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Abstract

K. Yano defined and studied the structures defined by a tensorfield f (s 0) of type
(1, 1) satisfying f*+f =0, f*+f>=0([1], [3]). In this paper, we have
considered the structure of order 2ndefined by (1, 1) tensorfield f where n is a
positive integer. Certain interesting results have been obtained. Local coordinate
system is introduced in the manifold and it has been shown that there exist

complementary distributions L° and M* and a positive definite Riemannian

metric G such that they are orthogonal.
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1 General even order structure

Let M be an m -dimensional differentiable manifold of differentiability classC* .

Suppose there exists on M , a tensor field f (= 0) of type (1, 1) satisfying

f2" +af "+bl,, =0

(1.1)

where n is a positive integer (n>1), a,b scalars not equal to zero and 1,

denotes the unit tensor field.

Then we say that the manifold M is equipped with general even order structure.

We now prove the following theorem:

Theorem 1.1 The general even order structure is not unique.

Proof. Let ube a non-singular real valued function and f' a tensorfield of type
(1, I) on M such that
uf'="~fu (1.2)
Then, by (1.2)
M= 1=
In a similar manner, we have
uf =1yt ="y
Therefore
p(f)" +au(f)" +bul, =(f"u+a(f)" u+bl, u

=(f*+af"+bl,, )u
by (1.1) -0

Since u is non-singular we have

(f)*" +a(f")" +bl,, =0
Thus f' gives to M another general even order structure. Therefore, such

structure is not unique. 0
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Theorem 1.2 The rank of the general even order structure is equal to dimension
of the manifold.

Proof. Let M be of dimensionm . If X be a vector field on M such that
f(X)=0= f’(X)=f’(X)=...= f"(X)=0.
Also f2"(X)=0.Hence from (1.1) it follows that X =0.
Hence kernel of f contains only zero vector field. So if v(f)be nullity of f,
v(f)=0.
If p(f)berank of f , then from a well known theorem of Linear Algebra
p(f)+v(f)=dimension of M
As v(f)=0, therefore
p(f)=m

Hence we have the theorem. 0

Theorem 1.3 Let fand f'be two general even order structures on a

differentiable manifold M such that the equation (1.2) holds. If V is an

eigenvector of f' corresponding to some eigenvalue, £V is the eigenvector of f

corresponding to same eigenvalue.

Proof. As given, V is the eigenvector of f' for the eigenvalue A. Then

f'vV =4V
Therefore
(V) = u(AV)
or by (1.2)
fV)=A(V)
So uV is the eigenvector of f for the same eigenvalue A . O

Theorem 1.4 The dimension m of the manifold M equipped with general even

order structure satisfying the equation (1.1) for a* < 4b is even.
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Proof. Let V be eigenvector of f corresponding to eigenvalue 4. So
fV)=aAv, f°(V)=AV,.., f"V)=2"V,...
Hence by virtue of the equation (1.1), it follows that
2" +al"+b=0

which has solution of the form

n_—axva’-4b

=
2

If a’<4b, the values of A" are complex. Hence the eigenvalues of f are

complex numbers. Since complex roots occur in pair, hence number of the
eigenvalues must be even. Consequently dimension of M is even and m=2n as

f has 2n non-zero distinct eigenvalues. O

2 Necessary and sufficient condition for existence of the

general even order structure

For the manifold M equipped with general even order structure, the eigenvalues

of f are given by

n_—ax+ya’-4b

AN =
2

2
Taking a’ <4b and—%:cosﬁ , #=sin6’. Then f has 2n eigenvalues

given by

/‘t:ei“, n=12,3,...,n
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io
Let P, x=12,...,n be eigenvectors of f corresponding to eigenvalue e* and

i0

«X=L12,...,n be eigenvectors for the eigenvalue € *. Then {P,} and
{Q, } are linearly independent sets.
For the set {P, ,Q, }, suppose that
a*P. +b*Q, =0, x=12,...,n and a”*,b*eR (2.1)

Then operating the above equation (2.1) by f and taking into account
0 _io
that{P, ,Q,} are eigenvectors for eigenvalues e * and e * of f, we get

i0

io L
ae*P +b'e *Q, =0 (2.2)

In view of the equations (2.1) and (2.2), we get

2i0

b*(l1-e *)Q,=0=b"=0,x=1,2,...,n

Consequently from (2.1), it follows that a* =0 as {P,} is linearly independent.
Thus the set {P, ,Q,} is linearly independent. Let us assume that =, 7,,...,m, be
tangent sub-bundles spanned by P,,P,,...,P, respectively and 7,,7,,..., T, spanned
by Q,,Q,,...,Q, respectively.
Then

T, NI =01, "N, =0¢,...,T, "N, =0
and

T, U, V..U, U, UT, U..UT,
is a tangent bundle of dimension 2n.
Thus if the manifold M admits the general even order structure of rank2n, it

possesses tangent subbundles w;,m,,...,m, each of dimension unit and subbundles

T s Ty ey Ty conjugate  to Ty Ty eens T,y respectively,  such  that

2
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Ty, T3y, Tysee T, , T, are mutually disjoint and they span together a tangent
bundle of dimension2n.

Suppose conversely that M admits the general even order structure of rank 2n.
Let  p.p..p".q'.q%....q"be  l-forms dual to  vector fields

P..P,,...P,,Q,,Q,,...,Q, respectively. So

P'OP+ P OP, 4.+ p"OP, +9' ®Q, +9° ®Q, +.....+q" ®Q, = |,
or equivalently p*®P, +q*®Q, =1,,, X takes the values 12,.....n and

I, denotes the unit tensor field.

Let us now put
_ing ing
f=e Xp"®P +e X q*®Q,
Then it is easy to show

in@ in@

fN=ex p*®P +e *q*®Q,
and
f"=p"®P,+0"®Q,

Thus
ino _ing
f"+af"=(a+e * )p*®P, +(b+e *)q*®Q, (2.3)

It is possible to set
ind _ing

(a+e X )=(b+e X )=-b
Hence the equation (2.3) takes the form

f2"+af " =—b{p* ®P, +9* ®Q,}
or f2" +af " +bl,, =0

Thus the manifold M admits the general even order structure of rank 2n. Thus we

have.
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Theorem 2.1 In order that the differentiable manifold M admits the general even

order structure of rank2n, it is necessary and sufficient that it possesses tangent
subbundles =,,m,,...,m,each of dimension unit and their respective complex
conjugates 7,,%,,..., %, such that

TN =0, T,y =@, ..., T, T, =,

and they span together a tangent bundle of dimension2n.

3 General even order structure when b=0

Suppose the manifold M admits the general even order structure for b =0. Hence
we have
f"+af"=0 (a=0)

If we take the operators

|=-af " and m=1+af ™" 3.1
Then it is easy to show

=1, m*=m, l+m=1, Im=ml=0.
Thus for general even order structure for b =0, the operators | and m defined by
(3.1) when applied to the tangent space of M at a point are complementary

projection operators. Corresponding to projection operators landm, we get

complementary distributions L and M ™ respectively. If rank of f is constant

every where and equal to r, the dimensions of L and M are r and (n-r)

respectively.
Let us now introduce in the manifold M a local coordinate system and denote by

h., h. h
£ 1 m

i i

the local components of f, | and m respectively.
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h, i hy,i h (3-2)
m;u, =0, mjug =Ug
If (Via,viA) be the matrix inverse to (ug , ug) , then we can write
vaup =382 ,viug =0
IA t: ’ AI iB A 3-3)
&2 denotes the Kroneker delta. Also
h h h
Viaua +ViAUA = 5|
In view of the equations (3.2) and (3.3), we have
AMVvHUL =82,V g =0
(Vi up =0, (mi'vy up = 53
Thus we have
I"vd =v2 I'vA =0
i Vh i o' Yh (3-4)

mivd =0,m'v/ =v/

Since fm =0, we have fihmr‘; = 0. Contracting with VJA and using (3.4), we get

fihvi =0
Again since I?ug =u!, therefore
ulv? =ufv?
or 17 (5] - ulvy=ufv?
Thus we have
Iih = u;‘via

Similarly we can show that

h . .hoA
m; =U,pVY;
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Let us now define

_ya,,a A, A

Then g;; is globally defined positive definite Riemannian metric relative to which
(u{)‘ ,U g) form an orthogonal frame and
N :
Vi =05Us,Vi =0 jiUp

Let us further put

Thus
i +mji =g
The following equations can be proved easily
IEIngts = Iji
lim’g, =0
mtjmis O =My
If we put
Gji :%(gji +mj + £ fstgij)
then Gj; is globally defined Riemannian metric and satisfies
Vi =Gju, and my =mjG,
Now

1 P
G(UgsUa) =5 {0(Ua,Up)+ M(Ug,Up)+ T FiUaUA} (3.5)

Since L* and M ™ are orthogonal with respect to Riemannian metric ¢, hence in

view of above equation (3.5), it follows that L" and M ™ are also orthogonal with

respect to G . Hence we have the theorem.
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Theorem 3.1 Let M be a 2ndimensional differentiable manifold equipped with

general even order structure of rank2n. Then there exist complementary

distributions L and M* and a positive definite Riemannian metric G with

respect to which L* and M ™ are orthogonal.
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