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Abstract

In this paper, we introduce new subclasses of analytic functions with
respect to other points. The coefficient estimates for these classes are
obtained.
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1 Introduction

Let U be the class of functions which are analytic and univalent in the open

unit disc D = {z : |z| < 1} given by

w(z) = z +
n∑

k=1

bkz
k
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and satisfying the conditions

w(0) = 0, |w(z)| < 1, z ∈ D.

Let S denote the class of functions f which are analytic and univalent in

D of the form

f(z) = z +
∞∑

n=2

anzn. (1)

Also let S∗S be the subclass of S consisting of functions given by (1) satisfying

Re

{
zf ′(z)

f(z)− f(−z)

}
> 0, z ∈ D.

These functions are called starlike with respect to symmetric points and were

introduced by Sakaguchi in 1959. Ashwah and Thomas in [2] introduced an-

other class namely the class S∗C consisting of functions starlike with respect to

conjugate points.

Let S∗C be the subclass of S consisting of functions given by (1) and satis-

fying the condition

Re

{
zf ′(z)

f(z) + f(z)

}
> 0, z ∈ D.

Motivated by S∗S, many authors discussed the following class CS of functions

convex with respect to symmetric points and its subclasses.

Let CS be the subclass of S consisting of functions given by (1) and satis-

fying the condition

Re

{
(zf ′(z))′

(f(z)− f(−z))′

}
> 0, z ∈ D.

In terms of subordination, Goel and Mehrok in 1982 introduced a subclass

of S∗S, denoted by S∗S(A,B).

Let S∗S(A,B) be the class of functions of the form (1) and satisfying the

condition

2zf ′(z)

f(z)− f(−z)
≺ 1 + Az

1 + Bz
, −1 ≤ B < A ≤ 1, z ∈ D.

Also let S∗C(A,B) be the class of functions of the form (1) and satisfying the

condition

2zf ′(z)

(f(z) + f(z))
≺ 1 + Az

1 + Bz
, −1 ≤ B < A ≤ 1, z ∈ D.
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Let CS(A,B) be the class of functions of the form (1) and satisfying the con-

dition
2(zf ′(z))′

(f(z)− f(−z))′
≺ 1 + Az

1 + Bz
, −1 ≤ B < A ≤ 1, z ∈ D.

Also let CC(A,B) be the class of functions of the form (1) and satisfying the

condition

2(zf ′(z))′

(f(z) + f(z))′
≺ 1 + Az

1 + Bz
, −1 ≤ B < A ≤ 1, z ∈ D.

In this paper, we introduce the class MS(ρ, µ, A,B) consisting of analytic
functions f of the form (1) and satisfying

2[ρµz3f ′′′(z) + (2ρµ + ρ− µ)z2f ′′(z) + zf ′(z)]
ρµz2[f ′′(z)− f ′′(−z)] + (ρ− µ)z[f ′(z) + f ′(−z)] + (1− ρ + µ)[f(z)− f(−z)]

≺ 1 + Az

1 + Bz

−1 ≤ B < A ≤ 1, 0 ≤ µ ≤ ρ ≤ 1, z ∈ D.

We note that MS(0, 0, A, B) = S∗S(A,B) and MS(1, 0, A, B) = CS(A,B).

Also introduce the class MC(ρ, µ, A, B) consisting of analytic functions f of

the form (1) and satisfying

2[ρµz3f ′′′(z) + (2ρµ + ρ− µ)z2f ′′(z) + zf ′(z)]

ρµz2(f(z) + f(z))′′ + (ρ− µ)z(f(z) + f(z))′ + (1− ρ + µ)(f(z) + f(z))

≺ 1 + Az

1 + Bz

−1 ≤ B < A ≤ 1, 0 ≤ µ ≤ ρ ≤ 1, z ∈ D.

Note that MC(0, 0, A,B) = S∗C(A,B) and MC(1, 0, A, B) = CC(A,B).
By definition of subordination it follows that f ∈ MS(ρ, µ, A,B) if and only

if

2[ρµz3f ′′′(z) + (2ρµ + ρ− µ)z2f ′′(z) + zf ′(z)]
ρµz2[f ′′(z)− f ′′(−z)] + (ρ− µ)z[f ′(z) + f ′(−z)] + (1− ρ + µ)[f(z)− f(−z)]

=
1 + Aw(z)
1 + Bw(z)

= p(z), (2)

w ∈ U and that f ∈ MC(ρ, µ, A, B) if and only if

2[ρµz3f ′′′(z) + (2ρµ + ρ− µ)z2f ′′(z) + zf ′(z)]
ρµz2(f(z) + f(z))′′ + (ρ− µ)z(f(z) + f(z))′ + (1− ρ + µ)(f(z) + f(z))

=
1 + Aw(z)
1 + Bw(z)

= p(z), w ∈ U (3)
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where

p(z) = 1 +
∞∑

n=1

pnz
n (4)

We study the classes MS(ρ, µ, A,B) and MC(ρ, µ, A,B), the coefficient es-

timates for functions belonging to these classes are obtained. We also need the

following lemma for proving our results.

Lemma 1.1. [3] If p(z) is given by (4) then

|pn| ≤ A−B, n = 1, 2, 3, . . . . (5)

2 Main Results

In this section, we give the coefficient inequalities for the classes MS(ρ, µ, A,B)

and MC(ρ, µ, A, B).

Theorem 2.1. Let f ∈ MS(ρ, µ, A,B). Then for n ≥ 1, 0 ≤ µ ≤ ρ ≤ 1

|a2n| ≤ (A−B)

2nn![(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

n−1∏
j=1

(A−B + 2j) (6)

|a2n+1| ≤ (A−B)

2nn![(2n + 1)(2n)ρµ + (2n)(ρ− µ) + 1]

n−1∏
j=1

(A−B + 2j) (7)

Proof. From (2) and (4), we have

{
ρµ[6a3z

3 + 24a4z
4 + · · ·+ (2n)(2n− 1)(2n− 2)a2nz2n + · · · ]

+ (2ρµ + ρ− µ)[2a2z
2 + 6a3z

3 + · · ·+ (2n− 1)(2n)a2nz
2n + · · · ]

+[z + 2a2z
2 + 3a3z

3 + · · ·+ 2na2nz2n + · · · ]}

=
{
ρµ

[
6a3z

3 + 20a5z
5 + · · ·+ (2n− 1)(2n− 2)a2n−1z

2n−1

+ (2n + 1)(2n)a2n+1z
2n+1 + · · · ]

+ (ρ− µ)[z + 3a3z
3 + · · ·+ (2n− 1)a2n−1z

2n−1 + (2n + 1)a2n+1z
2n+1 + · · · ]

+(1− ρ + µ)[z + a3z
3 + · · ·+ a2n−1z

2n−1 + a2n+1z
2n+1 + · · · ]}

{
1 + p1z + p2z

2 + · · ·+ p2n−1z
2n−1 + p2nz

2n + · · ·}
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Equating the coefficients of like powers of z, we have

2a2[2ρµ + (ρ− µ) + 1] = p1, 2a3[6ρµ + 2(ρ− µ) + 1] = p2 (8)

4a4[12ρµ + 3(ρ− µ) + 1] = p3 + a3p1[6ρµ + 2(ρ− µ) + 1]

4a5[20ρµ + 4(ρ− µ) + 1] = p4 + a3p2[6ρµ + 2(ρ− µ) + 1]

}
(9)

2na2n[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

= p2n−1 + p2n−3a3[6ρµ + 2(ρ− µ) + 1] + · · ·
+ p1a2n−1[(2n− 1)(2n− 2)ρµ + (2n− 2)(ρ− µ) + 1] (10)

(2n)a2n+1[(2n + 1)(2n)ρµ + 2n(ρ− µ) + 1]

= p2n + p2n−2a3[6ρµ + 2(ρ− µ) + 1] + · · ·
+ p2a2n−1[(2n− 1)(2n− 2)ρµ + (2n− 2)(ρ− µ) + 1] (11)

Using Lemma 1.1 and (8), we get

|a2| ≤ (A−B)

2[2ρµ + (ρ− µ) + 1]
, |a3| ≤ (A−B)

2[6ρµ + 2(ρ− µ) + 1]
(12)

Again by applying (11) and followed by Lemma 1.1, we get from (9)

|a4| ≤ (A−B)(A−B + 2)

(2)(4)[12ρµ + 3(ρ− µ) + 1]
, |a5| ≤ (A−B)(A−B + 2)

(2)(4)[20ρµ + 4(ρ− µ) + 1]

It follows that (6) and (7) hold for n = 1, 2. We prove (6) using induction.

Equation (10) in conjunction with Lemma 1.1 yield

|a2n| ≤ (A−B)

2n[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1][
1 +

n−1∑

k=1

[(2k + 1)(2k)ρµ + 2k(ρ− µ) + 1]|a2k+1|
]

(13)

We assume that (6) holds for k = 3, 4, . . . , (n− 1). Then from (13), we obtain

|a2n| ≤ (A−B)

2n[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]
·

·
[
1 +

n−1∑

k=1

(A−B)

2kk!

k−1∏
j=1

(A−B + 2j)

]
(14)
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In order to complete the proof, it is sufficient to show that

(A−B)

2m[(2m− 1)(2m)ρµ + (2m− 1)(ρ− µ) + 1]
·

·
[
1 +

m−1∑

k=1

(A−B)

2kk!

k−1∏
j=1

(A−B + 2j)

]

=
(A−B)

2mm![(2m− 1)(2m)ρµ + (2m− 1)(ρ− µ) + 1]

m−1∏
j=1

(A−B + 2j),(15)

m = 3, 4, . . . , n.

(15) is valid for m = 3.

Let us suppose that (15) is true for all m, 3 < m ≤ (n − 1). Then from

(14)

(A−B)

2n[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]
·

·
[
1 +

n−1∑

k=1

(A−B)

2kk!

k−1∏
j=1

(A−B + 2j)

]

=
(n− 1)

n
· (A−B)

2(n− 1)[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]
·

·
[
1 +

n−2∑

k=1

(A−B)

2kk!

k−1∏
j=1

(A−B + 2j)

]

+
(A−B)

2n[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

(A−B)

2n−1(n− 1)!
·

·
n−2∏
j=1

(A−B + 2j)

=
(n− 1)

n
· (A−B)

2n−1(n− 1)![(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]
·

·
n−2∏
j=1

(A−B + 2j)

+
(A−B)

2n[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

(A−B)

2n−1(n− 1)!
·

·
n−2∏
j=1

(A−B + 2j)
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=
(A−B)

2n−1(n− 1)![(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]
·

·
n−2∏
j=1

(A−B + 2j)(A−B + 2(n− 1))

=
(A−B)

2nn![(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

n−1∏
j=1

(A−B + 2j)

Thus (15) holds for m = n and hence (6) follows.

Similarly we can prove (7).

Theorem 2.2. Let f ∈ MC(ρ, µ, A, B). Then for n ≥ 1, 0 ≤ µ ≤ ρ ≤ 1

|a2n| ≤ (A−B)

(2n− 1)![(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

2n−2∏
j=1

(A−B + j) (16)

|a2n+1| ≤ (A−B)

(2n)![(2n + 1)(2n)ρµ + (2n)(ρ− µ) + 1]

2n−1∏
j=1

(A−B + j) (17)

Proof. From (3) and (4), we have

{
ρµ[6a3z

3 + 24a4z
4 + · · ·+ (2n)(2n− 1)(2n− 2)a2nz2n + · · · ]

+ (2ρµ + ρ− µ)[2a2z
2 + 6a3z

3 + · · ·+ (2n− 1)(2n)a2nz
2n + · · · ]

+[z + 2a2z
2 + 3a3z

3 + · · ·+ 2na2nz2n + · · · ]}

=
{
ρµ[2a2z

2 + 6a3z
3 + · · ·+ (2n− 1)(2n)a2nz2n + · · · ]

+ (ρ− µ)[z + 2a2z
2 + · · ·+ 2na2nz

2n + · · · ]
+(1− ρ + µ)[z + a2z

2 + · · ·+ a2nz
2n + · · · ]}

{
1 + p1z + p2z

2 + · · ·+ p2nz
2n + · · ·}

Equating the coefficients of like powers of z, we have

a2(2ρµ+(ρ−µ)+1) = p1, 2a3(6ρµ+2(ρ−µ)+1) = p2+a2p1(2ρµ+(ρ−µ)+1)

(18)

3a4(12ρµ+3(ρ−µ)+1) = p2+a2p2(2ρµ+(ρ−µ)+1)+a3p1(6ρµ+2(ρ−µ)+1)

(19)
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4a5(20ρµ + 4(ρ− µ) + 1) = p4 + a2p3(2ρµ + (ρ− µ) + 1)

+ a3p2(6ρµ + 2(ρ− µ) + 1)

+ a4p1(12ρµ + 3(ρ− µ) + 1) (20)

(2n− 1)a2n((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)

= p2n−1 + a2p2n−2(2ρµ + (ρ− µ) + 1)

+ · · ·+ a2n−1p1((2n− 2)(2n− 1)ρµ + (2n− 2)(ρ− µ) + 1)

(21)

(2n)a2n+1((2n + 1)(2n)ρµ + (2n)(ρ− µ) + 1)

= p2n + a2p2n−1(2ρµ + (ρ− µ) + 1) + · · ·
+ a2np1((2n)(2n− 1)ρµ + (2n− 1)(ρ− µ) + 1) (22)

By using Lemma 1.1 and (18), we get

|a2| ≤ (A−B)

[2ρµ + (ρ− µ) + 1]
, |a3| ≤ (A−B)(A−B + 1)

2(6ρµ + 2(ρ− µ) + 1)
(23)

Again by applying (23) and followed by Lemma 5, we get from (19) and (20),

we have

|a4| ≤ (A−B)(A−B + 1)(A−B + 2)

(2)(3)(12ρµ + 3(ρ− µ) + 1)

|a5| ≤ (A−B)(A−B + 1)(A−B + 2)(A−B + 3)

(2)(3)(4)(20ρµ + 4(ρ− µ) + 1)

It follows that (16) hold for n = 1, 2. We now prove (16) using induction.

Equation (21) in conjunction with Lemma 1.1 yield

|a2n| ≤ (A−B)

(2n− 1)[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

×
[
1 +

n−1∑

k=1

|a2k|+
n−1∑

k=1

|a2k+1|
]

(24)

We assume that (16) holds for k = 3, 4, . . . , (n−1). Then from (24), we obtain

|a2n| ≤ (A−B)

(2n− 1)[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]

×
[
1 +

n−1∑

k=1

A−B

(2k − 1)!

2k−2∏
j=1

(A−B + j) +
n−1∑

k=1

(A−B)

(2k)!

2k−1∏
j=1

(A−B + j)

]

(25)
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In order to complete the proof, it is sufficient to show that

(A−B)

(2m− 1)[(2m− 1)(2m)ρµ + (2m− 1)(ρ− µ) + 1]
·

·
[
1 +

m−1∑

k=1

A−B

(2k − 1)!

2k−2∏
j=1

(A−B + j) +
m−1∑

k=1

(A−B)

(2k)!

2k−1∏
j=1

(A−B + j)

]

=
(A−B)

(2m− 1)!((2m− 1)(2m)ρµ + (2m− 1)(ρ− µ) + 1)
·

·
2m−2∏
j=1

(A−B + j), (26)

m = 3, 4, 5, . . . , n. (3.21) is valid for m = 3.

Let us suppose that (3.21) is true for all m, 3 < m ≤ (n− 1). Then from (25)

(A−B)

(2n− 1)[(2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1]
·

·
[
1 +

n−1∑

k=1

A−B

(2k − 1)!

2k−2∏
j=1

(A−B + j) +
n−1∑

k=1

(A−B)

(2k)!

2k−1∏
j=1

(A−B + j)

]

=
(2n− 3)

(2n− 1)

(A−B)

(2(n− 1)− 1)((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)
·

·
[
1 +

n−2∑

k=1

A−B

(2k − 1)!

2k−2∏
j=1

(A−B + j) +
n−2∑

k=1

(A−B)

(2k)!

2k−1∏
j=1

(A−B + j)

]

+
(A−B)

(2n− 1)((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)
·

·
[

A−B

(2(n− 1)− 1)!

2n−4∏
j=1

(A−B + j)

]

+
(A−B)

(2n− 1)((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)

A−B

(2(n− 1))!

2n−3∏
j=1

(A−B + j)

=
(2n− 3)

(2n− 1)

(A−B)

(2(n− 1)− 1)!((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)

2n−4∏
j=1

(A−B + j)

+
(A−B)

(2n− 1)((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)

· A−B

(2(n− 1)− 1)!

2n−4∏
j=1

(A−B + j)
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=
(A−B)

(2n− 1)(2(n− 1)− 1)!((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)
·

·
2n−3∏
j=1

(A−B + j)

+
(A−B)

(2n− 1)((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)

A−B

(2(n− 1))!
·

·
2n−3∏
j=1

(A−B + j)

=
(A−B)

(2n− 1)!((2n− 1)(2n)ρµ + (2n− 1)(ρ− µ) + 1)

2n−2∏
j=1

(A−B + j)

Thus (26) holds for m = n and hence (16) follows. Similarly we can prove

(17).

On specializing the values of ρ, µ in Theorem 2.1 and 2.2, we get the fol-

lowing.

Remark 2.3. In Theorem 2.1, if we set µ = 0 and ρ = 0, we get starlike

functions with respect to symmetric points and if we set µ = 0 and ρ = 1, we

get convex functions with respect to symmetric points.

Remark 2.4. In Theorem 2.2, if we set µ = 0 and ρ = 0, we get starlike

functions with respect to conjugate points and if we set µ = 0 and ρ = 1, we

get convex functions with respect to conjugate points. For other values of µ

and ρ, the transition is smooth.
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