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1 Introduction

It is known that many of the nonlinear problems that appear in Mathe-

matics and Physics can be written in the form of operator equation,

f(x, λ) = b, x ∈ O ⊂ X, b ∈ Y, λ ∈ Rn (1)

where f is a smooth Fredholm map of index zero and X, Y are Banach spaces

and O is open subset of X. For these problems, the method of reduction to

finite dimensional equation,

θ(ξ, λ) = β, ξ ∈ M, β ∈ N (2)

can be used, where M and N are smooth finite dimensional manifolds.

A passage from equation (1) into equation (2) (variant local scheme of Lya-

punov -Schmidt) with the conditions that equation (2) has all the topological

and analytical properties of equation (1) (multiplicity, bifurcation diagram,

etc) can be found in [3], [11], [13], [14].

Suppose that f : Ω ⊂ E → F is a nonlinear Fredholm map of index zero.

A smooth map f : Ω ⊂ E → F has variational property, if there exists a

functional V : Ω ⊂ E → R such that f = gradHV or equivalently,

∂V

∂x
(x, λ)h = 〈f(x, λ), h〉H , ∀ x ∈ Ω, h ∈ E,

where 〈·, ·〉H is the scalar product in Hilbert space H. In this case, the solutions

of equation f(x, λ) = 0 are the critical points of functional V (x, λ). Suppose

that f : E → F is a smooth Fredholm map of index zero, E, F are Banach

spaces and
∂V

∂x
(x, λ)h = 〈f(x, λ), h〉H , h ∈ E,

where V is a smooth functional on E. Also it is assumed that E ⊂ F ⊂ H, H

is a Hilbert space. By using a method of finite dimensional reduction (Local

scheme of Lyapunov-Schmidt) the problem,

V (x, λ) → extr x ∈ E, λ ∈ Rn

can be reduced into equivalent problem

W (ξ, λ) → extr ξ ∈ Rn.
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The function W (ξ, λ) is called key function.

If N = span{e1, ..., en} is a subspace of E, where e1, ..., en is an orthonormal

set in H, then the key function W (ξ, λ) can be defined in the form of

W (ξ, λ) = inf
x:〈x,ei〉=ξi ∀ i

V (x, λ), ξ = (ξ1, ..., ξn).

The function W has all the topological and analytical properties of the func-

tional V (multiplicity, bifurcation diagram, etc.) [13]. The study of bifurcation

solutions of functional V is equivalent to the study of bifurcation solutions of

key function. If f has a variational property, then the equation

θ(ξ, λ) = gradW (ξ, λ) = 0

is called bifurcation equation.

It is well known that in the method of Lyapunov-Schmidt, the space E

is decomposed into two orthogonal subspaces of the space E and then every

element x ∈ E can be written in the unique form as a sum of two elements

such that the solution of the equation (1) consists of the homogeneous so-

lution and the particular solution. Sapronov and his group [2, 12] used the

complement solution to find the function W (ξ, λ) which denotes the linear Ritz

approximation of the functional V (x, λ). This paper introduce a method to

find nonlinear Ritz approximation of the functional V (x, λ), such a method is

based on finding the particular solution of the equation (1).

2 The Method

Consider the nonlinear Fredholm operator of index zero f : E → F defined

by the equation

f(u, λ) = 0, λ ∈ Rn, u ∈ Ω ⊂ E, (3)

where E, F are real Banach spaces and Ω is an open subset of E. Assume

that the operator f has a variational property, i.e, there exists a functional

V : Ω ⊂ E → R such that f = gradHV where Ω is a bounded domain. The

operator f can be written as

f(u, λ) = Au + Nu = 0,
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where A = ∂f
∂u

(u0, λ) is a linear continuous Fredholm operator, ∂f
∂u

(u0, λ) the

Frechet derivative of the operator f at the point u0 and N the nonlinear op-

erator. By using Lyapunov-Schmidt reduction, the decomposition is obtained

below

E = M ⊕M⊥

F = M̃ ⊕ M̃⊥

where M = kerA is the null space of the operator A, dimM = dimM̃ = n

and M⊥, M̃⊥ are the orthogonal complements of the subspaces M and M̃

respectively. If e1, e2, ..., en is an orthonormal set in H such that Aei = αi(λ)ei,

αi(λ) is continuous function, i = 1, ..., n, then every element u ∈ E can be

represented in the unique form of

u = w + v, w =
n∑

i=1

ξiei ∈ M, M⊥v ∈ M⊥, ξi = 〈u, ei〉,

where 〈·, ·〉 is the inner product in Hilbert space H. There exist projections

p : E → M and I−p : E → M⊥ such that w = pu and (I−p)u = v. Similarly,

there exist projections Q : F → M̃ and I −Q : F → M̃⊥ such that

f(u, λ) = Qf(u, λ) + (I −Q)f(u, λ) (4)

or

f(w + v, λ) = Qf(w + v, λ) + (I −Q)f(w + v, λ).

It follows that

Qf(w + v, λ) + (I −Q)f(w + v, λ) = 0,

and hence the result become

Qf(w + v, λ) = 0,

(I −Q)f(w + v, λ) = 0.

The implicit function theorem implies that

W (ξ, δ) = V (Φ(ξ, δ), δ), ξ = (ξ1, ξ2, ..., ξn)>,

where degW ≥ 2, then the linear Ritz approximation of the functional V is a

function W defined by

W (ξ, δ) = V
( n∑

i=1

ξiei, δ
)

= W0(ξ) + W1(ξ, δ), (5)
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where W0(ξ) is a homogenous polynomial of order n ≥ 3 such that W0(0) = 0

and W1(ξ, δ) is a polynomial function of degree less than n.

Let q1, q2, ..., qm be the coefficients of the quadratic terms of the function

W1(ξ, δ), then the function W1(ξ, δ) can be written in the form of

W1(ξ, δ) = W2(ξ, δ) +
m∑

k=1

qkξ
2
k

where degW2 = d, 2 < d < n.

The nonlinear Ritz approximation of the functional V is a function W

defined by

W (ξ, δ) = V
( n∑

i=1

ξiei + Φ(
n∑

i=1

ξiei, δ), δ
)
,

where Φ(w, δ) = v(x, ξ, δ), v ∈ N⊥.

To determine the nonlinear Ritz approximation of the functional V , Tay-

lor’s expansion of the functions µk(ξ) and v(x, ξ, δ) is used by assuming the

following

qk = q̂k + µk(ξ) = q̂k +
r∑

j=2

D
(j)
k (ξ), k = 1, ...,m

v(x, ξ, δ) =
r∑

j=2

B(j)(ξ),

where D
(j)
k (ξ) and B(j)(ξ) are homogenous polynomials of degree j with coef-

ficients µki and vji(x, δ) respectively, ξ = (ξ1, ξ2, ..., ξn).

Since

Qf(u, λ) =
n∑

i=1

〈f(u, λ), ei〉ei = 0

it follows that
n∑

i=1

〈Au + Nu, ei〉ei = 0.

Hence
n∑

i=1

qiξiei +
n∑

i=1

〈Nu, ei〉ei = 0, qi = αi(λ)

or

n∑
i=1

qiξiei +
n∑

i=1

[ ∫

Ω

N(w + v)ei

]
ei = 0. (6)
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From (4) it gets

(I −Q)f(u, λ) = f(u, λ)−Qf(u, λ),

but

A(w + v) + N(w + v) = 0 (7)

it follows that

Av + N(w + v) +
n∑

i=1

qiξiei = 0.

Substitute the values of qi, µi(ξ) and v(x, ξ, δ) in (6) and (7) yields

n∑
i=1

[
q̂i +

r∑
j=2

D
(j)
i (ξ)

]
ξiei +

+
n∑

i=1

[ ∫

Ω

N
( n∑

i=1

ξiei +
r∑

j=2

B(j)(ξ)
)
ei

]
ei = 0, (8)

A
( r∑

j=2

B(j)(ξ)
)

+ N
( n∑

i=1

ξiei +
r∑

j=2

B(j)(ξ)
)

+

+
n∑

i=1

(
q̂i +

r∑
j=2

D
(j)
i (ξ)

)
ξiei = 0. (9)

To determine the functions v(x, ξ, λ) and µk(ξ) we equating the coefficients

of ξ̂ = ξ1ξ2...ξn in the equation (8) to find the value of µki and after some

calculations of equation (9) it is obtained a linear ordinary differential equation

in the variable vji(x, λ). Solve the resulting equation one can find the value of

vji(x, λ).

3 Applications

In [8] the author introduced an example to find nonlinear approximation

of bifurcation solutions of the fourth order differential equation,

d4u

dx4
+ α

d2u

dx2
+ βu + u3 = 0.

This equation also was studied by [1], [4], [5], [6], [7], [9], [10] with different

nonlinear terms. The purpose of this study in hand is to apply the method
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in the previous section to find the bifurcation of periodic solutions of Duffing

equation of type

ü + λu− u3 = 0, (10)

with resonance 1:1. For simply, this equation is chosen because another equa-

tion may give more difficulty in the calculations and then the study could

obtain more difficult key function. Suppose that f : E → F is a nonlinear

Fredholm operator of index zero from Banach space E to Banach space F

defined by,

f(u, λ) =
d2u

dt2
+ λu− u3, (11)

where E = Π2([0, 2π], R) is the space of all periodic continuous functions

that have derivative of order at most two, F = Π([0, 2π], R) is the space of

all periodic continuous functions where u = u(t), t ∈ [0, 2π]. In this case,

the solutions of equation (10) is equivalent to the solutions of the operator

equation given below

f(u, λ) = 0. (12)

It has been noticed that the operator f has a variational property, i.e. there

exists a functional V such that f(u, λ) = gradHV (u, λ) or equivalently,

∂V

∂u
(u, λ)h = 〈f(u, λ), h〉H , ∀ u ∈ Ω, h ∈ E,

where (〈·, ·〉H is the scalar product in Hilbert space H) and

V (u, λ) =
1

2π

∫ 2π

0

((u̇)2

2
+ λ

u2

2
− u4

4

)
dt.

In this case, the solutions of equation (10) are the critical points of the

functional V (u, λ) , where the critical points of the functional V (u, λ) are the

solutions of Euler-Lagrange equation

∂V

∂u
(u, λ)h =

1

2π

∫ 2π

0

(ü + λu− u3)h dt = 0,

and ∂V
∂u

(u, λ) is the Frechet derivative of the functional V (u, λ). Therefore, the

study of equation (10) is equivalent to the study extremely problem,

V (u, λ) → extr, u ∈ E.
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The analysis of bifurcation can be found by using the method of Lyapunov-

Schmidt to reduce the problem into finite dimensional space. By localized

parameter,

λ = λ̃ + δ1, δ1 is small parameter,

the reduction leads to the function in two variables defined by

W (ξ, λ) = inf
〈u, ei〉=ξi, i=1,2

V (u, λ), ξ = (ξ1, ξ2).

It is well known that in the reduction of Lyapunov-Schmidt, the function

W (ξ, λ) is smooth. This function has all the topological and analytical prop-

erties of functional V [13]. For small λ, there is one-to-one corresponding

between the critical points of functional V and smooth function W , preserv-

ing the type of critical points ( multiplicity, index Morse, etc) [13]. By using

the scheme of Lyapunov-Schmidt, the linearized equation corresponding to the

equation (12) has the following form:

ḧ + λh = 0, h ∈ E

The point (0, λ) = (0, 1) is a bifurcation point of equation (10) [13].

The localized parameter

λ̂ = 1 + δ1,

leads to the bifurcation along the modes e1 = c1sint, e2 = c2cost, where

‖e1‖ = ‖e2‖ = 1, c1 = c2 =
√

2. Let N = Ker(A) = span{e1, e2}, where,

A = fu(0, λ) = d2

dt2
+ λ, then the space E can be decomposed in direct sum of

two subspaces, N and the orthogonal complement to N ,

E = N ⊕ Ê, Ê = N⊥ ∩ E = {v ∈ E : v⊥N}.

Similarly, the space F decomposed in direct sum of two subspaces, N and

orthogonal complement to N ,

F = N ⊕ F̂ , F̂ = N⊥ ∩ F = {v ∈ F : v⊥N}.

There exist projections p : E → N and I − p : E → Ê such that pu = w

and (I − p)u = v, (I is the identity operator). Hence, every vector u ∈ E can

be written in the form,

u = w + v, w =
2∑

i=1

ξi ei ∈ N, N⊥v ∈ Ê, ξi =
〈

u , ei

〉
.
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Similarly, there exist projections Q : F → N and I −Q : F → F̂ such that

f(u, λ) = Qf(u, λ) + (I −Q)f(u, λ) (13)

Accordingly, equation (12) can be written in the following form,

Qf(w + v, λ) = 0,

(I −Q)f(w + v, λ) = 0.

By the implicit function theorem, there exist a smooth map Φ : N → Ê , such

that

W (ξ, δ1) = V (Φ(ξ, λ), δ1).

And then the linear Ritz approximation of the functional V is a function W

given by,

W (ξ, δ1) = V (ξ1 e1 + ξ2 e2, δ1) = ξ4
1 + 4ξ2

1ξ
2
2 + ξ4

2 +
q1

2
ξ2
1 +

q2

2
ξ2
2 .

The nonlinear Ritz approximation of the functional V is a function W given

by

W (ξ, δ1) = V (ξ1 e1 + ξ2 e2, Φ(ξ1 e1 + ξ2 e2, δ1), δ1), v(t, ξ, λ) = Φ(w, δ1).

To determine the nonlinear Ritz approximation of the functional V , the

functions v(t, ξ, λ) = O(ξ3) , µ(ξ) = O(ξ2) and µ̃(ξ) = O(ξ2) must be found in

the form of power series in term of ξ, as follows:

v(t, ξ, λ) = v0(t, λ)ξ3
1 + v1(t, λ)ξ2

1ξ2 + v2(t, λ)ξ1ξ
2
2 + v3(t, λ)ξ3

2 + ...,

µ(ξ) = µ0ξ
2
1 + µ1ξ1ξ2 + µ2ξ

2
2 + ..., (14)

µ̃(ξ) = µ̃0ξ
2
1 + µ̃1ξ1ξ2 + µ̃2ξ

2
2 + ...,

where q1 = q̃1 + µ(ξ1, ξ2), q2 = q̃2 + µ̃(ξ1, ξ2) and ξ = (ξ1, ξ2). Equation (12)

can be written in the form of

f(u, λ) = Au + Tu = 0, Tu = −u3.

Since,

Qf(u, λ) =
2∑

i=1

〈f(u, λ), ei〉ei = 0.
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Then the result takes the form of

2∑
i=1

〈Au + Tu, ei〉ei = 0,

and hence

q1ξ1e1 + q2ξ2e2 −
( 1

2π

∫ 2π

0

(ξ1e1 + ξ2e2 + v)3e1 dt
)
e1

−
( 1

2π

∫ 2π

0

(ξ1e1 + ξ2e2 + v)3e2 dt
)
e2 = 0. (15)

From (13) and (15) it is obtained

v̈ + λv − (ξ1e1 + ξ2e2 + v)3 + q1ξ1e1 + q2ξ2e2 = 0. (16)

It follows that,

[
(q̃1 + µ(ξ1, ξ2))ξ1 − ξ3

1

1

2π

∫ 2π

0

e4
1dt− 3ξ2

1ξ2
1

2π

∫ 2π

0

e3
1e2dt

− 3ξ1ξ
2
2

1

2π

∫ 2π

0

e2
1e

2
2dt− ξ3

2

1

2π

∫ 2π

0

e1e
3
2dt− 1

2π

∫ 2π

0

θ1(ξ1, ξ2, v)dt
]
e1

+
[
(q̃2 + µ̃(ξ1, ξ2))ξ2 − ξ3

1

1

2π

∫ 2π

0

e3
1e2dt− 3ξ2

1ξ2
1

2π

∫ 2π

0

e2
1e

2
2dt

− 3ξ1ξ
2
2

1

2π

∫ 2π

0

e1e
3
2dt− ξ3

2

1

2π

∫ 2π

0

e4
2dt− 1

2π

∫ 2π

0

θ2(ξ1, ξ2, v)dt
]
e2 = 0,

v̈ + λv − ξ3
1e

3
1 − 3ξ2

1ξ2e
2
1e2 − 3ξ1ξ

2
2e1e

2
2 − ξ3

2e
3
2 − v3 − 3v2ξ1e1

− 3v2ξ2e2 − 3vξ2
1e

2
1 − 6vξ1ξ2e1e2 − 3vξ2

2e
2
2

+ (q̃1 + µ(ξ1, ξ2))ξ1e1 + (q̃2 + µ̃(ξ1, ξ2))ξ2e2 = 0. (17)

where

θ1(ξ1, ξ2, v) = 3ξ2
1e

3
1v + 6ξ1ξ2e

2
1e2v + 3ξ1e

2
1v

2 + 3ξ2
2e1e

2
2v + 3ξ2e1e1v

2 + e1v
3

θ2(ξ1, ξ2, v) = 3ξ2
1e

2
1e2v + 6ξ1ξ2e1e

2
2v + 3ξ1e1e2v

2 + 3ξ2
2e

3
2v + 3ξ2e

2
2v

2 + e2v
3.

To determine the functions v(t, ξ, λ), µ(ξ) and µ̃(ξ) first substituting (14) in

(17) then find the coefficients µ0, µ1, µ2, µ̃0, µ̃1, µ̃2, v0, v1, v2 and v3 by equating

the terms of ξ1 and ξ2 as follows.

Equating the coefficients of ξ3
1 , the following two equations has been found

[
µ0 − 1

2π

∫ 2π

0

e4
1dt

]
e1 −

[ 1

2π

∫ 2π

0

e3
1e2dt

]
e2 = 0,

v̈ + λv − e3
1 + µ0e1 = 0. (18)
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From the first equation of (18) it is obtained that

µ0 =
3

2
.

Substitute the value of µ0 in the second equation of (18) we have the following

linear ODE,

v̈0 + λv0 − 1√
2

sin3t = 0. (19)

Solve equation (19) the result became as follows

v0(t, λ) =
sin3t√
2(λ− 9)

.

Similarly, equating the coefficients of ξ2
1ξ2 we get

[
µ1 − 3

2π

∫ 2π

0

e3
1e2dt

]
e1 +

[
µ̃0 − 3

2π

∫ 2π

0

e2
1e

2
2dt

]
e2 = 0,

v̈1 + λv1 − 3e2
1e2 + µ1e1 + µ̃0e2 = 0. (20)

From the first equation of (20) it is found that µ1 = 0 and µ̃0 = 3
2
. Sub-

stitute these values in the second equation of (20) the result takes the form

of

v̈1 + λv1 +
3√
2

cos3t = 0. (21)

Solve equation (21) we have

v1(t, λ) = − 3 cos3t√
2(λ− 9)

.

Equating the coefficients of ξ1ξ
2
2 it is obtained that

[
µ2 − 3

2π

∫ 2π

0

e2
1e

2
2dt

]
e1 +

[
µ̃1 − 3

2π

∫ 2π

0

e1e
3
2dt

]
e2 = 0,

v̈2 + λv2 − 3e1e
2
2 + µ2e1 + µ̃1e2 = 0. (22)

From the first equation of (22) it is obtained that µ̃1 = 0 and µ2 = 3
2
.

Substitute these values in the second equation of (22) we get

v̈2 + λv2 +
3√
2

sin3t = 0. (23)
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Solve equation (23) the result became

v2(t, λ) = − 3 sin3t√
2(λ− 9)

.

Equating the coefficients of ξ3
2 , we have the following two equations,

[
µ̃2 − 1

2π

∫ 2π

0

e4
2dt

]
e2 +

[
− 1

2π

∫ 2π

0

e1e
3
2dt

]
e1 = 0,

v̈3 + λv3 − e3
2 + µ̃2e2 = 0. (24)

From the first equation of (24) we have µ̃2 = 3
2
. Substitute the value of µ̃2

in the second equation of (24) it is obtained the following linear ODE,

v̈3 + λv3 − 1√
2

cos3t = 0. (25)

Solve equation (25) we have

v3(t, λ) =
cos3t√
2(λ− 9)

.

Now substitute the values of µ0, µ1, µ2, µ̃0, µ̃1, µ̃2, v0, v1, v2 and v3 in (14) we

have the nonlinear approximation solutions of equation (12) in the form of

u(t, ξ) =
√

2 ξ1 sint +
√

2 ξ2 cost +
sin3t√
2(λ− 9)

ξ3
1 −

3 cos3t√
2(λ− 9)

ξ2
1ξ2

− 3 sin3t√
2(λ− 9)

ξ1ξ
2
2 +

cos3t√
2(λ− 9)

ξ3
2 + O(ξ5),

q1 = q̃1 +
3

2
ξ2
1 +

3

2
ξ2
2 + O(ξ3), q2 = q̃2 +

3

2
ξ2
1 +

3

2
ξ2
2 + O(ξ3),

ξ = (ξ1, ξ2). (26)

By using (26)-(26) the following result has been stated.

Theorem 3.1. The key function of the functional V has the following form,

W̃ (ξ, δ) = ξ12
1 + ξ12

2 + λ1ξ
2
1ξ

10
2 + λ2ξ

10
1 ξ2

2 + λ3ξ
8
1ξ

4
2 + λ4ξ

4
1ξ

8
2 + λ5ξ

6
1ξ

6
2

+ λ6ξ
8
1 + λ7ξ

8
2 + λ8ξ

2
1ξ

6
2 + λ9ξ

6
1ξ

2
2 + λ10ξ

4
1ξ

4
2 + λ11ξ

6
1 + λ12ξ

6
2

+ λ13ξ
2
1ξ

4
2 + λ14ξ

4
1ξ

2
2 + λ15ξ

4
1 + λ16ξ

4
2 + λ17ξ

2
1ξ

2
2 + λ18ξ

2
1

+ λ19ξ
2
2 + o(|ξ|12) + O(|ξ|12)O(|δ|), (27)

where λi = λi(λ).
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Function (27) has all the topological and analytical properties of functional

V . Also, the function is symmetric in the variables ξ1 and ξ2 (W̃ (ξ1, ξ2) =

W̃ (−ξ1,−ξ2)) it have 121 critical points. The point u(t) = ξ1e1+ξ2e2+v(t, ξ, λ)

is a critical point of the functional V (u, λ) if and only if the point ξ is a

critical point of the function W̃ (ξ, δ) [13]. This means that the existence of

the solutions of equation (12) depends on the existence of the critical points

of the functional V (u, λ) and then on the existence of the critical points of

the function W̃ (ξ, δ). From this notation, the nonlinear approximation of the

solutions of equation (12) corresponding to each critical point of the function

W̃ (ξ, δ) can be found. The spreading of the critical points of the function

W̃ (ξ, δ) depending on the change of parameter λ will be discussed another

paper.
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