑋𝑖𝑗 𝛽𝑗 )
 is the response probability for the logistic regression model (a 

special case of the Generalized Linear Model). 

Z is the working vector with components: 

 

𝑧𝑖 = 𝜂𝑖 +
𝑦𝑖 − 𝑚𝑖𝜇𝑖

𝑚𝑖

𝑑𝜂𝑖

𝑑𝜇𝑖
 

 

Where𝜂 = 𝛽𝑜 +  𝑋𝑖𝑗 𝛽𝑗  is the linear predictor for the binary regression model. The 

differential operator 
𝑑𝜂

𝑑𝜇
 is the derivative of the link function ℎ(𝜇). 

 

3.2 The Proposed Estimation Method 

This method borrows from the Iterative Weighted Least Squares and the Ridge regression 

methods and is given as follows: 

 

𝛽 =  𝑋′ 𝑊 + 𝐾𝐼 𝑋 
−1

𝑋′(𝑊)𝑍                                                                                         (4) 

 

Where 𝐾𝐼 is the Tikhonov matrix for the biasing constant 𝐾. Starting with an initial guess 

values for 𝐾, we continue to iterate until the deviance is sufficiently small. Usually, the 

initial value of 𝐾 is a very small number. The new method is an improvement of the 
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Ridge regression method in terms of variance reduction and within the framework of near 

dependency. 

 

 

4  Comparison of the Ordinary Ridge Estimator and the Proposed 

Estimator 

The Generalized Linear Model can be written as: 

 

𝑍 = 𝑋𝛽 + 𝑒ℎ′(𝜇)                                                                                                               (5) 

where 𝛽  =(𝑋′𝑊𝑋)−1𝑋′𝑊𝑍                                                                                                (6) 

 

is an Iterative Weighted Least Squares estimator.  In canonical form (5) can be written as: 

 

𝑍 = 𝐶𝛼 + 𝑒ℎ′(𝜇)                                                                                                               (7) 

 

where𝐶 = 𝑋𝑇, 𝑇 is a (𝑝 × 𝑝)  orthogonal matrix consisting of eigenvectors of (𝑋′𝑊𝑋 +
𝐾𝐼) 

 

J=diag (𝜆1 ,  𝜆2 , … , 𝜆𝑝) 

with𝜆𝑖  as the 𝑖𝑡ℎ eigenvalue of  𝑋′𝑊 + 𝑘𝐼 𝑋 

ˆ 'IWLS T 
 

C' C=T' X' XT=A=diag(𝜆1 , 𝜆2 , … , 𝜆𝑝) 
'ˆ

IWLS IWLST   

1 'ˆˆ ˆ ˆ( ) ,ORR IWLS ORRI kA T     
 

 

Where 𝑘 =  𝑘1 , 𝑘2 , … 𝑘𝑝   is a fixed biasing constant. 

To demonstrate that the proposed procedure (4) is superior to the existing Ridge method 

(2) by variance reduction, the following theorem is developed and proven 

 

THEOREM: Let 𝐾 be a (𝑝 × 𝑝) symmetric positive definite matrix. Then the proposed 

logistic regression  𝑃𝐿𝑅  estimator has smaller variance than the Ordinary Logistic Ridge 

estimator. 

 

Proof: 

Let ˆ( )ORRV  be variance of the Ordinary Ridge estimator and ˆ( )PLRV  be the variance of 

the proposed Logistic estimator. It is enough to show that 

ˆ ˆ( ) ( ) 0ORR PLRV V   . 

2 1 ' 2 1 'ˆ ˆ( ) ( )ORR PLR ORR ORR PLR PLRV V W A W W A W        

2 1 1 1 ' 2 1 1 1 '( ) ( ) ( ) ( )ORR OR ORR PLR PLR PLRI kA k A k I kA k I kA k A I kA k                 
 

2M  
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where: 
1 1 1 ' 2 1 1 1 '( ) ( ) ( ) ( )ORR OR ORR PLR PLR PLRM I kA k A k I kA k I kA k A I kA k                

 
2 2 2

1( ) 2( ) ( )1 2

( ) 2 2 2

1( ) 2( ) ( )

( ) , , ... ,
( ) ( ) ( )

ORR ORR p ORR

ORR

ORR ORR p ORR

I rA k diag
k k k

  

  


 

   
    

 

1

( )

1( ) 2( ) ( )

1 1 1
( ) , , ... ,

( ) ( ) ( )
ORR

ORR ORR p ORR

A k diag
k k k  


 

  
    

 

2 2 2

1( ) 2( ) ( )1 2 1

( ) ( ) 3 3 3

1( ) 2( ) ( )

( ) , , ... ,
( ) ( ) ( )

ORR ORR p ORR

ORR ORR

ORR ORR p ORR

I kA k A k
k k k

  

  

 
 

   
    

 

and 
2 2 2

1( ) 2( ) ( )1 2 1

( ) ( ) 3 3 3

1( ) 2( ) ( )

( ) , , ... ,
( ) ( ) ( )

PLR PLR p PLR

PLR PLR

PLR PLR P PLR

I kA k A k
k k k

  

  

 
 

   
    

2 2 2 2

1( ) 1( ) ( ) ( )

3 3 3 3

1( ) 1( ) ( ) ( )

, ... ,
( ) ( ) ( ) ( )

ORR PLR p ORR p PLR

ORR PLR p ORR p PLR

M
k k k k

   

   

 
    

     

 

 

)iORR is the  𝑖𝑡ℎ eigenvalue of ( ' )X WX KI  

and
( )i PLR  is the ith  eigenvalue of   'X W KI X

 
It is enough to show that: 

( ) ( )i PLR i OLR 
 

The eigenvalues of a (2 2) weighted matrix 'X WX  are given as 

2 2 2 2 2 2 2 2 2 2

1 11 2 21 1 12 2 22 1 11 2 21 1 12 2 22

1
2 2 2 2 2

1 11 2 21 1 12 2 22 1 11 12 2 21 22 1 12 11 2 22 21

1
[[( ) ( ) ] {[( ) ( )

2

4[( )( ) ( )( )]} ]

w x w x w x w x w x w x w x w x

w x w x w x w x w x x w x x w x x w x x

        

     
 

 

These eigenvalues can be increased by increasing the diagonal elements of  ' ,X WX .i e  

by increasing 
2 2 2 2

1 11 2 21 1 12 2 22( ) ( )w x w x and w x w x   

Since 
11 12 21 22, , , 0x x x x  , increasing 

2 2 2 2

1 11 2 21 1 12 2 22( ) ( )w x w x and w x w x   implies 

increasing w . 

This can be generalized to any ( )p p weighted matrix. But 
1 0 1w w for     . 

Thus  ( ) ( )1
. .i i PLR i OLRi

i e


   

  .  

Hence  

 

2 2

( ) ( )

3 3

( ) ( )( ) ( )

i PLR i ORR

i PLR i ORRk k

 

 


 
 

M is positive definite. 

and ˆ ˆ( ) ( ) 0ORR PLRV V  
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5  Illustrative Examples 

The explanatory variables in each of the six examples were illustrated by Mbachu, 

Nduka&Nja [6]. The variables are sex (𝑋1), race (𝑋2) and percentage fat intake (𝑋3). In 

each case, the response variable is the number of obesed persons. The condition indicies 

of the design matrices in all the six examples are high, indicating the existence of near 

dependencies. 

The design matrices for the six examples are given as follows: 

 

1

2

3

4

5

[1, 0, 0, 40;1, 0,1, 30;1,1, 0, 20;1,1,1, 30]

[1, 0, 0, 30;1, 0,1,18;1,1, 0,12;1,1,1,18]

[1, 0,1, 50;1, 0,1, 45;1,1, 0, 30;1,1,1, 40]

[1, 0, 0, 22;1, 0,1, 30;1,1, 0,13;1,1,1, 26]

[1, 0, 0, 26;1, 0,1, 21;1,1, 0,15;1,1,1, 21]

X

X

X

X

X











6 [1, 0, 0, 34;1, 0,1, 23;1,1, 0,17;1,1,1, 23]X 
 

 

Using the MATLAB Software the following parameter estimates are obtained for both the 

existing Ridge estimation method and for the proposed method: 

 

Table 1: parameter estimates for Ridge and proposed methods 

  𝛽0 𝛽1(sex) 𝛽2(race) 𝛽3(fat) 𝜎𝑟𝑒𝑠  
2  

Example 1 Ridge 5.1581 -1.6894 0.4441 -0.1508 0.000521 

Proposed 5.5351 -1.8160 0.4203 -0.1609 0.00019 

Example 2 Ridge 4.1875 -1.6990 -0.0726 -0.1685 0.0164 

Proposed 4.3966 -1.7873 -0.1158 -0.1758 0.0002296 

Example 3 Ridge 8.1530 2.4085 0.9260 -0.1793 0.0015 

Proposed 10.0544 -2.9562 0.9863 -0.2198 0.00012 

Example 4 Ridge 8.7163 -2.9417 4.9335 -0.4244 0.00724 

Proposed 13.1068 -4.3502 7.0757 -0.6351 0.0002 

Example 5 Ridge 6.2588 -1.7207 0.6342 -0.2736 0.00597 

Proposed 6.6087 -1.7931 0.5519 -0.2877 0.000229 

Example 6 Ridge 3.8662 -1.6991 -0.4758 -0.1003 0.0565 

Proposed 4.2528 -1.7974 -0.4871 -0.1150 0.0243 
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Table 2: Variances of parameter estimates for Ridge and proposed methods 

  𝑉𝑎𝑟 𝛽0  𝑉𝑎𝑟 𝛽1  𝑉𝑎𝑟 𝛽2  𝑉𝑎𝑟 𝛽3  

Example 1 Ridge 3.46 × 10−3 5.6 × 10−4 2.9 × 10−4 

 

2.7 × 10−6 

Proposed 1.4 × 10−3 2.15 × 10−4 1.05 × 10−4 1.06 × 10−6 

Example 2 Ridge 7.39 × 10−2 1.76 × 10−2 1.02 × 10−2 1.06 × 10−4 

Proposed 1.09 × 10−3 2.57 × 10−4 1.45 × 10−4 1.6 × 10−6 

Example 3 Ridge 2.66 × 10−2 2.8 × 10−3 9 × 10−4 1 × 10−5 

Proposed 2.38 × 10−3 2.57 × 10−4 5.35 × 10−5 1.02 × 10−6 

Example 4 Ridge 1.9 × 10−1 2.3 × 10−2 5.29 × 10−2 4.42 × 10−4 

Proposed 7.46 × 10−3 9.4 × 10−4 2.16 × 10−3 1.9 × 10−5 

Example 5 Ridge 2.3 × 10−1 2.7 × 10−2 1.4 × 10−2 3.9 × 10−4 

Proposed 2.3 × 10−3 2.5 × 10−4 1.3 × 10−4 4.2 × 10−6 

Example 6 Ridge 3.7 × 10−1 6.04 × 10−2 3.45 × 10−2 4.06 × 10−4 

Proposed 1.72 × 10−1 2.7 × 10−3 1.5 × 10−2 1.8 × 10−4 

 

 

6  Discussion 

A new estimation update for Generalized Linear Models where near dependencies is an 

issues has been developed in this study. The design is a midwife between the Iterative 

weighted Least Squares and the Ridge regression methods. 

Parameter estimates which depict the effect of the factors under investigation on the 

response are obtained in table 1. Also shown in table 1 are the variances of the effects. 

The variances show clear superiority of the new method over the existing Ridge method 

in terms of variance reduction. There is gross reduction in the variances of the parameter 

estimates for all the six illustrative examples. For instance, the variances for example 1 

are 5.2*10^-4 for the Ridge method and 1.9*10^-4 for the proposed method and for 

example 2 the variances are 1.64*10^-2 for the Ridge method and 2.29*10^-4 for the 

proposed method. 

A theorem to demonstrate that the proposed procedure is superior to the existing Ridge 

method in terms of variance reduction is developed and proven. 

 

 

7  Conclusion 

When there is near dependency among explanatory variables in Generalized Linear 

Models, this proposed method of estimation should be adopted. This is because of the 

drastic reduction in the variances of parameter estimates as shown by the illustrative 

examples and the developed theorem. Additionally the new method is superior to the 

existing Ridge method in term of residual variance. 
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