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Abstract 

K. Yano defined and studied the structures defined by a tensorfield )0(f  of type 

(1, 1) satisfying 3 4 20, 0f f f f    ([1], [3]). In this paper, we have 

considered the structure of order n2 defined by (1, 1) tensorfield f  where n  is a 

positive integer. Certain interesting results have been obtained. Local coordinate 

system is introduced in the manifold and it has been shown that there exist 

complementary distributions L  and M  and a positive definite Riemannian 

metric G such that they are orthogonal. 
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    1  General even order structure  

Let M be an m -dimensional differentiable manifold of differentiability class C . 

Suppose there exists on M , a tensor field )0(f of type (1, 1) satisfying 

                                                 02
2  n

nn bIaff                                           (1.1) 

where n  is a positive integer ( 1)n  , ,a b  scalars not equal to zero and 2nI  
denotes the unit tensor field. 

Then we say that the manifold M  is equipped with general even order structure. 

We now prove the following theorem: 

 

Theorem 1.1 The general even order structure is not unique. 

Proof. Let  be a non-singular real valued function and 'f  a tensorfield of type 

(1, 1) on M such that 

                                                         'f f                                               (1.2) 

Then,   by (1.2) 

 22 )'(' ffff    . 

In a similar manner, we have 
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Since   is non-singular we have 

                                              0)'()'( 2
2  n

nn bIfaf  

Thus 'f  gives to M  another general even order structure. Therefore, such 

structure is not unique.                                                                                              
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Theorem 1.2 The rank of the general even order structure is equal to dimension 

of the manifold. 

Proof. Let M be of dimension m . If X  be a vector field on M such that 

2 3( ) 0 ( ) ( ) ... ( ) 0nf X f X f X f X      . 

Also 0)(2 Xf n . Hence from (1.1) it follows that 0X . 

Hence kernel of f contains only zero vector field. So if )( f be nullity of f , 

0)( f . 

If )( f be rank of f , then from a well known theorem of Linear Algebra 

                                              )()( ff  dimension of M  

As 0)( f , therefore 

                                                 mf )(  

Hence we have the theorem.                                                                                     

 

Theorem 1.3 Let f and 'f be two general even order structures on a 

differentiable manifold M  such that the equation (1.2) holds. If V  is an 

eigenvector of 'f  corresponding to some eigenvalue, V is the eigenvector of f  

corresponding to same eigenvalue. 

Proof. As given, V  is the eigenvector of 'f  for the eigenvalue  . Then 

                                                                    VVf '  

Therefore 

                                                               )())('( VVf    

or by (1.2)                                                           

                                                              )()( VVf         

So V  is the eigenvector of f  for the same eigenvalue .                                    

 

Theorem 1.4 The dimension m of the manifold M  equipped with general even 

order structure satisfying the equation (1.1) for ba 42   is even. 
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Proof. Let V be eigenvector of f corresponding to eigenvalue . So 

                                          
2 2( ) , ( ) ,..., ( ) ,...n nf V V f V V f V V      

Hence by virtue of the equation (1.1), it follows that 

                                                          02  ba nn   

which has solution of the form 

                                                           2

42 baan 
  

If ba 42  , the values of n  are complex. Hence the eigenvalues of f  are 

complex numbers. Since complex roots occur in pair, hence number of the 

eigenvalues must be even. Consequently dimension of M  is even and nm 2  as 

f  has n2  non-zero distinct eigenvalues.                                                                                        

 

 

2  Necessary and sufficient condition for existence of the 

general even order structure     

For the manifold M  equipped with general even order structure, the eigenvalues 

of f are given by 

                                                         
2

42 baan 
  

Taking  ba 42   and cos
2


a

 
, sin

2

4 2


 ab

. Then f  has n2  eigenvalues 

given by 

                                                           , 1, 2,3,....,
i

ne n n
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Let xP , 1, 2, ,x n   be eigenvectors of f  corresponding to eigenvalue 
i

xe


 and 

n,.....,2,1x,Qx   be eigenvectors for the eigenvalue x

i

e



. Then }P{ x  and 

}Q{ x are linearly independent sets. 

For the set }Q,P{ xx , suppose that 

                                   0, 1,2, ,x x
x xa P b Q x n   

  
 and   Rba xx ,           (2.1) 

Then operating the above equation (2.1) by f  and taking into account 

that }Q,P{ xx  are eigenvectors for eigenvalues x

i

e


and x

i

e




 of  f , we get 

                                            0
i i

x xx x
x xa e P b e Q

 


 
                                             

(2.2)        

In view of the equations (2.1) and (2.2), we get 

                                                  
2

(1 ) 0 0, 1, 2,...,
i

x xx
xb e Q b x n




      

Consequently from (2.1), it follows that 0xa  as }P{ x  is linearly independent. 

Thus the set }Q,P{ xx  is linearly independent. Let us assume that n21 ,...,,  be 

tangent sub-bundles spanned by n21 P,...,P,P respectively and n21
~,...,~,~  spanned 

by n21 Q,...,Q,Q  respectively.  

Then  

 nn2211
~,...,~,~

 

and  

n21n21
~...~~...   

is a tangent bundle of dimension n2 . 

Thus if the manifold M admits the general even order structure of rank n2 , it 

possesses tangent subbundles n21 ,...,,   each of dimension unit and subbundles 

n21
~,...,~,~   conjugate to n21 ,...,,  , respectively, such that 
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nn2211
~,;...;~,;~,   are mutually disjoint and they span together a tangent 

bundle of dimension n2 . 

Suppose conversely that M admits the general even order structure of rank n2 . 

Let n21n21 q,...,q,q,p,...,p,p be 1-forms dual to vector fields 

n21n21 Q,...,Q,Q,P,...,P,P  respectively. So 

                 

nn
n

n
n IQqQqQqPpPpPp 22

2
1

1
2

2
1

1 ..............   

or equivalently nx
x

x
x IQqPp 2 , x  takes the values n,......,2,1  and 

nI2 denotes the  unit tensor field.  

Let us now put 

x
xx

in

x
xx

in

QqePpef 




 

Then it is easy to show 

x
xx

in

x
xx

in
n QqePpef 




2  

and 

x
x

x
xn QqPpf   

Thus 

                                x
xx

in

x
xx

in
nn QqebPpeaaff 


)()(2



          (2.3)   

It is possible to set 

                                         bebea x

in

x

in




)()(


 

Hence the equation (2.3) takes the form 

                                         }{2
x

x
x

xnn QqPpbaff   

or                                     02
2  n

nn bIaff  

Thus the manifold M admits the general even order structure of rank n2 . Thus we 

have. 
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Theorem 2.1 In order that the differentiable manifold M admits the general even 

order structure of rank n2 , it is necessary and sufficient that it possesses tangent 

subbundles n21 ,...,,  each of dimension unit and their respective complex 

conjugates n21
~,...,~,~   such that  

1 1 2 2, , ..., ,n n                 

and they span together a tangent bundle of dimension n2 .  

 

 

3  General even order structure when 0b  

Suppose the manifold M admits the general even order structure for 0b . Hence 

we have 

)0(02  aaff nn  

If we take the operators 

                                           nafl    and  nafIm                                    (3.1) 

Then it is easy to show 

                                            2 2, , , 0l l m m l m I lm ml      . 

Thus for general even order structure for 0b , the operators l  and m  defined by 

(3.1) when applied to the tangent space of M  at a point are complementary 

projection operators. Corresponding to projection operators l and m , we get 

complementary distributions L  and M  respectively. If rank of f  is constant 

every where and equal to r , the dimensions of L  and M are r  and )( rn   

respectively. 

Let us now introduce in the manifold M a local coordinate system and denote by 

; ;h h h
i i if l m  

the local components of f , l  and m  respectively.  
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Let ),.......,2,1,,( rcbau h
a  be r  mutually orthogonal unit vectors in L  and 

)2( rn  such vectors in M  denoted by )2,.......,2,1( rnBuh
B  . Thus we have 
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uumum
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,0

0,
                                       (3.2) 

If ),( A
i

a
i vv  be the matrix inverse to ),( h

B
h
b uu , then we can write  
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                                         (3.3) 

a
b  denotes the Kroneker delta. Also 

h
i

h
A

A
i

h
a

a
i uvuv   

In view of the equations (3.2) and (3.3), we have 
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Thus we have 
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,0

0,
                                        (3.4) 

Since 0fm , we have 0j
h

h
i mf . Contracting with A

jv  and using (3.4), we get 

0A
h

h
i vf  

Again since h
a

j
a

h
j uul  , therefore 

a
i

h
a

a
i

j
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h
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or                                                         a
i

h
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A
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h
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Thus we have 

a
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Similarly we can show that 
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Let us now define 

A
i

A
j

a
i

a
jji vvvvg   

Then jig  is globally defined positive definite Riemannian metric relative to which 

),( h
B

h
b uu  form an orthogonal frame and 

i
Aji

A
j

i
aji

a
j ugvugv  ,  

Let us further put 

A
i

A
jji

a
i

a
jji vvmvvl  ,  

Thus 

jijiji gml   

The following equations can be proved easily 
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0  

If we put 

)(
2

1
ij

t
s

s
tjijiji gffmgG   

then jiG  is globally defined Riemannian metric and satisfies 

i
Aji

A
j uGv     and   ti

t
jji Gmm   

Now 

                               }),(),({
2

1
),( j

A
i
a

t
s

s
tAaAaAa uuffuumuuguuG              (3.5) 

Since L  and M  are orthogonal with respect to Riemannian metric g , hence in 

view of above equation (3.5), it follows that  L  and M  are also orthogonal with 

respect to G . Hence we have the theorem. 
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Theorem 3.1 Let M be a n2 dimensional differentiable manifold equipped with 

general even order structure of rank n2 . Then there exist complementary 

distributions L  and M  and a positive definite Riemannian metric G  with 

respect to which L  and M  are orthogonal. 
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