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the Cayley graph generated by Pyramid graph
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Abstract

Diagnosability of a multiprocessor system is one important study
topic. A new measure for fault diagnosis of the system is called g-good-
neighbor diagnosability that restrains every fault-free node containing
at least g fault-free neighbors. CJn is the Cayley graph generated by
pyramid graph. In this paper, we prove that the 1-good-neighbor diag-
nosability of CJn is 4n− 8 for n ≥ 4.
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1 Introduction

Many multiprocessor systems take interconnection networks (networks for

short) as underlying topologies and a network is usually represented by a
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graph where nodes represent processors and links represent communication

links between processors. We use graphs and networks interchangeably. For

the system, study on the topological properties of its network is important.

Furthermore, some processors may fail in the system, so processor fault iden-

tification plays an important role for reliable computing. The first step to

deal with faults is to identify the faulty processors from the fault-free ones.

The identification process is called the diagnosis of the system. A system is

said to be t-diagnosable if all faulty processors can be identified without re-

placement, provided that the number of faults presented does not exceed t.

The diagnosability of a system G is the maximum value of t such that G is t-

diagnosable[1]. In this paper, we prove that the 1-good-neighbor diagnosability

of CJn is 4n− 8.

2 Preliminaries

2.1 Definitions and Notations

A multiprocessor system is modeled as an undirected simple graph G =

(V, E), whose vertices (nodes) represent processors and edges (links) represent

communication links. Given a nonempty vertex subset V ′ of V , the induced

subgraph by V ′ in G, denoted by G[V ′], is a graph, whose vertex set is V ′ and

the edge set is the set of all the edges of G with both endpoints in V ′. The

degree dG(v) of a vertex v is the number of edges incident with v. We denote

by δ(G) the minimum degrees of vertices of G. For any vertex v, we define

the neighborhood NG(v) of v in G to be the set of vertices adjacent to v. u

is called a neighbor or a neighbor vertex of v for u ∈ NG(v). Let S ⊆ V . We

use NG(S) to denote the set ∪v∈SNG(v)\S. For neighborhoods and degrees,

we will usually omit the subscript for the graph when no confusion arises. A

graph G is said to be k-regular if for any vertex v, dG(v) = k. The connectivity

κ(G) of a graph G is the minimum number of vertices whose removal results

in a disconnected graph or only one vertex left. A fault set F ⊆ V is called a

g-good-neighbor faulty set if |N(v) ∩ (V \F )| ≥ g for every vertex v in V \F .

A g-good-neighbor cut of a graph G is a g-good-neighbor faulty set F such

that G−F is disconnected. The minimum cardinality of g-good-neighbor cuts
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is said to be the g-good-neighbor connectivity of G, denoted by κ(g)(G). For

graph-theoretical terminology and notation not defined here we follow [2].

A system G = (V, E) is g-good-neighbor t-diagnosable if F1 and F2 are

distinguishable for each distinct pair of g-good-neighbor faulty subsets F1 and

F2 of V with |F1| ≤ t and |F2| ≤ t. The g-good-neighbor diagnosability tg(G)

of the system G is the maximum value of t such that G is g-good-neighbor

t-diagnosable.

Theorem 2.1. For any given system G, tg(G) ≤ tg′(G) if g ≤ g′.

In a system G = (V, E), a faulty set F ⊆ V is called a conditional faulty

set if it does not contain all of neighbors of any vertex in G. A system G

is conditional t-diagnosable if every two distinct conditional faulty subsets

F1, F2 ∈ V with |F1| ≤ t, |F2| ≤ t, are distinguishable. The conditional diag-

nosability tc(G) of G is the maximum number of t such that G is conditional

t-diagnosable.

Theorem 2.2. For a system G = (V, E), t(G) = t0(G) ≤ t1(G) ≤ tc(G).

2.2 Pyramid graph

In this section, its definition and some useful properties are introduced.

In the permutation
(

1 2 ... n
p1 p2 ... pn

)
, i −→ pi. For the convenience, we denote

the permutation
(

1 2 ... n
p1 p2 ... pn

)
by p1 p2 . . . pn. Every permutation can be

denoted by a product of cycles. For example,
(
1 2 3
3 1 2

)
= (132). Specially,(

1 2 ... n
1 2 ... n

)
= (1). The product στ of two permutations is the composition

function τ followed by σ, that is, (12)(13) = (132).

Let [n] = {1, 2, · · · , n}, and let Sn be the symmetric group on [n] containing

all permutations p = p1p2 · · · pn of [n]. It is well known that {(1i) : 2 ≤ i ≤ n}
is a generating set for Sn. So {(1, i) : 2 ≤ i ≤ n} ∪ {(i, i + 1) : 2 ≤ i ≤
n − 1} is also a generating set for Sn. Pyramid graph is the graph (V, E),

V = {1, 2, · · · , n}, E = {(1i), (2j)|i = 2, 3, · · · , n, j = 3, 4, · · · , n}. The n-

dimensional Cayley graph generated by Pyramid graph CJnis the graph with

vertex set V (CJn) = Sn in which two vertices u, v are adjacent if and only if

u = v(1, i), 2 ≤ i ≤ n, or u = v(2, j + 1), 2 ≤ j ≤ n− 1. It is easy to see from

the definition that CJn is a (2n− 3)-regular graph on n! vertices.
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Note that CJn is a special Cayley graph. CJn has the following useful

properties.

Theorem 2.3. For any integer n ≥ 3, CJn is (2n − 3)-regular, vertex

transitive.

Theorem 2.4. For any integer n ≥ 3, CJn is bipartite.

Proof. Suppose n ≥ 3, CJn is not bipartite. There must exist a cycle v1v2 · · · vtv1,

where t is odd. According to the definition of CJn, There exist s1, s2, · · · , st ∈
Q, where Q is the generating set of CJn, such that v2 = v1s1, v3 = v2s2, v4 =

v3s3, · · · , v1 = vtst. Therefore, s1s2 · · · st = (1) ∈ Sn. (1) is the even permuta-

tion, which contradict to t is odd. So we have CJn is bipartite.

Theorem 2.5. For any integer n ≥ 3, the girth of CJn is 4.

Proof. According to Proposition 2.4, CJn is bipartite, there is no 3-cycle in

CJn, but (1), (ab), (ab)(cd), (cd), (1) is a 4-cycle in CJ4, where (ab), (cd) ∈
Q.

Theorem 2.6. Every nonidentity permutation in the symmetric group is

uniquely (up to the order of the factors) a product of disjoint cycles, each of

which has length at least 2.

Theorem 2.7. Let H be a simple connected graph with n = |V (H)| ≥ 3.

If H1 and H2 are two different labelled graphs obtained by labelling H with

{1, 2, · · · , n}, then Cay(H1, Sn) is isomorphic to Cay(H2, Sn).

We can partition CJn into n subgraphs CJ1
n, CJ2

n, . . . , CJn
n , where every

vertex u = x1x2 . . . xn ∈ V (CJn) has a fixed integer i in the last position xn

for i ∈ [n]. It is obvious that CJ i
n is isomorphic to CJn−1 for i ∈ [n]. Let

v ∈ V (CJ i
n), then v(1n) and v(2n) are called outside neighbors of v. And we

can easily verified for any v ∈ V (Hi) the outside neighbors must be in two

different V (Hj)(j 6= i, j ∈ {1, 2, · · · , n}).

Theorem 2.8. Let CJ i
n be defined as above. Then there are 2(n − 2)!

independent cross-edges between two different Hi’s.

Proof. The number of edges between any two Hi, Hj(i 6= j) is n!

(n
2)

= 2(n− 2)!,

where n! is the number of edges among all H1, H2, · · · , Hn,
(

n
2

)
is the total

number of pair (Hi, Hj)(i 6= j).
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Theorem 2.9. Let CJn be the cayley graph generated by pyramid graph.

If two vertices u, v are adjacent, there is no common neighbor vertex of these

two vertices, i.e., |N(u) ∩ N(v)| = 0. If two vertices u, v are not adjacent,

there are at most three common neighbor vertices of these two vertices, i.e.,

|N(u) ∩N(v)| ≤ 3.

Proof. If u, v are adjacent, then the one is odd permutation, another is even

permutation in Sn. Without loss of generality, let u is odd permutation, v is

even permutation, then the neighbour of u must be the even permutation in

Sn, and the the neighbour of v must be the odd permutation in Sn. Therefore,

|N(u) ∩N(v)| = 0.

If u, v are not adjacent, it is sufficient to prove the impossibility of |N(u)∩
N(v)| ≥ 4. Suppose {(ai), (bj), (ck), (dl)} ⊆ N(u)∩N(v), |{(ai), (bj), (ck), (dl)}|
= 4. Without loss of generality, let u = (1), since (1), (ai), v, (bj), (1) is a 4-

cycle, v = (ai)(bj). (1), (ck), v, (xy), (1) is also a 4-cycle, where is (xy) ∈
E(Jn), then v = (ck)(xy). We consider the following cases.

Case 1 If (ai) is disjoint to (bj), then v = (ck)(xy) = (ai)(bj), x is equal

to one element of {a, b, i, j}, without loss of generality, let x = a, then y = i,

we have (ck) = (bj), which contradict to |{(ai), (bj), (ck), (dl)}| = 4. The rest

of subcases can be proved similiarly.

case 2 If (ai) is joint to (bj), without loss of generality, let a = b, (ai)(bj) =

(ai)(aj) = (aji). Then (ck)(xy) = v = (aji). By Theorem 2.6, x is equal to

one element of {c, k}, or y is equal to one element of {c, k}. Let x = c, then

(ck)(xy) = (ck)(cy) = (cyk) = v = (aji). So c is equal to one element {a, i, j}.
Without loss of generality, let c = a, then y = j and k = i. Therefore, we have

(ck) = (ai), it contradict to |{(ai), (bj), (ck), (dl)}| = 4. The rest of subcases

can be proved similiarly. The rest of subcases can be proved similiarly.

Therefore, |N(u) ∩N(v)| ≤ 3.

Theorem 2.10. Let CJn be the Cayley graph generated by n−dimension

Pyramid graph, then κ(CJn) = 2n− 3.

Proof. Let F = NCJn((1)), since (1) is an isolated vertex in CJn − F , then F

is a vertex cut, |F | = 2n− 3. Therefore, κ(CJn) ≤ 2n− 3.

Then we will prove that for any F ⊆ V (CJn), |F | ≤ 2n−4, F is not vertex

cut of CJn.



6 The 1-good-neighbor diagnosability of the Cayley graph...

If n = 3, CJ3 is just complete bipartite graph K3,3. Obviously, for any F ⊆
V (CJ3), |F | ≤ 2, F is not vertex cut. But F consist of all even permutations,

|F | = 3, F is a vertex cut, so κ(CJ3) = 3.

If n = 4, F = {(12), (13), (14), (23), (24)}, CJ4−F is not connected, so we

have κ(CJ4) ≤ 5.

We divide into four cases to prove, for any F ⊆ V (CJ4), |F | ≤ 4, F is not

vertex cut. For the simplicity of proof, let |F1| ≥ |F2| ≥ |F3| ≥ |F4|.
Case 1 If |F1| = 4, then |F2| = |F3| = |F4| = 0. Since for any two

Hi, Hj(i, j = 2, 3, 4, i 6= j), there are 4 cross-edges between them. Therefore,

CJ4[H2 ∪H3 ∪H4] is connected. Furthermore, for any u ∈ V (H1 − F1), there

are 2 outside neighbours in V (H2) ∪ V (H3) ∪ V (H4). So we have CJ4 − F is

connected.

Case 2 If |F1| = 3, then 1 ≥ |F2| ≥ |F3| ≥ |F4|. There are 4 cross-edges

between H3, H4, so CJ4[H3, H4] is connected. For any u ∈ V (H1 − F1), there

are two neighbours in V (H2) ∪ V (H3) ∪ V (H4), and one of them must be in

V (H3) or V (H4), so CJ4[(H1 − F1) ∪ H3 ∪ H4] is connected. And for any

v ∈ V (H2−F2), there are 2 neighbours in the two of V (H1)∪V (H3)∪V (H4),

and one of them must be in V (H3) or V (H4), so CJ4[(H2 − F2) ∪H3 ∪H4] is

connected. Therefore, CJ4 − F is connected.

Case 3 If |F1| = 2, then 2 ≥ |F2| ≥ |F3| ≥ |F4|.
Subcase 3.1 If |F2| = 2, then |F3| = |F4| = 0. H1 − F1 and H2 − F2

are bipartite graph K1,3 or K2,2. Obviously CJ4[H1 − F1] and CJ4[H2 − F2]

are connected, there are 4 cross-edges between H3 and H4, so CJ4[H3 ∪ H4]

are connected. For any u ∈ V (H1 − F1), there are two neighbours in the two

of V (H2) ∪ V (H3) ∪ V (H4), one of them must in V (H3) or V (H4), therefore,

CJ4[(H1 − F1) ∪H3 ∪H4] is connected. Similiarly, CJ4[(H2 − F2) ∪H3 ∪H4]

is connected too. So CJ4 − F is connected.

Subcase 3.2 If |F2| = 1, according to inequality 4 > 2 > 1, that is,

the number of cross-edges between any two Hi and Hj(i 6= j) is bigger than

the number of |Fi|(i = 1, 2, 3), so CJ4[(H1 − F1) ∪H4], CJ4[(H2 − F2) ∪H4],

CJ4[(H3 − F3) ∪H4] are connected. Therefore, CJ4 − F is connected.

Case 4 If |F1| = 1, then 1 ≥ |F2| ≥ |F3| ≥ |F4|. According to inequality

4 > 1, that is, the number of between any two Hi and Hj(i 6= j) is bigger than

the number of |Fi|(i = 1, 2, 3, 4). Therefore, CJ4 − F is connected.

Combin these four cases, we have κ(CJ4) = 5.
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Suppose κ(CJn−1) = 2(n− 1)− 3 = 2n− 5, then for any F ⊆ V (CJn), F

is not vertex cut.

When n ≥ 5, we divide into three cases to prove κ(CJn) = 2n− 3.

Case 1 If |Fi| ≤ 2n − 6(i = 1, 2, · · · , n), then F is not vertex cut of

Hi(i = 1, 2, · · · , n), so CJn[Hi − Fi](i = 1, 2, · · · , n) are connected, and 2(n−
2)! > 2(2n− 6), therefore, CJn − F is connected.

Case 2 If there exist i ∈ 1, 2, · · · , n, such that |Fi| = 2n − 5, without

loss of generality, let |F1| = 2n − 5, then |Fi| ≤ 1(i = 2, 3, · · · , n). Since

κ(CJn) = 2(n − 1) − 3 = 2n − 5 > 1, CJn[Hi − Fi](i = 2, 3, · · · , n) are

connected. 2(n − 2)! > 1, that is, the number of crossedges between two Hi

and Hj is much bigger than |Fi|, so CJn[(H2−F2)∪(H3−F3)∩· · ·∪(Hn−Fn)]

is connected.

If F1 is just the vertex cut of H1, it produce several connected subgraphs

D1, D2, · · · , Dk when we delete F1 from H1. For any j ∈ {1, 2, · · · , n}, every

vertex of Dj have two neighbours belonging to V (Hi)(i = 2, 3, · · · , n), and

2 > 1, therefore, CJn−F is connected. If F1 is not vertex cut of H1, similiarly

with disccuse above, CJn − F is connected.

Case 3 If there exist i ∈ {1, 2, · · · , n}, such that |Fi| = 2n − 4. Without

loss of generality, let |F1| = 2n − 4, then |Fi| = 0(i = 2, 3, · · · , n). For every

vertex of H1−F1, it must exist two neighbours belonging to Hi(i = 2, 3, · · · , n).

Therefore, CJn − F is connected.

Sum up in conclusions, κ(CJn) = 2n− 3.

3 The 1-good-neighbor connectivity for the C-

ayley graph generated by n-dimensional Py-

ramid graph

In this section, we shall show the 1-good-neighbor connectivity of the Cay-

ley graph CJn generated by n-dimensional Pyramid graph .

Theorem 3.1. For n ≥ 4, the 1-good-neighbor connectivity CJn is 4n− 8,

i.e., κ(1)(CJn) = 4n− 8.
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Proof. Let A = {(1), (12)}, F1 = NCJn(A), F2 = F1 ∪ A. Since CJn − F1 is

disconnected (K2 and CJn−F2), F1 is a vertex cut. It is sufficient to prove for

any v ∈ V \ F1, |N(v) ∩ V \ F1| ≥ 1. Obviously, for any v ∈ V (K2), δ(v) = 1.

By Prosition 2.10, there is at most 3 common vertices between v and (1) or v

and (12), so for any v ∈ V \ F2, δ(CJn − F2) ≥ 2n − 3 − 3 > 0 when n ≥ 4.

Therefore, F1 is a 1-good neighbour cut, κ(1)(CJn) ≤ 4n− 8.

We prove for any F , |F | ≤ 4n− 9, F is not a 1-good neighbour cut of CJn.

If n = 3, CJ3 = K3,3. Obiviously, |F | ≤ 2, F is not a vertex cut. When

|F | = 3, there are two cases in the following. If the three vertices in one part,

it produce three isolated vertices. If the three vertices in two parts, F is not a

vertex cut.

If n = 4, CJ4 can be partitioned into H1, H2, H3, H4, Hi
∼= K3,3(i =

1, 2, 3, 4), there are 4 crossedges between Hi and Hj(i 6= j, i, j = 1, 2, 3, 4).

If F1| = 6, 0 ≤ |Fi| ≤ 1(i = 2, 3, 4). By inequality 4 > 1 + 1 = 2, CJ4 − F

is connected.

If |F1| = 5, 0 ≤ |Fi| ≤ 2(2, 3, 4). If u ∈ V (H1 − F1) is an isolated vertex,

then F is not satisfied to definition of 1-good neighbour cut. If u ∈ V (H1−F1)

is not an isolated vertex, by inequality 4 > 2, CJ4 − F is not connected.

If |F1| = 4, 0 ≤ |Fi| ≤ 3(i = 2, 3, 4). By inequality 4 > 3, H2 − F2, H3 −
F3, H4 − F4 are connected. If u, v ∈ V (H1 − F1) are isolated vertices, then F

is not a 1-good neighbour cut. If u, v ∈ V (H1−F1), then u, v are adjacent, by

Proposition 2.9, there is no common neighbour. For both u and v, there are 4

outside neighbours, and by inequality 4 > 3, CJ4[H1 − F1] ∪ CJ4[(H2 − F2) ∪
(H3 − F3) ∪ (H4 − F4)] is connected. Therefore, CJ4 − F is connected.

Suppose |F | ≤ 4n − 13, F ⊆ V (CJn), F is not a 1-good neighbour cut of

CJn−1.

We can partition CJn into H1.H2, · · · , Hn, Hi
∼= CJn−1(i = 1, 2, · · · , n).

Let F = F1 ∪ F2 ∪ · · · ∪ Fn, Fi ∩ Fj = ∅(i, j = 1, 2, · · · , n, i 6= j), and |F1| ≥
|F2| ≥ · · · ≥ |Fn|. We divide cases in the following.

Case 1 If |Fi| ≤ 4(n− 1)− 9 = 4n− 13, then by assumption, Hi − Fi(i =

1, 2, · · · , n) is connected. And by inequality 2(n− 2)! > 4n− 13, so CJn − F

is connected.

Case 2 If 4n− 11 ≥ |F1| ≥ 4n− 12, then 0 ≤ |Fi| ≤ 2(i = 2, 3, · · · , n). By

inequality 2(n− 2)! > 2 + 2 = 4 if n ≥ 5, CJ [Hi](i = 2, 3, · · · , n is connected.

By inequality 2(n − 2)! > 4n − 11 + 2 = 4n − 9 if n ≥ 5. Then CJn − F is
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connected.

Case 3 If 4n− 9 ≥ |F1| ≥ 4n− 10, then 0 ≤ |Fi| ≤ 1(i = 2, 3, · · · , n). For

any Hi, Hj(i, j = 2, 3, · · · , n), there are 2(n−2)! cross-edges between them, by

inequality 2(n − 2)! > 1 + 1 = 2, CJn[Hi − Fi](i = 2, 3, · · · , n) is connected.

For any u ∈ V (H1 − F1), there are two outside vertices adjacented to it. By

inequality 2 > 1, CJn − F is connected.

Therefore, κ(1)(CJn) = 4n− 8.
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