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Applying the Fock spaces-based tools to the

modeling of RBF neural networks: a quantum

RBF neural network approach
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Abstract

Radial Basis Function (RBF) neural networks are multi-layer feed for-
ward networks widely used for pattern recognition, function approxi-
mation and data interpolation problems in areas such as time series
analysis, image processing and medical diagnosis. Rather than using
the sigmoid activation function as in back propagation networks, the
hidden neurons in a RBF neural network use a Gaussian or some other
radial basis function. As part of a theoretical and experimental study of
RBF neural networks, in this paper we adopt a Fock spaces-based ap-
proach, and show how it can be applied to the modeling a RBF neural
network. Specifically, we are working to explore and to understand the
new theoretical and operational aspects of this kind of neural network
from a quantum perspective.
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1 Introduction

Quantum theory and quantum theory based experimentation had opened

the possibility that physical non-causal relationships, in the Aristotelian sense,

can be modeled mathematically. These relationships are known as quantum

“superposition” and “entanglement”. For example, the spin of protons or

electrons may be even correlated for considerable spatial distances without

any interaction causal (Aristotelian type) between them -if there is a causal

interaction in this phenomenon, it should operate faster than the speed of light

and then would contradict the theory of relativity.

Basing on the above, we consider in this proposal neural signal processing

as a process of quantum physics rather than classical physics, since quantum

physics is a mechanism capable of exhibiting a lot of coherent processes at the

quantum level (original discussion can be seen in [1], a study from the point

of view of physics in [2] and a version with further explanation in [3]).

Quantum physics opens new possibilities for conceptualizing the mecha-

nisms that occur at the neuronal level, these possibilities include both the

conception of neural dynamics as a quantum process and as a process in high-

dimensional spaces (like the space-model, currently proposed in string theory

[4, 5]). Therefore, the application of a mathematical approach to the dynamic

cerebral theory would allow us to use the generated quantum physics, in order

to provide new tools for modeling of brain processes, which are highly depen-

dent on chemical and ionic processes. For example, release of neurotransmitters

from presynaptic terminals is controlled by the movement of calcium ions and

these ions are small enough so they can be governed by deterministic laws of

classical physics.

Quantum theory, in principle, could be used to describe the dynamics of

ions in the brain, and once established this mechanical description, it could

be used for incremental modeling of synapses, neural circuits, neural layers,

and neural networks to achieve modeling an entire neuronal region. According

to this quantum approach, description of the brain, from the point of view
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of the second quantization, is itself an expansion to a high-dimensional space

(infinite dimensional Hilbert space). The second quantization is the standard

quantum formulation for modeling the dynamics of a multi-particle system,

resulting in significant use in both Quantum Field Theory (since a quantized

field is an operator with many degrees of freedom) and the Quantum Theory

of Condensed Matter (given that the study involves many particles).

A perfect scenario for exploring the use of this quantum approach in mod-

eling neural signal processing is provided by artificial neural network models

[6]. In this paper, we propose a quantum model for artificial neural networks,

based on a Hilbert space through the second quantization. The mathematical

constructions of such Hilbert space leads to impose the following restrictions:

1) we assume that the total capacity of neuronal space is Ω ⊂ R3, and 2) this

capacity can be decomposed into independent components Ω1,...,Ωn, each of

them responsible for various aspects of neural signals, i.e., each component

representing a particular type of information in the neural signals. In this

paper, we show how our Hilbert space-based approach can be applied to the

modeling of a RBF neural network. Accordingly, initially we present a review

of mathematical preliminaries, focused on the definition of Fock space (section

2). In section 3 we present and discuss our Fock space-based approach for

modeling neural signal spaces. In section 4 the theoretical aspects of artificial

networks are introduced. Then in section 5 we develop and discuss a study

case the quantum RBF Neural Network Approach. Finally, section 6 concludes

the paper with the discussion of the results obtained.

2 Mathematical Preliminaries

In this section we give the definition of the Fock space, which is a new

Hilbert space builded from a given Hilbert space.

Let H1 and H2 be Hilbert spaces; for each ϕ1 ∈ H1 and ϕ2 ∈ H2, the

product ϕ1⊗ϕ2 denotes the bilinear form that acts on H1×H2 by the following

rule:

(ϕ1 ⊗ ϕ2)(ψ1, ψ2) = 〈ψ1, ϕ1〉1〈ψ2, ϕ2〉2,

where 〈·, ·〉i is the inner product in the Hilbert space Hi.
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Let E be the set of all finite linear combinations:

E = {
n∑

i=1

αi(ϕi1 ⊗ ϕi2) : ∀i = 1, ..., n ϕi1 ∈ H1, ϕi2 ∈ H2, αi ∈ C}.

We define an inner product 〈·, ·〉 over E , as follows:

〈ϕ⊗ ψ, η ⊗ µ〉 = 〈ϕ, η〉1〈ψ, µ〉2.

This definition extends to all E by the bilinearity property and it can be proved

that 〈·, ·〉 is positive definite and well defined.

Definition 2.1. Let be the space H1 ⊗H2 as the completation of E under

the inner product 〈·, ·〉 defined above. H1⊗H2 will be called the tensor product

of H1 and H2; H1 ⊗H2 is a Hilbert space.

We have the following two propositions whose proofs can be found in [7].

Proposition 2.2. If {ϕk} and {ψl} are orthonormal basis of H1 and H2

respectively, {ϕk ⊗ ψl} is an orthonormal basis of H1 ⊗H2.

Proposition 2.3. Let (M1, µ1) and (M2, µ2) be measure spaces, and let

consider the spaces L2(M1, dµ1) and L2(M2, dµ2). Then, there exists a unique

isomorphism from L2(M1, dµ1)⊗L2(M2, dµ2) to L2(M1×M2, dµ1⊗ dµ2) such

that, f ⊗ g 7→ f · g.

Definition 2.4. If {Hn}∞n=1 is a sequence of Hilbert spaces, let us define

the direct sum space as the set

H =
∞⊕

n=1

Hn =

{
{xn}∞n=1 : xn ∈ Hn,

∞∑
n=1

‖xn‖2
Hn

<∞

}
.

Again, the set H is a Hilbert space under the inner product 〈·, ·〉 : H×H −→ C
given by

〈{xn}∞n=1, {yn}∞n=1〉H =
∞∑

n=1

〈xn, yn〉Hn .
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Definition 2.5. Let H be a Hilbert space, we denote by H⊗n
the tensorial

product of n-th order, i.e, H⊗n
= H ⊗ H ⊗ · · · ⊗ H. Let H0 = C, and we

introduce

Γ(H) =
∞⊕

n=0

H⊗n

.

Γ(H) is called the Fock space over H; this space will be separable if H is

separable.

If we consider (Ω, dµ) as the measure space with Lebesgue measure re-

stricted to Ω ⊂ R3, then we can form the Hilbert space H = L2(Ω), in which

case, an element ψ ∈ Γ(L2(Ω)) is a sequence of functions that is of the form

ψ = {ψ0, ψ1, ψ2, · · · }

where ψ0 ∈ C, and for all k, ψk ∈ L2(Ωk). From Definition 2.4 we have that

the inner product and the norm in Γ(H) are:

〈ψ, ϕ〉Γ(H) = ψ0ϕ0 +
∞∑

k=1

〈ψk, ϕk〉L2(Ωk),

‖ψ‖2
Γ(H) = |ψ0|2 +

∞∑
k=1

〈ψk, ψk〉L2(Ω)⊗k

= |ψ0|2 +
∞∑

k=1

∫
Ωk

|ψk(x1, x2, · · · , xk)|2dx1 · · · dxk <∞.

To conclude this section we define for each g ∈ H the exponential vector

ψ(g), of argument g, whose components are given by:

ψ0 = 1, ψk(g) =
1√
k!
g ⊗ · · · ⊗ g; (1)

it can be shown [8] that the set of exponential vectors over the Hilbert space

H is dense on Γ(H).

3 Brain Signal Space from a Quantum Pers-

pective

Magnetoencephalography (MEG) and electroencephalography (EEG) di-

rectly measure the magnetic field or electric potentials caused by neural acti-

vation. The major sources of both the EEG and MEG are widely accepted to
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be localized current sources in the cerebral cortex. It is now well established

that signals in the brain are processed by cells known as neurons. Much of

the related literature uses a set of equivalent current dipoles or random point

fields to represent these localized sources [2]. It is known that measurements

concerning the brain activity such as MEG or EEG and other techniques are

based on quantum principles. For this reason it would seem obvious that a

quantum approach should be more suitable than a classical (non quantum)

approach for studying the interaction of neural signals. The human brain

contains about 100 billion neurons. Therefore, a lot of signals could be de-

scribed in terms of a classical probabilistic model according to the fact that

the signals are represented by populations of excited neurons. However, there

are many well-known facts that are in contradiction with the classical models.

For instance, establishing the fact that changes in some region of the brain

have immediate consequences concerning the other regions is in contradiction

to classical models. Moreover, there is no special region where the memory

is localized, namely, one cannot distinguish neurons supporting signals and

neurons supporting the memory (neurons permanently change their purpose

without any loss of information).

In our quantum approach, for describing interactions between neural sig-

nals, we will represent the activity in different parts of the brain using certain

beam splitters well-known in quantum optics. Hereby, a collapse of a certain

state can occur (like in the case of a quantum measurement). This collapse

causes a rapid decrease of the density of the excited neurons, after a short

period of increase of that density caused by the accumulation of some ele-

mentary quanta produced by the neural cells. Both events (i.e., decrease and

increase) could be measurable considering an intrinsic uncertainty as a result

of this quantization. Denoting by Ω the volume occupied by the brain in

three dimensional space R3, then we consider, from a quantum perspective,

the space of particles inside Ω as the Hilbert space L2(Ω, µ), where µ is the

usual Lebesgue measure.

Given that a neuron is excited if its post-synaptic potential exceeds a cer-

tain threshold, then we can state, as part of the quantum approach, the fol-

lowing postulate:

A neuron is excited if and only if a quantum particle is located inside the

neuron.
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Thus, we can consider the space of indistinguishable particles, which, in

mathematics, is the symmetrization of the Fock space, and which we denote

by Γ(L2(Ω, µ)), or just by Γ(L2(Ω)), i.e.,

H = Γ(L2(Ω)) = {η : η is an excited neuron within Ω}.

In addition, if we make the decomposition of a neural region into subregions

(measurable subspaces), then we can consider our space of excited neurons as:

H = Γ(L2(Ω)) =
n⊗

k=1

Γ(L2(Ωk)).

This decomposition is consistent with both the fact that a neural region is

subdivided into areas intended to perform different tasks and with the possi-

bility that a signal can be decomposed in terms of other elemental signals. To

describe the interaction between two signals will use the unitary operator Θ

acting on the space:

H⊗H =
n⊗

k,l=1

{Γ(L2(Ωk))⊗ Γ(L2(Ωl))}

If we consider that the brain is characterized by a parallel and distributed

processing [1], then the operator Θ can be expressed as:

Θ =
n⊗

k,j=1

Θk,l

where each Θk,l is an unitary operator acting on: Γ(L2(Ωk)) ⊗ Γ(L2(Ωl)). A

proposal for the explicit form of Θ acting on exponential vectors (note that

the exponential vectors form a dense subset in Γ(L2(Ω))) is given by:

Θr(ψ(η1)⊗ ψ(η2)) = ψ(r1η1 + r2η2)⊗ ψ(r3η1 + r4η2)

where η1, η2 ∈ L2(Ω) and ri ∈ R, with |r1|2 + |r2|2 = 1 and |r3|2 + |r4|2 = 1.

To fulfill the condition (unitarity), ΘΘ = IH⊗H taking into account points

in the Bloch sphere [9], we can take:

rj =
1√
2
, j = 1, 2, 3; r4 = − 1√

2

or

rj = − 1√
2
, j = 1, 2, 3; r4 =

1√
2
.
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So if we choose the first possibility, the interaction of two neural signals η1,

η2 would be modeled by the unitary operator Θ on H⊗H by:

Θ(ψ(η1)⊗ ψ(η2)) = ψ(
1√
2
(η1 + η2))⊗ ψ(

1√
2
(η1 − η2)). (2)

4 Theoretical Aspects of Artificial Networks

Artificial neural networks (ANN) are mathematical models inspired by the

structure and functioning of biological neural networks [6]. These models are

conceived to emulate a number of functions performed by the brain, such

as pattern recognition, memory, learning and generalization or abstraction of

knowledge, among others.

4.1 The Artificial Neuron

Artificial neurons are the constitutive units in an artificial neural network.

An artificial neuron can be seen as a processing unit which receives one or

more inputs and combines them to produce an output.

 

X1 

X2 

Xj 

Xn 

1 

W1 

W2 

Wj 

Wn 

 

net y = f(net) 

Figure 1: Artificial Neuron Model
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Figure 1 shows one of the artificial neuron models widely reported in the

literature. The meaning of the terms and symbols used in this figure are

explained below.

X1, X2, ..., Xn, 1 are the n+ 1 input signals.

W1,W2, ...,Wn, Θ are the weights, representing the strength of the synaptic

connection.

The function net determines how the network inputs {Xj : 1 ≤ j ≤ N} are

combined inside the neuron.

In almost all artificial neuron models all inputs Xj are weighted by the

synaptic transmission efficiency {Wj : 1 ≤ j ≤ N} and are summed. In this

case, the neuron input consists of the value.

net =
N∑

j=1

WjXj + Θ

The quantity Θ is called the bias and is used to model the threshold.

The resulting value net meaning the degree in which the artificial neuron is

activated as a result of inputs received. On the biological level, this is analogous

to the values of the Resting Membrane Potential (RMP) as a result of the

spatiotemporal summation of postsynaptic potentials.

The function f(net) models the axon of a biological neuron and its value

is propagated and received as an input by another neuron, through a synapse.

This function is known as transfer function. There are a lot of transfer func-

tions reported in literature [6].

A commonly used criterion in selecting a transfer function is to ensure both

the best generalization and the fast learning of the neural model (i.e., single

artificial neuron as perceptron model or multilayer neural network). Among

the transfer functions, commonly used in neural models are: Identity, Hard-

limited threshold, Linear threshold, Sigmoid function, Hyperbolic tangent and

Gaussian. As seen below, Gaussian function - expression (3) - is a radial basis

function commonly used in Radial Basis Function (RBF) Neural Networks; as

will be seen in the next section.

f(net) =
1√
2πσ

exp(−1

2
(
net− µ

σ
)2). (3)
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4.2 Radial Basis Function (RBF) Networks

Radial Basis Function (RBF) neural networks [10, 11] are multi-layer feed

forward networks, composed of an input layer; one hidden layer and an output

layer (see Figure 2). Neurons in the hidden layer perform local processing,

using Radial Basis Function (RBF) as activation functions.

X1 

Xi 

Xp 

Y1 

Yi 

Yr 

Input layer Hidden layer Output layer 

Ø( )1 

Ø( )i 

Ø( )m 

Radial Basis Function Ø( )i: 

Figure 2: Structure of a Typical RBF Neural Network

RBF Neural Networks define hiperelipses or hyperspheres that divide the

input space. This kind of neural network has found its main applications in

areas such as time series analysis, image processing and medical diagnosis.

A radial basis function is a real-valued function whose value depends only

on the distance to the origin or to some other point C, named center, as shown

in the equations (4)

φ(X) = ||X|| either φ(X,C) = ||X − C|| (4)

where ||X − C|| is the Euclidean distance between points X, C.

Gaussian, Inverse quadratic and Inverse multiquadratic functions are ex-

amples of radial basis functions commonly used in RBF neural networks. As

already mentioned, in a RBF neural network, radial basis functions determine

the activation of the hidden layer neurons based on the received input vector

expression (5)

φi(n) = φ
( ||X(n)− Ci||

di

)
, for every i = 1, 2, . . . ,m. (5)
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where, φ is a radial basis function, Ci = (Ci1, Ci2, . . . , Cip) are the vectors

or points representing the centers of the radial basis functions, di are real

numbers, diviations of the functions and || · || is the Euclidean distance from

the input vector to the center of the function, in our case:

||X(n)− Ci|| =

√√√√ p∑
j=1

[xj(n)− cij]2.

Finally, using Gaussian radial basis function we obtain the following expres-

sion:

φ(n) = exp
(
− ||X(n)− Ci||2

2d2
i

)
.

4.3 Toward a Hilbert Spaces-based RBK Neural Net-

work

Taking into account the mathematical definitions and principles introduced

in sections 2 and 3, as well as the traditional model of RBF artificial neural

network presented above, in the next section we propose a novel model of

a RBF artificial neuron based on the mathematical tools provided by Fock

spaces. The main idea behind the proposed model is to explore and understand

new theoretical and operational aspects of this neural model from a quantum

perspective.

5 The Quantum RBF Neural Network Approach

In this section we begin by modeling a RBF artificial neuron belonging to

the hidden layer of RBF neural network. We choose the Gaussian function as

the activation function of this neuron.

Applying the definition of exponential vector given in (1) the exponential

vectors, which are a dense in Fock space Γ(L2(R)), for two Gaussian functions

given in (6), are the vectors ψ in the Fock space Γ(L2(R)) given by (7).

φ1(x1) = exp(−x
2
1

2
) φ2(x2) = exp(−x

2
2

2
) (6)
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where

ψ0(φi) = 1, ψk(φi) =
1√
k!
φi ⊗ · · · ⊗ φi, i = 1, 2; ∀k ≥ 1, (7)

Moreover, due to isomorphism of Definition 2.4, the exponential vectors for

Gaussian functions are:

ψ0(φi) = 1, ψk(φi) =
1√
k!

k∏
l=1

φi,l, i = 1, 2; ∀k ≥ 1,

Using algebraic properties of Gaussian functions we obtain:

ψk(φ1) =
1√
k!
exp(−kx

2
1

2
), ψk(φ2) =

1√
k!
exp(−kx

2
2

2
); (8)

As can be seen in the above expressions, each of the components of an expo-

nential vector, whose argument is a Gaussian RBF, is also a Gaussian function.

Based on the previous statement, the interaction of two signals given by

the operator Θ is, as defined in (2):

Θ(ψ(φ1)⊗ ψ(φ2)) = ψ(
1√
2
(φ1 + φ2))⊗ ψ(

1√
2
(φ1 − φ2)),

According to (8), the k-th component of this new exponential vector is:

Θk(ψ(φ1)⊗ ψ(φ2)) = ψk(
1√
2
(φ1 + φ2))⊗ ψk(

1√
2
(φ1 − φ2)).

Using again both Definition 2.4 and the algebraic properties of Gaussian

functions, we have:

ψk(
1√
2
(φ1 ± φ2)) =

1√
2k!

(φ1(x1)± φ2(x2))
k (9)

Hence (9) can be expressed as:

Θk(ψ(φ1(x1))⊗ ψ(φ2(x2))

= ψk(
1√
2k!

(φ1(x1) + φ2(x2))
k)⊗ ψk(

1√
2k!

(φ1(x1)− φ2(x2))
k). (10)

Taking into account both Newtons binomial expansion and the properties of

exponential functions, we obtain that the components of these new exponential

vectors are also radial basis functions (RBF). Hence, the obtained quantized

version describing the expression for the activation of a hidden neuron in a

RBF neural model is consistent with the expression of activation described in

the traditional RBF neural network, as discussed in section 4.2.



O. González-Gaxiola and Pedro Pablo González-Pérez 101

6 Conclusion

Artificial neural networks, as mathematical models inspired by the struc-

ture and functioning of the biological neural networks, have proven to be a

robust and flexible scenario for the study and exploration of aspects of brain

dynamics. In this paper we have presented the quantum version of an artificial

neural network model whose activation functions are the radial basis functions

(RBF). Considering as an example of RBF the Gaussian function, which be-

longs to the Hilbert space L2(Ω), we built the bosonic Fock space based on

the Hilbert space. The bosonic Fock space is a useful tool for modeling the

dynamics of multiparticle clusters with spatial symmetry in quantum mechan-

ics. Thus, we have proposed a theoretical neural network model in which

the interaction between neurons is given by tensor mechanisms of the Fock

spaces, obtaining a quantum model of an artificial neural network. The main

advantage of the proposed model is that the patterns of interaction between

neurons, given by equation (10), are virtually endless, and this is a very impor-

tant feature in exploring the dynamics of brain neural networks. In the future,

we plan to consider other artificial neural network models to demonstrate the

effectiveness of the Fock spaces-based approach for modeling the dynamics of

such systems.
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