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Abstract 

Internal Alfvén-gravity wave tunnelling through an incompressible, inviscid, 

Boussinesq, perfectly conducting fluid in presence of a uniform horizontal 

magnetic field is investigated.  The specific cases of wave transmission due to 

the uniform fluid extending to infinity on both the sides, stratified fluid with 

discontinuity in Brunt-väisälä frequency N  at the interface and of a stratified 

fluid with discontinuity in density is derived and analysed. The transmission 

co-efficient of an internal Alfvén-gravity wave crossing over a barrier is computed.  

The effect of magnetic field on the transmission co-efficient reveal that the 

magnetic field enhances the transmission of internal Alfvén-gravity waves which 

is significant in energy transfers in conducting fluids. 
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1  Introduction  

Internal gravity waves in the upper atmosphere play an important role in the 

production of certain ionospheric phenomena [1]. A full understanding of their 

role will depend in part on an understanding of the propagation conditions met at 

all levels in the atmosphere, and more specifically, of the part played by reflection 

and ducting [2]. More recent studies of gravity wave ducting in the ocean, the 

laboratory and the atmosphere have revealed that the formation of ducting of 

gravity wave activity to be important at smaller scales as well [3].  

Internal gravity waves transport energy and momentum in density-stratified 

fluids on relatively fast time scales [4]. These waves are responsible for a variety 

of processes in the mesosphere and lower thermosphere,  generation of 

turbulence, formation of general circulation pattern of the  atmosphere, 

deposition of  net momentum, eddy conduction of heat, mixing of atmospheric 

constituents, fluctuation in atmospheric drag and nonlinear interaction with 

tidal/planetary waves leading to variability of planetary-scale motions and 

momentum and energy transfer from the troposphere to the middle  and upper 

atmosphere. Gravity waves generated in the troposphere propagate into the 

stratosphere. Perhaps most important is their role in determining the mean flow of 

the atmosphere [5]. The wave frequency of internal gravity waves is always be 

less than the buoyancy frequency. If the wave frequency is greater than buoyancy 

frequency N , the waves are evanescent and so the amplitude of these waves 

decrease exponentially with height in the medium.  

Gravity waves may be vertically propagating or trapped depending on the 

background wind, buoyancy characteristics of the atmosphere and their horizontal 
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wavelength. When trapping is essentially complete the waves are quasi-permanent 

free waves. Henceforward we refer to waves that exhibit a high degree of trapping 

and propagate horizontally in a trapping layer over many wavelengths as ducted 

waves [6].  

Energy sources for gravity wave come from latent heat, deep convection, 

shear instability and wave ducting. Evanescence of wave in a certain region can 

also cause wave ducting or tunneling and may provide a means of transporting 

vertically the energy and momentum associated with wave motions [3]. 

Earlier  studies of gravity wave ducting was confined to three mechanisms 

namely variation in atmospheric structure [7], the variation in dissipation ([8], [9], 

[11]) and the variation in the background wind [10] and [11] have shown that 

there exists another ducting mechanism valid only for gravity waves namely the 

variation in buoyancy period. The variation in the Brunt frequency could serve as 

a ducting and tunnelling mechanism which filters out and restricts the 

higher-frequency components to only the lower altitudes which is referred as 

Brunt ducting. Addition to above the Studies of the tunnelling of internal gravity 

wave motions in the atmosphere and ocean have discovered many of the important 

properties such as potential wave energy transfer in the atmosphere.  

The upward propagation of an internal wave packet impinging on a layer of 

uniform density ( 0)N =  should reflect. These waves become evanescent in 

uniform density regions so that the amplitude decreases exponentially with height. 

When the fluid becomes stratified again at the end of the uniform density layer, 

the wave will partially transmit across the interface and partially reflect of the 

layer. This is the process of internal gravity wave tunnelling [12]. Internal wave 

tunneling between two ducts in the ocean has previously been described 

theoretically by Eckart [14]. 

The Sutherland and Yewchuk [12] have derived an analytic theory for 

internal gravity wave tunneling through a weakly stratified fluid in the atmosphere. 

They have obtained the transmission coefficient of internal waves crossing a 
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weakly stratified region. This theory provides quantitative predictions of partial 

reflection and transmission of internal waves incident upon a weakly stratified 

layer. 

The theory of momentum transport by gravity waves in a conducting fluid in 

the presence of a magnetic field is an area of considerable interest in 

meteorological, geophysical and astrophysical studies [15]. The study of internal 

Alfvén-gravity wave is significant to study waveforms in noctilucent clouds, 

creation of turbulence, ionospheric drifts, travelling ionospheric disturbances, 

because the internal Alfvén-gravity waves account for the ionospheric 

irregularities. The irregularities of ionization result from the density fluctuations 

[16] and also he suggested that the reflection imposed by the temperature variation 

of the middle atmosphere would provide a suitable trapping mechanism. The 

magnetosphere itself is region of the earth's upper atmosphere and of the 

ionosphere. Hence it seems appropriate to investigate different reflection and 

trapping mechanisms due to magnetic field. Internal gravity waves in an 

unbounded fluid can be trapped to a layer of finite depth by periodic small 

variations in either the density gradient or in a weak horizontal steady current [17]. 

In spite of these applications much attention has not been given to the study of   

internal Alfvén-gravity wave tunnelling in electrically conducting fluids. In the 

present paper we have studied this problem in an incompressible, inviscid, 

Boussinesq, perfectly conducting weakly stratified fluid in the presence of a 

uniform aligned magnetic field. 

We study the tunnelling behaviour of internal Alfvén-gravity waves and 

provides an analytic prediction for the transmission co-efficient of internal 

Alfvén-gravity waves crossing the tunnelling region, a region in which 2N  is 

reduced (weakly stratified region). The results are of geophysical and 

astrophysical importance. The transmission co-efficient of an internal 

Alfvén-gravity wave crossing over a barrier is computed. The effect of magnetic 

field on the transmission of internal gravity waves is studied.  
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2  Mathematical Formulation 

We consider an electrically conducting inviscid stratified fluid in which the 

motion is two dimensional, variation being in the x  and z  directions (i.e. 

horizontal and vertical directions respectively). Initially the fluid is assumed to be 

in the state of rest. It can be shown that under these assumptions the stream 

function ψ  satisfies the following linearized equation.    
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Here, the stratification of the mean flow is described in terms of a single 

parameter which may vary with ,z  the Brunt-väisälä frequency ,N defined by 
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1
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 and the magnetic field is described by another 

parameter A , which is the Alfvén velocity  defined by  2
0 bA Hµ ρ= .  

We assume that the two-dimensional transient disturbance produced by 

temporary extraneous forces is horizontally and temporally periodic in the form 

( ) ( )[ ]tkxiz ωψψ −= expˆ  .                       (2.2) 

 

 

3  Transmisson Across Density Barrier  

We study this for the following three cases of density stratification: 

(i) Uniform density conducting fluid of finite depth 2 2L z L− < < +  

sandwiched on either side by a stratified conducting fluid extending to 

infinity, called 2N -barrrier1.  

(ii) Weakly stratified conducting fluid of finite depth 2 2L z L− < < +  

sandwiched on either side by a conducting stratified fluid extending to 
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infinity with density discontinuity at the two interfaces, called 
2N -barrrier2. 

(iii) Weakly stratified conducting fluid of finite depth 2 2L z L− < < +  

sandwiched on either side by a stratified conducting fluid extending to 

infinity with density being continuous at the interfaces, called locally 

mixed region.  

 

 

3.1 Transmission across 2N --barrier1 

In this case we have a fluid of uniform density of finite depth L bounded on 

either side by a stratified conducting fluid extending to infinity. We assume  
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This is called ‘ 2N -barrier1’ of depth L as shown in Figure 1. 

With this the solution of (2.1) takes the form 
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where 

1
2 2
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2 2 2 1Nk
k A

η
ω
 

= − − − 
, 2

0 bA Hµ ρ=  and 
k
1

=δ ,  )0(>k  is the 

well defined horizontal wave number, ( )N≤ω  is the wave frequency and we 

assume k Aω > . Applying the boundary conditions [18] to the solution (3.2) we 

get a system of four linear equations in five unknowns 1A , 1B , 2A , 2B and 3A . 
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Figure 1:  Schematic representation of the system( 2N -barrier1) 

 

 

Solving for transmitted amplitude 3A , in terms of the incident amplitude 1A , 

gives a transmission coefficient 
2

3 1mT A A= , which represents the fraction of 

energy transported across 2N -barrrier1 and is given by 
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In the limit  0→A  the above expression reduces to 
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and 
δ
1

=k   and  sT  is the limit of  mT  as 0A→  . 

The maximum value of mT  with respect to  A  is given by 
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at 
22
0

max 2 22
NA A

k k
ω

= = − .  maxA  is real if  2 2
02 Nω > .  We also note from 

expression for η  that when A kω=  the vertical wave number η tends to ∞  

so that the waves become more and more horizontal. Thus the effect of magnetic 

field is to make the wave to propagate along the magnetic field lines rather than 

allow it to propagate upwards. When A  increase further η  becomes complex 

and the waves becomes evanescent in the region 2z L≥  also.   

We have plotted the graph of mT  against A  in Figures 2a and 2b for 

various values of  0N  and  ω ⋅ From these graphs we find that the maximum 

value of mT  is the same. Thus the maximum value of mT  is independent of 0N  

and  ω  as seen from expression (3.5).  

 

   Figure 2:  Variation of Transmission coefficient mT  for 2 2
02 Nω >  and   

            (a)  2 390ω π= , 2 15k π=   and  (b) 0 0.0004N = , 2 15k π= .  
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However, when 2 2
02 Nω < , maxA  is not  real. Thus the maximum for mT  

does not exist. As  A  increases mT  continuously decreases and becomes 0 

when A kω= . This is shown in Figure 3. From (3.3) we find that when 0A = , 

m sT T=  where sT  is the transmission coefficient obtained in the hydrodynamic 

case of Sutherland and Yewchuk [13].  

 

 

Figure 3:  Variation of transmission coefficient mT  with A  for   2 2
02 Nω <  

and 0 3N =   2 15k π= , 1 0.00002N = . 

 

 

The variation of the transmission coefficient mT  with A  further is 

analysed by expanding mT  in terms of 2A  for 1A <<   using asymptotic 

expansion. When 1A << , the transmission coefficient mT  given by (3.3) can be 

expanded in the form 
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where 
( )

122 2
2

2 2

1
1 sinh

4s
LT

γ δ

γ δ δ

−
 +   = +    
 

, 
( )

2 2

3 22 2
0

k kb
N ωω

= −
−

. Here 2A  is 

positive when 2 2
02 Nω > . Thus when A  is small ( )m small A

T  increases as seen 

in Figure 2 and figure 3 for small A . In the limit 0A→  the transmission 

coefficient  ( )m ssmall A
T T→ . When 2 22 Nω <  the coefficient of 2A  is negative 

and hence the transmission coefficient decreases with A  as seen in Figure 3 for 

small values of A .  

 

 

3.2  Transmission across 2N --barrier2   

In the second case we assume a weakly stratified fluid of finite depth L 

bounded on either side by a strongly stratified fluid extending to infinity on either 

side. In this case we have  
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The transmission coefficient is given by 
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To understand how the transmission coefficient changes from 
2N -barrier1 to 2N -barrier 2 we have plotted graphs of mT and mbT  against 

A in Figure 4. 
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Figure 4: Comparison of transmission coefficients mT  and mbT  for 

2 - barrier1N and 2 - barrier2N  for 1 0.00002,N = 2 15,k π=  2 390,ω π=  

5L = . 

 

 From the Figure 4 we find that the transmission coefficient mbT  is higher 

for 2N -barrier2. This is because in region 2z L≤  the waves propagate in 

2N -barrier2 and evanescent in 2N -barrier1. 

 

 

3.3  Transmission across 2N --barrier3   

In this case,  ( )b zρ   can be assumed to vary continuously below even 

though its slope is discontinuous at 2z L= ± . However, it is more realistic to 

consider mixed regions within a stratified fluid with discontinuous density profile 

in the form: 
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where 2 2
0 0 1 1H g N and H g N≡ ≡   measure the strength of stratification 

respectively outside and within a partially mixed region of depth L. The 

corresponding squared buoyancy frequency is the same as that for the 

generalization of the 2N -barrier except for infinite spikes at 2z L= ±  where 

the density changes discontinuously by 
( )2 2
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prescribed 2N -barrier in  (3.7) we have computed the transmission coefficient 

for the case 01 NN ≤≤ω , we use the solution ( )zψ̂  given by equation (3.2), 

requiring that the ( )ˆ ,zψ  ( )
dz

zdψ̂ and ( )( )2 2 2 2ˆ ˆk g k Aρ ψ ω ψ′− − are continuous 

across the interface which is equivalent to velocity and pressure continuity. Then 

the transmission coefficient is given by  
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in which  
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The changes from 2N -barrier2 to 2N -barrier3 is observed through the 

plotted graphs of AmixT and mbT  against A  in Figure 5. 

From the Figure 5 we find that the transmission coefficient in 2N -barrier3 

is higher when A is small and lower when A  is large.  This is because as 

A increases Alfvén-gravity waves propagate more and more horizontally (i.e. 

along the direction of the magnetic field). 
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Figure 5: Comparison of transmission coefficients mbT  and AmixT  

for 2 - barrier2N  and 2 - barrier3N  for 1 0.00002,N = 2 15,k π=  2 390,ω π=  

5L = . 

 

 

5  Conclusion 

The investigation of the internal Alfvén-gravity wave tunnelling through 

an incompressible, inviscid, Boussinesq, perfectly conducting fluid in the presence 

of a uniform horizontal magnetic field reveals that in §3.1 we have obtained the 

transmission coefficient for 2N -barrier1. We have shown that the transmission 

coefficient varies with A  for various values of 2
0N , 2

1N  and 2ω . When the 

magnetic field when  2 2
02 Nω <  the transmission coefficient increases and 

attains maximum and then decrease to zero A kω= . We also note from 

expression for η  that when A kω=  the vertical wave number η tends to ∞  

so that the waves become more and more horizontal. Thus the effect of magnetic 

field is to make the wave to propagate along the magnetic field lines rather than 
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allow it to propagate upwards. Followed by the transmission coefficient in §3.2  

based on the vertical wave numbers ξ (in the region 2z L≤ ) and η (in the 

region 2z L> ) and in § 3.3 on the vertical wave numbers ξ (in the region 

2z L≤ ) and η (in the region 2z L> ) defined below (3.8) are real or 

imaginary. From the figure 5 we find that the transmission coefficient in 
2N -barrier 3 is higher when A is small and lower when A  is large.  This is 

because as A increases Alfvén-gravity waves propagate more and more 

horizontally (i.e. along the direction of the magnetic field) rather than vertically.  
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