
Journal of Finance and Investment Analysis, vol. 2, no.3, 2013, 17-34 

ISSN: 2241-0998 (print version), 2241-0996(online) 

Scienpress Ltd, 2013 

 

Portfolio Optimization with Correlation Matrices: How, 

Why, and Why Not 

 

Manuel Tarrazo1 

 

 

Abstract 

Correlation is used frequently both in the classroom and in professional environments to 

illustrate and summarize investment know-how, especially with regard to diversification. 

Pedagogically, the initial build-up on correlation, which reaches its climax while 

describing a hypothetical two-variable optimization case, abruptly disappears when the 

discussion reaches optimizations of several securities, thereby stopping short of running a 

full-fledged, correlation-based optimization. Why is that so? We offer some explanations. 

First, correlations initially seem to provide clarification of the workings of the 

optimization, specifically with respect to how security risk-relations affect optimal 

weights. However, the variable transformation required changes coordinates, thus making 

correlation-based optimal weights and the desired information hard to understand. Second, 

correlation-based optimizations may be counterproductive. Nobody with a minimum of 

financial sophistication would try to make up covariance estimates; correlations, however, 

are easy to make up, which may make one overstate their practical value.  Third, while 

mean-variance optimal weights can be easily constructed from correlation-based optimal 

numbers, not transforming the optimal numbers back to the mean-variance values 

deforms the information processed. We do not expect correlation-based optimizations to 

replace mean-variance ones except in specialized cases (e.g., small portfolios where 

investors may have extra-knowledge of security relationships).  
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1  Introduction  

Diversification is the elusive reward that portfolio theory offers to investors. To study 

such potential diversification one can go directly to its source: the variance-covariance 

matrix quantifying relationships among securities. In the case of stocks and many other 

investments, this matrix is hard to understand because of the units in which the 

magnitudes are expressed (roughly corresponding to squared returns). A more attractive 

prospect is to look at the matrix of correlation coefficients, which is easy to understand 

and, perhaps because of that, popular enough to occasionally even appear in newspapers, 

e.g., [1]. A correlation coefficient quantifies how the two variables move together and is 

usually expressed in percentage form. Presumably, optimizing a portfolio using a 

correlation matrix would link optimal weights to correlations and enhance our 

understanding of the whole process. Unfortunately, such optimizations are nowhere to be 

seen (textbooks, literature), a rather peculiar absence that motivated our investigation. We 

provide correlation-based portfolio optimizations and study their practical and 

pedagogical value.  

The correlation coefficient indicates how one variable moves with another. It is computed 

to range between +1 and -1. These extremes indicate full synchronization: positive, when 

the variables move up/down together; negative, when one variable moves up and the other 

moves down. Moving away from ±1 indicates same ―qualitative‖ movement but with less 

strength. The intermediate point, a correlation of zero, indicates that, based on the data 

being used, the movements of each variable do not seem to be co-related to the 

movements of the other variable. A correlation of zero is associated with ―insurance‖ --if 

a life insurance company selling policies to two individuals; it is best for them not to be 

related at all. It is appropriate to note that the concept ―relationship‖ is wider and more 

complex than that of co-relation, which is restricted to a paired, 

observation-by-observation association of numerical variables. The study of 

co-relationships using leads and lags is one of the more complex areas of econometric 

analysis. 

The co-movement described in the previous paragraph applies to investments as well. 

Clearly, if one investment goes down, it would be good if the other investment doesn’t 

follow. But if one investment goes down, a negative correlation would offer support to the 

idea that at least one of the assets will go up –this is the core of the ―diversification‖ 

concept. A third major risk management principle, ―hedging‖, is also best explained with 

the help of correlation. Establishing positions on perfectly negatively correlated 

assets –the perfect hedge, as in ―hedging your bets‖-- would offer the highest likelihood 

to having some up position at the end of the trading horizon. Derivative securities were 

custom-made for hedging: instead of buying and selling (or selling short) the same asset 

to get the perfectly negative correlation, one would take a given position in a given asset 

and the contrary position on its derivative (forward, futures, or options). Further, to cap it 

all, the correlation coefficient can easily be expressed as a percentage, which facilitates 

taking advantage of the information it conveys. 

Again, why do we not run portfolio optimizations with correlation matrices? In order to 

answer, we must first examine the effects of certain transformations of variables. Next, 

we must evaluate the benefits and the limitations of using correlation matrices in portfolio 

optimization. What we discover in this analysis may not appear favorable to 

correlation-based optimizations. However, this does not imply correlation analysis has no 

usefulness. For example, correlation-based analysis may be helpful when considering 
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portfolios of a few securities (limited diversification) where investors may have some 

extra-knowledge of variable relationships. 

 

 

2  Variable Transformations, Regression Analysis, and Portfolio 

Optimization 

Optimal portfolio weights can be obtained by maximizing the following unrestricted 

function: 

 

F(x) = - ½ x’ A x + x’ b                                                                (1) 

 

This is a quadratic equation composed of a quadratic form (x’ A x) and a vector (x’ b), 

where A and b represent the covariance matrix and the vector of average individual stock 

returns, respectively. The first order conditions provide a set of simultaneous equations, A x 

= b. Optimal weights are calculated by normalizing the x auxiliary variables; that is, wi* = 

xi / Σ xi *. These are the expressions for the portfolio return and its variance, respectively: rp 

=  w’ b, and varp = w’ A w. 

The optimal portfolio thus calculated is the so-called ―tangent‖ portfolio, which is the one 

that maximizes the return-to-risk ratio. This is also the portfolio that includes the usual 

(linear) arbitrage relationships (Σwi = 1= wp , Σwi ri = wp rp = rp ), which implies that the 

portfolio cannot have more value than any of its parts. The algebraic formulation of 

portfolio optimization in (1) above keeps the analysis in the well-known area of 

simultaneous equations systems (SES), which is also shared by regression analysis.  

We could think of applying linear algebra techniques to the first order conditions of the 

mean-variance model to study what types of equivalent transformations would change the 

usual mean-variance optimization into a standardized mean-correlation specification (C x = 

d; where C and d would now represent correlation matrix, and the vector of standardized 

means, respectively). As per common usage in linear algebra, equivalent transformations 

are those that do not alter the set of optimal solutions in a system of simultaneous equations. 

We started to pursue this course of action and, right away, we noticed that the potential 

changes would not only change the coordinate system of reference, but would alter the 

right-hand side by changing the units of the average returns as well. Unfortunately, 

equivalent transformations seem to cloud the optimization with seemingly arbitrary 

changes, and they cannot produce a straightforward way to re-state mean-variance results.  

A more advantageous tactic is to exploit the relationship between regression analysis and 

portfolio optimization to study the effects of certain variable transformations which, as it 

happens, have been well-known to statisticians since the dawn of econometric analysis. The 

regression approach to portfolio optimization was first developed by Jobson and Korkie 

[2], and further studied by Britten-Jones [3] and Tarrazo [4].  

Tables 1 and 2 study the effects of some well-known transformations in the context of 

ordinary, multivariate regression (y = X b + u). Some results could be obtained using 

probability distributions and mathematical statistics but it is more advantageous to keep to 

straightforward linear algebra. Table 1 shows the matrix approach to ordinary least squares 

for both the original and the mean-adjusted variables. Note that mean-adjusting the 

regressors, but not the regressand, would produce the same slope estimates but higher 

fitting errors, which means we need to adjust means of all variables, or none. When we do 
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so, the two regressions in Table 1 are exactly equivalent (same R-squared and associated 

goodness of fit indicators). Note the role of the interplay between the intercept, calculated 

with the usual vector of ones, and alternative mean specifications. We are using 

―population‖ formulas for clarity.  

Table 2 is more interesting for our purposes. The top shows the multivariate regression for 

both mean-adjusted and standardized variables, which is often used to obtain variables 

thought to be normally-distributed, and with expected value and variance of 0 and 1, 

respectively. This regression is helpful because it shows very clearly how the transformed 

regression coefficients (bxi*) are related to the original coefficients (bxi). For reasons that 

will become clear later on, we would like to retain the mean vector in the optimization; 

therefore, the bottom regression is the one of highest interest at this point in the analysis.  

 

 

3  Portfolio Optimizations Using Correlations: How 

Tables 3 and 4 carry the analysis over to the portfolio optimization arena. The top of Table 

3 shows the atypical regression that yields optimal portfolio weights. The data matrix X, 

which includes vectors x1, x2, and x3, represents security returns. We regress these returns 

on the y variable, which is simply a vector of ones (actually any constant would do) and 

calculate OLS estimates (bx). Then, we compute optimal portfolio weights (w* = [w1* w2* 

w3*]’) by normalizing betas: wi* = bxi / Σ bxi*. The conventional mean-variance 

optimization appears at the bottom of Table 3 as well. It boils down to solving a 

simultaneous equation system (Ax = b) which, through a normalization, produces the 

optimal portfolio weights.  
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Table 1: Initial data and deviations from the mean 
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Table 2: Mean-adjusting and standardizing 
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Let us observe carefully the atypical regression. Note that a) the values of the ―y‖ in the 

regressions of Table 1 now appear as those of another ―exogenous variable‖; b) the usual 

intercept of ones has been moved to the left-hand-side; and c) the regression is run without 

an intercept. From a financial point to view, whether the vector [3 1 8 3 5] is a security or a 

portfolio does not matter. What matters is that the optimization will insure that each 

variable is properly valued and arbitraged in reference to the other securities. In passing, 

this table also makes obvious that the ―tangent‖ portfolio, in addition to implementing 

arbitrage conditions, is also an optimal predictor. This means it performs best within the 

class of linear estimators, under some conditions, and also the best in a larger class of 

estimators that do not include linearity restrictions. D1, D2, and D3 refer to the 

determinants of order (k) in the matrix A. Their values (positive for all ranks) indicate that 

A is positive definite, as any variance-covariance matrix must be.   

Table 4 presents the results we are after. A simple standardization, dividing every 

observation by its standard deviation provides the sought-after standardized 

mean-correlation system. The correlation matrix can be calculated using matrix functions 

in EXCEL with the variance covariance-formula when the variables have been 

standardized: target cells = mmult(transpose(data range – mean vector), data – mean 

vector).  

Note that the values in the right-hand-side vector, [1.690309, 2.12132, 5.59017]’, are the 

values of the means of the original variables divided by their standard deviation: that is, 

1.690309 = 4/2.366432. This means the correlation optimization has the correlation table in 

the left-hand-side and ri/stdi in the right-hand-side. Noticing this is critical to establish the 

analytical equivalency of mean-variance and correlation-based optimizations and is 

something that remains implicit in the numerical examples.  

The investor performing the optimizations should have two objectives. The first one is to 

calculate the optimization numbers, which are found as the solution to the simultaneous 

equation system A x = b, where A and b are now the correlation matrix and the mean for the 

standardized data, respectively. The solution vector is bxs = [31.55243  -78.9603  

53.66563]’, which must be normalized to function as optimal portfolio weights (wis*) for 

the standardized variables. The second objective is to trace these weights back to the 

original variables, which requires dividing the solution coefficients by the standard 

deviation of the corresponding original variable (e.g., 13.33333333 = bxis / stdxi = 

31.55242551 / 2.366431913); this operation returns the non-normalized solutions to the 

mean-variance optimization (bottom of Table 3, bx and wi*). The values we found last must 

be normalized to provide the original portfolio weights –that is, w1* = (bx1s/stdx1) / 

sum(bxis/stdxi) = 13.33333333 / 17.5 = 0.761904762). See appendix for further detail and 

analytical proof.  
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Table 3: From regressions to optimal mean-variance portfolios 
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Table 4: Standardized variables and mean-correlation optimization 
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4  Portfolio Optimizations Using Correlations: Why And Why Not 

In the introduction, we indicated that the concept of correlation is very helpful summarize a 

great deal of investing know-how related to diversification. In the previous section, we 

have shown that using correlation matrices to optimize a portfolio is rather straightforward. 

Why not, then, use the standardized mean-correlation analysis? There are at least five 

reasons that seem to push in that direction. However, upon close examination, they actually 

strengthen the case for the traditional or conventional mean-variance optimizations. 

First. Clarifying the link between optimal portfolio weights and correlations was one of our 

hopes at the outset of our analysis. Unfortunately, the transformation required changing the 

mean reference indicator (vector b of the original means), and effecting a change of 

coordinates by altering the A matrix. Within the realm of the optimization, using 

correlations does not add any clarity, it is rather the opposite.  

Second. The beta coefficients with the original variables measure how much the dependent 

variable will change when the independent variable changes, keeping everything else 

constant. The betas for the standardized variables measure how the ratio (y-mean/σy) 

changes when (x-mean/σx) changes. The ratio mean-to-risk (μ/σ) is extremely important in 

portfolio optimization. It effectively ranks securities to the point of anticipating the ranking 

of optimal portfolio weights, in some cases with the same ordinal rankings. It is easy to 

show that when the covariances (or correlations) are equal to zero, the individual 

return-to-risk ratios determine optimal portfolio weights. At the portfolio level, it can work 

as the objective variable of the optimization, as shown by the early work of Elton and 

Gruber and Padberg on simple criteria for portfolio optimization, [5]. Furthermore, Tarrazo 

[6] shows how to optimize a portfolio by ranking the securities by their μi/σi ratios first and 

adding one security at a time --if the weight is positive, keep the security; if negative, 

discard the security. The optimization is terminated, and the optimal portfolio achieved, 

when there are no more securities with positive average returns (μi > 0) remaining. The 

ranking provided by individual return-to-risk ratios would anticipate optimal portfolio 

weights perfectly if not for covariance effects, which in some cases are strong enough to 

alter the individual return-to-risk ranking of the securities. This lessens the importance of 

having the return-to-risk proportions as the right-hand-side variable in the simultaneous 

equations system of the optimization. In addition, investors may find it easier to keep track 

of the relationship between optimal weights and individual mean returns. 

Third. We had expected that correlation-based optimization should help visually, at least, 

given that that the correlation coefficients can easily be read as percentages. It turns out that 

visualizations with correlation matrices, in general, may convey less about the risk structure 

than mean-variance ones do.  
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Table 5: An example with stock market data 

 
 

The top of Table 5 shows two surfaces that resemble those used in orography when 

studying the formation and relief of mountains and other geographical objects. In the case 

of portfolio optimization these surfaces show the volatility ―map‖, where a mountain with a 

higher represents a riskier security. The risk surface is dominated by the main diagonal of 

the risk matrix, which divides the terrain diagonally as if it were a powerful mountain 

range. The correlation matrix makes all these diagonal peaks equal to one, which makes us 

lose sight of which securities are riskier. It also does not enhance the perception of 

off-diagonal correspondences. (The charts shown are non-auto scaled. Auto-scaling them 

makes the off-diagonal areas nearly undistinguishable.) 

Fourth. The equivalence of optimization for the tangent portfolio is straightforward, but 

calculating optimal portfolios under other restrictions (e.g., required return) may appear to 

be complicated to students, as it cannot be done with the usual textbook procedure (i.e., 

Lagrangian method), with the same straightforwardness. Adding additional variables (e.g., 

a risk-free rate) in the correlation-based framework is also problematic for efficient, not 

tangent, portfolios.  
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Fifth. The most important reason not to use standardized mean-correlation optimization 

without transforming the weights to their mean-variance values is a very serious one. At 

first, it seems it should be easy to pass from the mean-variance system to the standardized 

mean-correlation. But that is not the case –dividing the right hand side of the mean variance 

system does yield standardized means but it does not produce the correlation matrix. The 

required changes cause non-linear changes that alter the data in hard to assess ways. This is 

why using equivalent transformations, which are linear, was doomed to fail. Further, the 

transformation produces a tangent portfolio that is not mean-variance efficient (unless, of 

course, weights are transformed back). The lower part in Table 5 shows how the 

correlation-based weights (wc) compare to the mean-variance (wmv) weights. We are 

using an old data set that has good pedagogical characteristics and with which we are very 

familiar. The correlation portfolio is not efficient, not because its return-to-risk ratio is 

lower than the mean-variance ratio, but because a mean-variance portfolio offering the 

returns of the wc portfolio has a lower variance. The nonlinear deformations of the weights 

are observable by looking at the charts relating both sets of weights; one of them is an ―x-y‖ 

chart, and the other a regular ―line‖ chart. The profile for wc weights is flatter than that for 

the wmv weights, no doubt due to the standardization of the right-hand side variables.  

The last point deserves further explanation. Standardization is sometimes used to better 

understand the numbers we have. Some variables (e.g., income, age, gender, civil status, 

years of schooling, room temperature) lend themselves better to measurement than others 

(feeling cold, education, satisfaction with products or services, capability of solving certain 

complex problems, and so on). In some cases, standardizing helps to analyze the variables 

and assess behavior over the whole observed ranges. Such standardization can be 

implemented by 1) using percentile ranking, 2) z-scores, or 3) partitioning the data as in the 

Goldfeld-Quandt procedure, to detect heteroscedasticity. Standardization may also help 

when processing variables with different units of measurements that, nonetheless, need to 

all be included in a common model (e.g., panel data). Z-scaling is a linear transformation, 

and therefore the effects of relative differences are respected, however, but it does not 

produce normality, unless the actual data is normally distributed. Percentile-scaling 

rearranges the variables into neater subdivisions based on the number of percentiles but 

something is lost in the process. Turning cardinal variables into ordinal ones disregards the 

effects of relative distances (i.e., a non-linear transformation). Standardizations generate a 

modified sample that changes if we take out observations, or add observations to the 

sample. Note that in the case of portfolio theory, standardizations directly impact the 

risk-structure of the problem and, therefore, may actually ruin the optimization.  

Our findings do not recommend using correlation-based portfolio optimizations unless the 

optimal weights are transformed back to mean-variance ones. However, five positive 

observations can be made: 

 

a) Correlation-based optimizations respect the ranking that security return-to-risk ratios 

impose on optimal weights, a fact which may have further theoretical and practical 

value.  

b) Paradoxically, when we try to make the best of correlations, we find strong reasons to 

restrict their use, especially in textbooks, which often depict ―dream cases‖ of extreme 

correlations (perfectly negative, positive, or zero) among securities, which are all 

unreal. Using the actual values of correlations in the actual optimizations would be one 

valuable step in the right direction because it may induce more practical varieties of 

classroom work. For example, low and negative correlations are not so abundant. 
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Theoretically, Samuelson (1968) shows that there are limits to how negative correlation 

can be under general statistical conditions: ―Although there is no limit on the degree to 

which all investments can be positively intercorrelated, it is impossible for all to be 

strongly negatively correlated. If A and B are both strongly negatively correlated with 

C, how can A and B fail to be positively intercorrelated with each other? For three 

variables, the maximum common negative correlation coefficient is - 1/2; for four 

variables, - 1/3; for n variables, (–l / (n - l)),‖[5]. In practice, Elton and Gruber found 

that an average correlation coefficient of +1/2 (50%, positive) was representative of 

usual market conditions, [6]. Piling up companies in the hope of gaining diversification 

is a risky activity, which Peter Lynch often referred to as ―diworsification‖.  

c) It is worth noting that interest in implied correlations among particular securities and 

other actual investment positions has increased recently, especially in derivative 

analysis.  

d) There may be situations where investors may hold portfolios of a few securities. In this 

case, correlation coefficients may easily capture any extra knowledge concerning the 

relationships between the variables of interest.  

e) Everything considered, it seems correlation concepts will continue being employed in 

research of both a theoretical and applied nature; see [8] and [9], respectively.  

 

At a more general level, our study stresses the connections between correlation, arbitrage, 

and mean-variance analysis, and builds upon the relationship between regressions and 

portfolio optimizations, which highlights the conditional properties of portfolios. 

Ultimately, investors will appreciate portfolio theory because of its usefulness, which is 

based on the strength of the signals it provides and on its reliability, which may preclude 

employing certain transformations. 

It is appropriate to close by providing further information and references to the material 

employed throughout the study.  

The data used in the first two tables is from Johnston [10, p.178 and ss.]. Ezequiel’s (1959) 

text, [11], whose first edition was written at the birth of modern econometrics (1930), 

shows a great deal of care in properly applying statistical techniques to data and 

interpreting the numbers correctly. Part of his effort focused on studying the logical 

analysis of relationships between variables as warranted by their statistical association. The 

author placed special emphasis on three measures –the standard error of the estimate, the 

coefficient of determination, and the correlation coefficient; and also on cases when 

variables are expressed in alternative measurements, and the purported relationship may 

not be necessarily linear. Because the size of the usual regression coefficients varies with 

the units in which each variable is expressed, Ezequiel investigated whether expressing 

each variable in terms of its own standard deviation would make the regression coefficients 

more comparable.  He referred to these coefficients as ―beta coefficients‖.  Ezequiel [op. 

cit, p. 196] provided the formulae for comparing the original and the ―beta‖ regressions, 

which we will reproduce in a more conventional notation: 

 

y = a + b1 x1+ b2 x2 + b3 x3 + u                                                          (2) 

 

y ∕ σy = α + β1 x1∕σ1 + β2 x2∕σ2 + β3 x3/σ3 + v                                             (3) 

 

y = α σy + (β1 σy ∕σ1) x1 + (β2 σy ∕σ2) x2 + (β3 σy /σ3) x3 + u                              (4) 
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Equation (4) shows the relationship between the coefficients of the ordinary regressions, 

equation (2), and those of the standardized ones, equation (3): a = α σy, b1 = β1 σy ∕σ1, b2 = 

β2 σy ∕σ2, and b3 = σy /σ3 . In the ordinary or two-variable regression beta-hat = β σy ∕σx = 

ρxy σy ∕ σx, which means β = ρxy . It is intriguing that the coefficient of the regression 

between a single security, or a single portfolio, stock returns and the returns on the market 

index is called ―the beta coefficient‖ in the Capital Asset Pricing Model, but it is calculated 

with the same process as an ordinary regression. Ezequiel’s betas and their potential uses 

have not been ignored by econometricians in recent times. Maddala summarizes the 

reasons for the apparent neglect: ―In simple regression the beta coefficient is identical to the 

correlation coefficient... However, in multiple regression there is no relationship between 

the beta coefficients and the simple- or partial- correlation coefficients. Hence, often not 

much use is made of the beta coefficients,‖ [12, p. 119]. Kmenta also notes, ―Since the beta 

coefficients do not solve the main problem of separating the effects of each explanatory 

variable on the dependent variable any better than the usual regression coefficients, their 

use in econometrics has been rather rare,‖ [13, pp. 422-3].  

Sewal Wright studied transformations that would make regression coefficients and 

correlations identical. Like Ezequiel’s betas, these correlations would also measure the 

fraction on standard deviation caused by some variables in others. In addition, they would 

be most easily understood and could represent causation pathways. Wright’s efforts 

resulted in what is currently known as ―path analysis,‖ see [14, 15], and Duncan [16]. 

The regression approach to portfolio optimization was first developed by Jobson and 

Korkie [2, op. cit.], and further studied by Britten-Jones [3, op. cit.] and Tarrazo [4, op. cit.]. 

Tarrazo [6, op. cit.] employs individual return-to risk heuristic to fully optimize a portfolio, 

which is accomplished by sequentially forming a portfolio of the two highest return-to-risk 

securities and by successively trying securities with positive returns ranked according to 

their return-to-risk ratio. The role played in the previous author’s analysis by 

graphical-oriented, information-organizing objects such as paths, graphs, and networks is 

interesting to note. The notion of a ―balanced‖ graph –a collection of equally-signed (all 

positive, or all negative) connected nodes— was instrumental in understanding the link 

between positive returns and positive portfolio weights in Tarrazo [6, op. cit] and, 

therefore, finding the point where no more securities would be added to the optimal set. 

Tarrazo [17] focuses on calculating optimal portfolio weights without mathematical 

programming or Lagrangians. Graph theory is a powerful tool in discrete mathematics, with 

applications in many other areas such as combinatorial optimization and networks. Frank 

Harary [18] contributed heavily to graph theory and its related areas and developed the 

concept of signed graphs out of a particular problem in sociology. Ellerman [19, 20] 

employs graph theory in his specialized analysis of arbitrage, which appears as the force or 

medium (path) relating one security to another.  

 

 

5  Concluding Comments 

The apparent attractiveness of correlation concepts in portfolio optimization initially 

motivated this research. By studying the effects of variable transformations in regressions 

we quickly ascertained how to perform portfolio optimizations using mean-correlation, 

instead of mean-variance analysis. Of course, the two alternative set-ups produce 

equivalent optimal portfolio weights if correlation-based number are transformed back to 

mean-variance ones. Without such transformation, correlation-based optimizations present 
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some a priori advantages –clarification of risk-relations among securities and direct use of 

return-to-risk measures which link individual return-to-risk and portfolio ratios through the 

optimal weights. The advantages, however, are outweighed by the inherent limitations –the 

optimizations effect a transformation that makes interpreting the resulting weights difficult 

and may deform the risk-structure of the data in a nonlinear and hard-to-assess manner. On 

a more positive note, the analysis presented strengthens the role of regression methods in 

portfolio analysis. Further, the difficulty in finding transformations of the data that would 

both clarify the relationship between individual security characteristics and portfolio 

weights in a practical manner. In sum, correlation concepts clearly have some pedagogical 

value, and correlations do provide easy-to-understand information on potential 

diversification (or lack thereof) that one can obtain before running the optimization.  
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Appendix 

 

The first order conditions from the equation (1), for the mean-variance and the 

correlation-based portfolio optimizations models mode can be formulated as linear 

simultaneous equation systems (A x = b) which, for a two-variable case, are the following:  

 

Mean-variance 

 

σ11 σ12    x1          r1                                          A(1) 

σ12 σ22    x2       =      r2 

 

           

Correlation-based model 

 

ρ11 ρ12    x1          rs1                                          A(2) 

ρ12 ρ22    x2       =      rs2 

 

 

The equivalence between the two models is more easily seen when we notice that: 

a) The correlation coefficient between a variable and itself is equal to one.  

b) The average of the standardized variable is the mean of the original variable divided by 

its standard deviation.  

c) The formula for the correlation coefficient is the following:   

ρ12 = σ12 /(σ1σ2). 

 

Then we can express the correlation model in a manner close to the mean-variance 

specification: 

 

1        σ12 /(σ1σ2)      x1        r1/ σ1                        A(3) 

σ12 /(σ1σ2)  1      x2 =      r2/ σ2 

 

       R       x  =     c 

 

Cramer’s rule conveniently separates denominator effects, which are directly associated 

with coordinates,  the matrix A, from coordinate-independent effects.  

 

Applying Cramer’s rule to solve A(3), we find that  

 

      r1/ σ1 σ12 /(σ1σ2)  

      r2/ σ2       1    r1/ σ1 - (r2/ σ2 (σ12 /(σ1 σ1))) 

x1 =  ---------------------------------  =  --------------------------------------               (A4) 

       |R|          |R| 

 

      1            r1/ σ1 

      σ12 /(σ1σ2)   r2/ σ2    r2/ σ2  - (r1/ σ1 (σ12 /(σ1σ2)))  

x2 =  ---------------------------------  =  --------------------------------------               (A5) 

   |R|                   |R| 
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This can be expressed as:  

 

   (r1 σ22 - r2 σ12) / (σ22 σ1) 

x1 =  ---------------------------------                      (A6) 

     |R|  

 

   (r2 σ11 - r1σ12) / (σ11 σ2) 

x2 =  ---------------------------------                      (A7) 

     |R|  

     

Here, we can already visualize that dividing each xi by its corresponding σi would yield a 

common denominator that would simplify away, as that corresponding to the |R| terms, 

giving the mean-variance optimal (non-normalized) weights: xmv1 = r1 σ22 - r2 σ12, xmv2 = 

r2 σ11 - r1σ12. The normalized mean-variance optimal weights are wi = xmvi/sum(xmvi). 

In effect, normalizing the xi’s above by dividing each of them by their sum (x1 + x2), and 

calculating the ratio x1/x2, confirms why, in order to pass from the correlation-based 

weights to mean-variance ones we must divide each of the normalized correlation-based 

weights (wc1, wc2) by their corresponding standard deviation and normalize again. (It is 

helpful to track the value 13.3333 in Tables 3 and 4.)  

 

wc1    (r1 σ22 - r2 σ22)    (r2 σ11 - r1σ12)    σ1   w1 

----- = ------------------------- : ---------------------- =  ----  ----                (A8) 

wc2         σ22 σ1        σ11 σ2     σ2   w2 

 

The equivalence in terms of relative weights shows that both systems A(1) and A(2) share 

the same homogeneous coordinates. One is obtained from the other as if modeling clay, 

without tears or discontinuities, and what one learns in one system can be applied to the 

other. 

 


