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Abstract 
 

Reserve risk represents a fundamental component of underwriting risk for non-life 

insurers and its evaluation can be achieved through a wide range of stochastic 

approaches, including the Collective Risk Model. This paper, in order to fill a gap 

in existing literature, proposes a Bayesian technique aimed at evaluating the 

standard deviation of structure variables embedded into the Collective Risk Model. 

We adopt uninformative prior distributions and the observations of the statistical 

model are obtained making use of Mack’s formula linked to bootstrap 

methodology. Moreover, correlation between structure variables is investigated 

with a Bayesian method, where a dependent bootstrap approach is adopted. 

Finally, a case study is carried out: the Collective Risk Model is used to evaluate 

the claims reserve of two non-life insurers characterized by a different reserve size. 

The claims reserve distribution is examined with respect to the total run-off and 

the one-year time horizon, enabling the assessment of the reserve risk capital 

requirement. 

 

JEL classification numbers: G22, C63 

Keywords: stochastic claims reserving, collective risk model, structure variables, 
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1  Introduction  
 

Stochastic claims reserving models allow the assessment of the standard deviation 

or the probability distribution of claims reserve necessary to quantify the capital 

charge from a solvency point of view [1]. A variety of stochastic methodologies 
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exist in literature. Mack proposed a first approach [2], [3], [4], which provides the 

prediction variance related to Chain-Ladder estimate; the variability of the reserve 

is herein split into Process Variance and Estimation Variance. Furthermore, other 

methodologies like Bootstrap [5], [6] and Generalized Linear Models [7] are used 

to determine the claims reserve distribution. In recent years, Bayesian methods 

have become increasingly important and adopted in stochastic claims reserving; in 

this paper we follow this line of research with the aim to assess the structural risk 

factors embedded into the Collective Risk Model to stochastically evaluate the 

claims reserve. The main advantages of Bayesian models consist in the possibility 

to investigate distributions of model parameters and the chance to include external 

information rigorously into actuarial models. In [6] the authors showed that when 

it comes to incorporating judgment on parameters/parameter distributions 

underlying a particular statistical model or combining together several statistical 

models, the Bayesian reserving approach is the preferred option compared to other 

stochastic reserving methods like the bootstrapping technique [8]. Without being 

exhaustive, the principal deterministic methods developed under the Bayesian 

framework are Chain-Ladder [9], [10], [11], Bornhuetter-Ferguson [9], [10], [12] 

and Overdispersed Poisson Model [12]. Additionally, in [13] different Bayesian 

approaches to estimate claim frequency are presented and in [14], [15], [16] and 

[17] it is shown a range of other Bayesian models for both incurred and paid loss 

data. Furthermore, [18] developed a Bayesian Collective Risk Model where the 

structure of parameters is based on the deterministic method called Cape Code; the 

expected loss ratio and the incremental paid loss development factor, which 

represent model parameters, are evaluated in a Bayesian manner. 

The Collective Risk Model (CRM) to assess claims reserve was proposed by 

different authors (see [18], [19], [20] and [21]). This approach was extended by 

Ricotta and Clemente [22] assuming that incremental payments to be estimated in 

the run-off triangle are a compound mixed Poisson process, where the uncertainty 

on claim size is introduced with a multiplicative structure variable. The model 

considers, therefore, structure variables on claim count and claim size in order to 

describe parameter uncertainty on both random variables. In addition, linear 

dependence between different development and accidental years is addressed. 

Literature lacks methodologies designed to calibrate structural risk factors 

embedded into Collective Risk Theory models for reserve risk. The aim of this 

paper is to propose a Bayesian procedure to estimate the standard deviation of the 

structure variables related to the Collective Risk Model as described in [22]. We 

developed an approach based on two established and widely used methodologies 

in literature such as the bootstrap method applied to the Chain-Ladder algorithm 

[7] and the Mack’s formula [2]. In addition, the dependence between model 

parameters, i.e. claim count and claim size, caused by the deterministic average 

cost method is taken into account; linear correlation, evaluated according to the 

Bayesian framework, is introduced in the CRM through structural risk factors. 

Concerning the Bayesian approach adopted to quantify the standard deviation of 

structure variables, the bootstrap methodology jointed to the Mack’s formula is 
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used to enforce the likelihood function. Run-off triangles of different accounting 

years are considered with the aim to acquire all the accessible historical 

information available to the insurance company. It is noted that [23] presented a 

Bayesian bootstrap scheme embedded within an approximate Bayesian 

computation (ABC) framework to obtain posterior distribution of the 

Distribution-free Chain-Ladder model parameters and the associated reserve risk 

measures. In the present paper, instead, the bootstrap procedure, joined to Mack’s 

formula, is adopted to generate the data used to evaluate the likelihood of Bayes’ 

formula. On the other hand, the Bayesian method applied to evaluate correlation 

between structure variables is built on Mack’s formula joined to a dependent 

bootstrap approach. The bootstrap methodology is herein carried out by jointly 

resampling in a dependent manner the data into the run-off triangles of claim 

count and average claim cost, namely entries that fill the same position in the 

respective run-off triangles. For the estimation of both the standard deviation and 

the correlation between structure variables, we considered (improper) flat priors 

over (0,+ ) and Jeffreys priors. Both of these represent the case when no a priori 

information is available and the prior is to have minimal influence on the 

inference; the uniform follows the Laplace postulate or principle of insufficient 

reason, whereas Jeffreys prior is based on the Fisher information and, as opposed 

to the former, satisfies the invariant reparametrization requirement [24]. A 

formalization and discussion of uninformative and improper priors can be found in 

[25] and [26]. 

Model parameters different from the structure variables are calibrated by using a 

data set of individual claims and an average cost method; the deterministic 

Frequency-Severity method, based on the Chain-Ladder mechanics, is adopted to 

separately calculate the number of claims and the average costs for each cell of the 

bottom part of the run-off triangle. Monte Carlo method is performed to simulate 

the claims reserve distribution according to the whole lifetime of insurer 

obligations. Furthermore, with regards to a one-year time horizon evaluation, we 

adapt the "re-reserving" method [27], [28] and estimate both the uncertainty of 

claims development result and the reserve risk capital requirement. 

The paper is organized as follows. Section 2 introduces the Collective Risk Model 

and displays how to estimate parameters other than structure variables. In Section 

3, the Bayesian approach is presented and performed to estimate the standard 

deviation of structural risk factors; at the same time we report results acquired 

according to the Metropolis-Hastings algorithm with respect to two non-life 

insurers. Moreover, the exact moments of structure variables are acquired. Section 

4 refers to Pearson correlation coefficient between structural risk factors; results 

related to the two data sets are also reported. A case study on two non-life insurers 

is shown in Section 5 where the Collective Risk Model is enforced to evaluate 

claims reserve distribution concerning both a total run-off and a one-year time 

horizon. In addition, we investigate the effect of linear correlation magnitude 

between structure variables on both claims reserve and the average Pearson 

correlation coefficient affecting outstanding claims of different accident and 
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development years. Conclusions follow. 

 

 

2  Collective Risk Model 
 

This section reports the main features of the Collective Risk Model developed in 

[22]. This model, based on the Collective Risk Theory, aims to assess the claims 

reserve in a stochastic way. Here the claims reserve is represented through the 

run-off triangle: available data is reported in rectangular table of dimension 

N N  where rows ( )1,...,i N=  represent the claims accident years (AY), 

whereas columns ( )1,...,j N=  are the development years (DY) related to the 

number or the amount of claims. Data linked to observed incremental payments 

fill the upper triangle  , ; 1i jD X i j N= +  + , where ,i jX  denotes incremental 

payments of claims in the cell ( ),i j , namely claims incurred in the generic 

accident year  and paid after 1j −  years of development. Analogously, the 

observed number of claims ,i jn  in the upper triangle is defined as 

 , ; 1n

i jD n i j N= +  + . Future numbers or amounts of payments must be 

assessed for each cell of the lower triangle. The scope is to investigate the random 

variable 2  (r.v.) of future incremental payments 
,i jX . The CRM represents 

incremental payments for each cell to be estimated as follows: 
,

, , ,

1

i jK

i j i j h

h

X pZ
=

=  

and the r.v. claims reserve, denoted by R , is equal to the sum of the cells of lower 

run-off triangle: 

,

1 2

N N

i j

i j N i

R X
= = − +

=  , 

where: 

• 
,i jK  represents the r.v. number of claims related to the accident year i  and 

paid after 1j −  years. This r.v. is assumed to be a mixed Poisson process; 

parameter uncertainty is addressed through a multiplicative structure variable q  

with unitary mean and standard deviation q . Therefore, the r.v. claims number is 

parametrized as follow, ( ), ,i j i jK Po qn .  

                                                 

2 A tilde superscript will henceforth denote random variables. 
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• 
, ,i j hZ  is the random variable describing the amount of the h-th claim 

occurred in the accident year i  and paid after 1j −  years. 

• p  denotes the parameter uncertainty related to claim size. This structure 

variable has mean and standard deviation equal to 1 and p  respectively. 

The two structure variables enable the introduction of parameter uncertainty 

without affecting the expected value of claim number and amount. Furthermore, in 

the bottom part of the run-off triangle only one r.v. affects the claim number and 

the claim size respectively, allowing for the dependence between these random 

variables of different AY and DY given by the settlement process. The 

assumptions underlying the CRM are the following: 

• claim number (
,i jK ), claim cost (

, ,i j hZ ), and the structure variable p  are 

mutually independent in each cell ( ),i j  of the lower run-off triangle; 

• claim size values in different cells of the lower run-off triangle are 

independent and in the same cell are independent and identically distributed 

(i.i.d.); 

• structure variable q  is independent of the claim costs in each cell; 

• q  and p  are mutually independent. 

In [22] the exact expressions of mean, standard deviation (SD) and skewness of 

the claims reserve distribution was obtained. The authors showed that the expected 

value corresponds to the claims reserve estimated by the underlying deterministic 

method (in our context the Frequency-Severity) and they exhibit the 

non-negligible impact, on the claims reserve distribution, of structure variables, 

which turn to be a systemic risk that cannot be diversified by a larger portfolio. 

Finally, the authors stressed the importance of the estimation of structural risk 

factors in the CRM; differently to what they proposed, in this paper we developed 

a Bayesian approach to address this matter. 

In order to apply the CRM we need to estimate a set of parameters for each cell 

( ),i j  of the lower triangle. The expected number of paid claims ( ,i jn ) and the 

expected claims cost ( ,i jm ) are obtained, conditionally to the set of information 

D  (the run-off triangle of incremental payments) and nD  (the run-off triangle of 

incremental number of paid claims), with a deterministic average cost method. We 

use the Frequency-Severity method by applying the Chain-Ladder mechanics on 

the triangles of cumulative numbers and cumulative average costs3. The other 

quantities necessary to implement the CRM are the cumulants of the severity. 

According to the claims data set, we estimate the variability coefficient of the 

claim size for each DY; later, adopting a distribution assumption, the moments of 

                                                 

3 We adopt the same run-off triangles used in [22]. 
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the r.v. 
,i jZ are obtained. 

 

 

3  Bayesian Approach to Estimate the Standard Deviation of 

Structure Variables 
 

In classical statistics the parameters of a model are assumed to be fixed; Bayesian 

statistics contrasts with this approach and considers parameters to be random 

variables (an exhaustive dissertation of the topic can be found in [29], [30] and 

[31]). The aim of the Bayesian approach is to take parameters uncertainty into 

account; this variability is introduced through prior probability distributions that, 

jointly with observed data, allow the posterior probability distribution of the 

model parameters to be achieved. According to the Bayes theorem, the parameter 

posterior distribution, ( )|f x , can be computed as: 

( )
( ) ( )

( )

|
|

f x f
f x

f x

 
 = . 

The term ( )|f x   is the sampling density of data under a chosen probability 

model; this element, viewed as function of   for fixed x , is the likelihood 

function. The parameter prior distribution is ( )f  , which refers to the parameter 

uncertainty, also interpretable as the prior opinion or knowledge related to 

parameter values. The denominator of Bayes’ formula represents the marginal 

distribution of data. This quantity does not depend on   and with fixed x  turns 

out to be a constant quantity which acts as a normalizing factor that leads to a 

proper posterior distribution. Bayes theorem is often considered without the 

normalizing constant that has only the effect of rescaling the density: 
 

( ) ( ) ( )| |f x f x f   . 

 

Hence, the posterior distribution is proportional to the product of likelihood 

function and prior. Therefore, Bayes’ formula depends on data and prior 

distribution. Typically, prior distributions are classified as uninformative and 

informative distributions. The former ideally refers to the principle of indifference 

and is typically flat distributions that assign equal probability to all possible values 

of the parameter, with the aim to have a minimal effect, relative to the data, on the 

posterior inference. On the other hand, informative distributions are calibrated 

using observed data. Bayes’ approach also allows us to make inference on future 

observation through the posterior predictive distribution, where the adjective 

posterior refers to the consideration that the distribution is conditional to the 

observed data ( x ), and predictive because it is a prediction of new observable data 

( y ). The posterior predictive distribution is an average of the probability 

distribution of y  conditional on the unknown value of  , weighted with the 
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posterior distribution of  : 

( ) ( ) ( )| | |f y x f y f x d  =  . 

Hence, outcomes of the Bayesian analysis are the posterior predictive distribution, 

which provides information about new observations, and the posterior distribution, 

which contains information about the parameters underlying the model. With 

regards to the posterior distribution, it is possible to summarize this information 

by developing different types of inference analysis on this distribution (i.e. both 

point or region estimation and hypothesis testing). 

The Bayesian framework here is used to calibrate the standard deviation of 

structure variables of CRM. These variables related to claim count and claim cost 

do not affect the expected value of the reserve but have an impact on the other 

characteristics (i.e. variance, skewness and so on). As adopted in [22], we follow 

the usual assumption of Collective Risk Theory that structure variables are gamma 

distributed with identical parameters: 

( ) ( ); , ;q Gamma h h p Gamma k k . 

The variables q  and p  have mean equal to 1, given by the ratio of the 

parameters, and standard deviation 1q h =  and 1p k = . Therefore, the 

values of q  and p  determine the parameter of interest, h  and k , which all 

the characteristics of the structure variable depend upon. In [22] a deterministic 

approach based on the Estimation Variance derived via Mack is proposed to assess 

the parameters of structure variables. In Mack’s formula, the Estimation Error 

measures the variability produced by the parameters estimation; because of this, it 

is ascribable to the structure variables that have the aim to introduce parameters 

uncertainty on quantities being considered (i.e. claim count and severity). Here the 

standard deviations q  and p  are interpreted as random variables and 

consequently later denoted by a tilde (random variables and their parameters are 

denoted with the subscript q  or p  to indicate which r.v. is considered in the 

Bayes approach, whereas if general considerations are carried out, the subscript is 

omitted for a simpler notation). It is assumed that, q  and p , define for positive 

values, follow a gamma distribution: 

( );Gamma A B , 

where the parameters A  and B  are random variables with regards to prior 

information is conveyed. Parameters of A  and B  are called hyperparameters of 

the model. In this context, the evaluation of the standard deviation of structure 

variables is acquired through the Bayes’ formula with the purpose to obtain a 

posterior distribution of the parameters which q  and p  depend on: 

                   ( ) ( ) ( ) ( ), | | ,f A B f A B f A f B               (3.1) 

With regards to the posterior distributions achieved via the Bayesian method, their 
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expected values are used to calibrate the random variables (r.v.s) q  and p . 

Therefore, the posteriors means are adopted to estimate the parameters of the r.v.s 

q  and p : 

                    ( ) ( )( )| ; |Gamma E A E B                  (3.2) 

It may be noted that, as depicted in formula (3.1) above, we are assuming A  and 

B  prior probability distributions to be independent; this premise is however 

neither affecting nor restrictive on our model for two reasons. First and foremost, 

since only the posterior expected values of A  and B  enter formula (3.2), we 

are looking separately at the marginal posterior distributions of the parameters 

(when computing one parameter expectation, the other one is automatically 

marginalized out). Secondly, in the outlined framework, even if starting with 

independent priors, the Bayes theorem formula will generate a dependent posterior 

distribution, whose dependency is induced by the likelihood function. 

The likelihood function of formula (3.1) is implemented making use of Mack’s 

formula and bootstrap methodology. The latter is carried out following the 

procedure adopted in [7]. Within the Chain-Ladder framework, the bootstrap 

method, by resampling the upper triangle of model residuals, allows us to create 

different resampled data sets, which can be used to calculate the quantity of 

interest and make inference on it. For our purposes, we applied the bootstrap 

approach to the run-off triangles of the cumulative claim count and cumulative 

average cost. On every iteration, for both triangles, the square root of the 

Estimation Variance derived via Mack’s formula is divided by the respective 

Chain-Ladder estimate (i.e. the mean of frequency and severity) with the aim to 

measure the variability produced by the parameters estimation. These relative 

variabilities, concerning only the Estimation Error, are interpreted as the 

coefficient of variation of the structure variables q  and p ; bearing in mind that 

their means are equal to 1, these values correspond to the standard deviations q  

and p  and are interpreted as the uncertainty related to the parameters estimate. 

The quantities q  and p  are written here without tilde because they represent 

one generic realization of the corresponding r.v.s q  and p . In detail, each 

simulation step of the Mack-Bootstrap procedure consists of the following stages. 

1. Determine the Chain-Ladder development factors, the so-called link ratios, 

for each development year according to the observed data in the upper run-off 

triangle. 

2. From the link ratios and the data observed in the last available diagonal of 

the triangle, recursively calculate cumulative amounts in the upper run-off triangle, 

and then incremental data by subtraction. 

3. Compute the adjusted Pearson’s residuals of the model from incremental 

data obtained in the previous step and the original observed data of the run-off 

triangle. 
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4. By sampling the residuals with replacement, create the run-off triangle of 

residuals and, from this, achieve cumulative data. 

5. Enforce Chain-Ladder method and Mack’s formula to estimate quantities of 

interest: the ratio between the square root the Estimation Variance and the 

Chain-Ladder estimate provides the standard deviation of the structure variable 

under analysis, namely the standard deviation of either q  or p . 

We thus estimate q  and p  sampling distributions, which will be leveraged to 

implement the Bayes’ theorem, by making use of two sound methodologies: the 

bootstrap scheme applied to the Chain-Ladder algorithm [7] and the Mack’s 

formula [2]. The bootstrap procedure joined to the Mack’s formula takes as input 

the run-off triangles of both claim count and average costs of different dimensions; 

the aim is to take into consideration all available historical information. Starting 

from the run-off triangle related to the current accounting year, with dimension 

N N , this approach is performed on triangles obtained by gradually deleting the 

last diagonal available, one at a time. Therefore, the run-off triangles of different 

accounting years are considered up to the current triangle, where the first run-off 

triangle is chosen starting from the earliest information considered currently 

representative. Hence, in respect to the last l accounting years, the run-off 

triangles have dimensions ( ) ( )1 1 ,...,N l N l N N− +  − +   respectively and the 

Mack’s formula applied to the bootstrap scheme lets us obtain for each historical 

triangle the sample distribution of random variables q  and p . The likelihood 

functions ( )| ,q q qf A B  and ( )| ,p p pf A B , based on the gamma model, are 

evaluated at the expected values of the distributions of q  and p  related to the 

sequence of the l historical triangles. Thus, concerning a generic historical triangle, 

the sample mean of the distribution of the standard deviation, namely the average 

variability of parameter estimation that affects the triangle, is adopted as an 

estimate of the true unobservable historical value of the r.v.s q  and p . The l 

values of ( )qE   and ( )pE   are interpreted as data and used to compute 

likelihood functions; we assume this data to be independent and identically 

distributed. However, it is to be noted that the latter assumption, useful to 

calculate the likelihood, in practice does not fully hold since data is attained on the 

l historical triangles that share common cells, affecting the assumption of 

independence; moreover, the model is lacking in conditions apt to fulfill the 

identical distribution assumption of data. 

We consider uninformative priors related to the positive parameters of q  and 

p  with the aim to prevent any sort of expert judgment. In particular, ( )f A  and 

( )f B  are modeled either via uniform or Jeffreys distributions. The form of the 

Jeffreys prior depends on the likelihood model selected, and its functional 

dependence on the likelihood is invariant under reparameterization of the 
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parameter. Jeffreys priors for two-parameter gamma distribution are easily derived 

from [32]. 

The Bayesian method, as described above, has been applied to the claim data sets 

of two non-life insurance companies working in the Motor Third Party Liability 

(MTPL) line of business and concerning accounting years from 1993 to 2004. 

DELTA insurer is a small-medium company, whereas OMEGA insurer is roughly 

10 times larger. Appendix A reports the run-off triangles adopted to estimate, via 

the Frequency-Severity deterministic method, the claims reserve. Triangles related 

to cumulative claim count and cumulative average costs are used to enforce the 

Bayesian methodology detailed above. The bootstrap joined to the Mack’s 

formula has been carried out regarding run-off triangles for 9 accounting years; 

therefore, the triangles adopted to acquire historical data and calibrate prior 

distributions have dimension from 4 4  to 12 12 . The number of iterations 

carried out in the bootstrap stage is equal to 10,000. In respect to the insurer 

DELTA, the distributions of q  acquired via the Mack-Bootstrap procedure 

related to the 9 historical triangles of claim count show expected values included 

between 1.66% and 2.48%; for p  the minimum value of the mean is 2.33% 

whereas the maximum is 4.29%. Table 1 details the expected values, 5% quantile 

and 95% quantile related to the distributions of q  and p .  

 

Table 1: DELTA - Expected value, 5% quantile and 95% quantile of the r.v.s q  and 

p  related to the historical triangles with dimensions from 4 4  to 12 12 . 

 

DELTA 

Dimension 
q  p  

Exp.Value 
Quantile 

5% 

Quantile 

95% 
Exp.Value 

Quantile 

5% 

Quantile 

95% 

4x4 1.83% 0.66% 3.37% 4.15% 1.11% 9.77% 

5x5 1.66% 0.82% 2.82% 4.29% 1.78% 8.32% 

6x6 1.75% 1.08% 2.69% 2.81% 1.36% 5.09% 

7x7 2.30% 1.32% 3.58% 2.72% 1.47% 4.78% 

8x8 2.48% 1.66% 3.64% 2.93% 1.84% 4.65% 

9x9 2.40% 1.66% 3.45% 2.68% 1.74% 4.24% 

10x10 2.32% 1.72% 3.21% 2.66% 1.81% 4.04% 

11x11 2.42% 1.84% 3.28% 2.67% 1.89% 3.93% 

12x12 2.26% 1.76% 3.01% 2.33% 1.72% 3.23% 

 

 

With respect to the larger insurer OMEGA, the Mack-Bootstrap procedure leads to 

expected values between 2.04% and 4.94% for q , and between 2.34% and 
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3.16% for p . Table 2 depicts the means and quantiles of order 5% and 95% 

regarding the distributions of the two random variables. 

 

Table 2: OMEGA - Expected value, 5% quantile and 95% quantile of the r.v.s q  and 

p  related to the historical triangles with dimensions from 4 4  to 12 12 . 

 

OMEGA 

Dimension 
q  p  

Exp.Value 
Quantile 

5% 

Quantile 

95% 
Exp.Value 

Quantile 

5% 

Quantile 

95% 

4x4 4.94% 1.51% 9.38% 2.38% 0.62% 5.42% 

5x5 3.29% 1.32% 5.92% 3.16% 1.30% 6.29% 

6x6 2.41% 1.06% 4.15% 2.93% 1.46% 5.28% 

7x7 2.25% 1.24% 3.57% 3.02% 1.63% 5.27% 

8x8 2.04% 1.23% 3.10% 2.62% 1.48% 4.57% 

9x9 2.04% 1.33% 2.98% 2.67% 1.59% 4.47% 

10x10 2.36% 1.52% 3.52% 2.38% 1.49% 3.84% 

11x11 2.80% 1.88% 4.20% 2.70% 1.67% 4.43% 

12x12 2.98% 2.14% 4.26% 2.34% 1.61% 3.48% 

 

 

Having chosen the prior distributions, the next step is to calculate the posteriors. 

Since the posterior distributions being examined do not have a closed-form 

expression, we make use of the Metropolis-Hastings algorithm to draw samples 

from them. For generating a sample (commonly referred to as chain) from the 

posterior distribution, this Markov Chain Monte-Carlo method requires only a 

function that is proportional to the real density, rather than exactly equal to it, 

avoiding the calculation of the normalization factor, which is extremely difficult in 

practice, especially when dealing with multi-dimensional distributions [33]. In 

particular, a Random Walk Metropolis algorithm has been selected; this version of 

the Metropolis-Hastings design operates by proposing that the chain move to a 

candidate state obtained by disturbing the current one with a noise. Under mild 

conditions the chain converges to its stationary distribution and posterior 

quantities can be estimated from the simulation output. A comprehensive 

dissertation of the topic can be found in [34]. 

Concerning the posterior distributions achieved via the above-mentioned 

algorithm, we use, for our purposes, the expected values to assess the r.v.s q  

and p , whose parameters are set equal to the means of the posteriors, as shown 

in formula (3.2). It is to be noted that, for both insurers, the two kind of 

uninformative prior distributions (uniform and Jeffreys) lead to similar results in 

terms of expected values of the posteriors (see Appendix B). Posterior expected 
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values are negligibly affected, in our model, by the distribution type adopted as 

prior distributions and hence, when the r.v.s q  and p  are calibrated, their 

characteristics are not significantly impacted by the prior distribution assumption. 

Tables 3 and 4 indicate the expected values and coefficient of variations, for both 

insurers, under uniform and Jeffreys priors. 

 
Table 3: DELTA - Uninformative priors. Expected values and coefficient of variation of 

q  and p . 

 

DELTA 

Random Variable q  p  

Type of prior Uniform Jeffreys Uniform Jeffreys 

Expected value 2.15% 2.15% 3.02% 3.03% 

Coeff. of variation 12.43% 14.35% 17.63% 20.34% 

 

 
Table 4: OMEGA - Uninformative priors. Expected values and coefficient of variation of 

q  and p . 

 

OMEGA 

Random Variable q  p  

Type of prior Uniform Jeffreys Uniform Jeffreys 

Expected value 2.77% 2.79% 2.69% 2.69% 

Coeff. of variation 24.04% 27.69% 9.00% 10.39% 

 

 

The assessment of the r.v.s q  and p  allows us to determine the moments of 

the structure variables q  and p  adopted into the CRM. Taking into 

consideration the structural risk factors related to claim count (identical 

considerations hold for p ), we assume that 
2 2

1 1
;

q q

q Gamma
 

 
 
 
 

 and 

( ) ( );post post

q q qGamma E A E B  
 

, where ( )post

qE A  and ( )post

qE B  represent the 

expected values of the posterior distributions, ( )|q qE A   and ( )|q qE B  . 

Moments of the structure variable depend on the parameters of the mixing variable  

q , which however does not affect the mean of q  that remains equal to 1 (see 

Appendix C for details). The variance is described by the following formula: 
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( )
( ) ( )

( )
2

1post post

q q

post

q

E A E A
Var q

E B

 +
 

= . 

The coefficient of variation, equal to the square root of variance, is: 

( )
( ) ( )

( )

1post post

q q

post

q

E A E A
CV q

E B

 +
 

= . 

Finally, the skewness of the structure variable is given by: 

( )
( ) ( )

( ) ( ) ( )

2 2 3

1

post post

q q

post post post

q q q

E A E A
q

E B E B E B


   + +
   =

 +
 

. 

Tables 5 and 6 report the exact characteristics for the structure variable q  and 

p  for both the insurers: 

 
Table 5: DELTA - Expected value, coefficient of variation and skewness related to 

structure variables q  and p . 
 

DELTA 

Type of prior Uniform Jeffreys 

Structure variable q  p  q  p  

Expected value 1 1 1 1 

Coeff. of variation 2.17% 3.06% 2.18% 3.09% 

Skewness 0.046 0.069 0.047 0.072 

 

 
Table 6: OMEGA - Expected value, coefficient of variation and skewness related to 

structure variables q  and p . 

 

OMEGA 

Type of prior Uniform Jeffreys 

Structure variable q  p  q  p  

Expected value 1 1 1 1 

Coeff. of variation 2.85% 2.70% 2.90% 2.70% 

Skewness 0.071 0.056 0.076 0.056 

 

 

4  Bayesian Estimation of the Pearson Correlation 

Coefficient between Structure Variables 
 

The Collective Risk Model assumes that claim count and claim size are mutually 
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independent in each cell ( ,i j ) of the lower run-off triangle. However, this 

theoretical assumption does not hold in practice due to the dependence introduced 

on model parameters by the average cost method (i.e. Frequency-Severity). The 

aim of this section is to evaluate, using a Bayesian procedure, the Pearson 

correlation coefficient between claim count and claim cost, estimated on structure 

variables q  and p . It is noteworthy that the procedure we define could be 

implemented with measures of rank correlation, such as Spearman’s rho and 

Kendall’s tau. As opposed to Pearson correlation coefficient, these are able to 

capture more general monotonic relationships between variables, and thus they 

can better detect non-linear forms of association. The user should assess which 

measure of correlation is more appropriate on a case-by-case basis. In our context, 

having preliminarily analysed different types of correlation measures, we 

considered linear correlation to be suitable for describing the dependence between 

structure variables. 

Similarly to Section 3, we adopt a method based on bootstrap resampling and 

Mack’s formula, in which, however, the former considers the dependency between 

the run-off triangles of claim count and average claim cost, by resampling pairs of 

data which fill the same position in the respective triangles. The scope is to build 

up the distributions of the r.v.s q  and p  by implicitly allowing for the 

dependence, caused by the average cost method, between the two data sets of 

claim count and claim cost. Hence, the estimated Pearson correlation coefficient is 

used to calibrate a Gaussian copula with the purpose to set up a two-dimensional 

random variable where the marginals are the two r.v.s q  and p  calibrated in 

the previous section. 

In the Bayesian framework, the Pearson correlation coefficient is interpreted as a 

random variable following a beta distribution: 

( );Beta C D . 

We analysed the dependence between claim count and claim cost on the interval 

 0,1 ; therefore, we assume parameter variabilities to be positively correlated. As 

usual, the r.v.s C  and D  identify prior distributions. According to Bayes’ rule 

we obtain a posterior distribution of the parameters which   depends on: 

                  ( ) ( ) ( ) ( ), | | ,f C D f C D f C f D               (4.1) 

The expected value of the posterior is used to calibrate the r.v.  : 

                   ( ) ( )( )| ; |Beta E C E D                     (4.2) 

Finally, the mean of  , calculated with the posterior expected value, is adopted 

to assess the Gaussian copula used to join the marginals q  and p . Likelihood 

function of (4.1) is performed making use of Mack’s formula and the dependent 

bootstrap approach. The likelihood function based on the beta model is executed 

using the Pearson correlation coefficient calculated between the distribution of 
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q  and p  related the sequence of the l historical triangles. Priors, as with the 

analysis of structure variable standard deviation, are either flat or Jeffreys. In the 

latter case, the prior formulation relies on the beta likelihood model and the 

relevant definition can be found in [35]. 

Below are the results of the previous Bayesian approach adopted to estimate 

correlation between structure variables, concerning the two insurers introduced in 

Section 3. As usual, the analyses are based on 10,000 iterations carried out with 

the dependent bootstrap technique. Table 7 exhibits values of Pearson correlation 

coefficient computed on the 9 historical triangles via the Mack’s formula and 

dependent bootstrap approach. The linear correlation of the small insurer, DELTA, 

is included between 0.014 and 0.333, whereas OMEGA shows values between 

0.075 and 0.415. 

 

Table 7: Pearson correlation coefficient for both insurers between r.v.s q  and p  

related to the historical triangles with dimension from 4 4  to 12 12 . 

 

Pearson Correlation Coefficient 

Dimension 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 

DELTA 0.231 0.333 0.127 0.014 0.098 0.065 0.154 0.194 0.087 

OMEGA 0.289 0.174 0.220 0.415 0.289 0.324 0.175 0.106 0.075 

 
 

The posterior is achieved via Monte Carlo method through Metropolis-Hasting 

algorithm; the mean of the posterior (see Appendix D) is used to assess parameters 

of the r.v.   as shown in formula (4.2). Finally, we adopt the expected value of 

  as an estimate of the Pearson correlation coefficient between structure 

variables q  and p . Table 8 reports the correlation between structural risk 

factors estimated under uniform and Jeffreys priors. 

 
Table 8: Uninformative priors: estimated Pearson correlation coefficient between the 

structure variables for both insurers. 

 

Estimated expected values of   

Insurer Type of prior Uniform Jeffreys 

DELTA ( )E   0.139 0.144 

OMEGA ( )E   0.237 0.241 

 
 

Concerning the Collective Risk Model, the structure variables are modeled with a 

two-dimensional meta-Gaussian distribution, where a Gaussian copula, with 

parameter the Pearson correlation coefficient estimated as shown above, joins the 

two marginals of q  and p  calibrated as explained in the previous section. 



38                                  Alessandro Ricotta and Edoardo Luini 

5  Case Study 
 

The estimates related to structure variables acquired in Sections 3 and 4 are 

deployed here into the Collective Risk Model in order to evaluate the claims 

reserve distribution concerning both a total run-off and a one-year time horizon. 

By adapting the re-reserving method we obtain the "one-year" reserve distribution 

of insurer obligations. Reserve risk is assessed by calculating the Solvency Capital 

Requirement (SCR) as the difference between the quantile at 99.5% confidence 

level of the distribution of the insurer obligations at the end of the next accounting 

year, opportunely discounted at time zero, and the best estimate at present time. 

As explained in Section 1, model parameters related to claim size and claim count 

are estimated through the deterministic Frequency-Severity method (run-off 

triangles are reported in Appendix A); moreover, to calibrate cumulants of 

severity we consider the variability coefficient of claim cost for each development 

year and we assume that 
,i jZ  follows a gamma distribution in each cell of the 

triangle. 

The deterministic method leads DELTA and OMEGA to a claims reserve of 

approximately 228 and 2,807 million Euro; these values match the expected 

values (best estimates) attained with the CRM. The analyses shown below are 

based on 100,000 simulations; moreover, model parameters acquired via Bayesian 

approaches are based only on uniform priors. Under the assumption of 

uncorrelated structure variables, we verify that simulated moments of the claims 

reserve are close to the exact ones, proving that the number of simulations is 

adequate. Table 9 refers to the two analysed insurers and reports the mean, 

standard deviation, coefficient of variation and skewness of the claims reserve 

evaluated both under a total run-off and a one-year time horizon, assuming 

( ), 0q p = . 

 
Table 9: Mean, standard deviation, coefficient of variation and skewness of claims reserve 

assessed under total run-off and one-year time horizon for both insurers under the 

assumption of no correlation between q  and p . Monetary amounts are expressed in 

thousands of Euro. 

 

Insurer Time horizon Mean Std. dev 
Coeff. of 

Var. 
Skewness 

DELTA 
Tot. run-off 228,389 13,009 5.70% 0.137 

One-year 228,570 11,721 5.13% 0.214 

OMEGA 
Tot. run-off 2,807,275 117,500 4.19% 0.098 

One-year 2,805,602 84,922 3.03% 0.121 

 

 

The relative variability of the reserve assessed under a total run-off time horizon is 

higher compared to the one-year time horizon for both insurers; on the other hand, 
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the claims reserve is more skewed under a one-year evaluation. It is to be noted 

that the coefficient of variation of the one-year reserve, compared to the total 

run-off value, is approximately around the 90% and 70% for DELTA and 

OMEGA respectively. Comparing the two insurers, the coefficient of variation is 

lower for OMEGA than for DELTA, due to a bigger number of reserved claims 

that leads to a higher diversification of pooling risk, namely the variability not 

ascribable to structure variables. Similarly, the reserve of the bigger insurer is less 

skewed in respect of the obligations distribution of DELTA. 

Table 10 refers to the one-year claims reserve and gives the mean, standard 

deviation, quantile and Tail VaR at level 99.5% and 99% respectively; moreover, 

the Solvency Capital Requirement and its ratio respect to the best estimate, the 

so-called SCR ratio, are reported.  

 
Table 10: One-year reserve: mean, standard deviation, quantile and TVaR at level 99.5% 

and 99% respectively, SCR and SCR ratio under the assumption of no correlation 

between q  and p . Monetary amounts are expressed in thousands of Euro. 

 

Insurer 
Mean Std. dev. 

  

SCR SCR 

ratio 

DELTA 228,570 11,721 261,332 262,604 37,762 14.33% 

OMEGA 2,805,602 84,922 3,036,234 3,046,723 230,632 8.22% 

 

 

OMEGA shows a smaller SCR ratio than DELTA, due to lower values of both 

relative variability and skewness. The larger claims size allows the pooling risk to 

be diversified with a higher degree: OMEGA indeed displays lower values of 

standard deviation and skewness than DELTA ones. This aspect leads to a smaller 

SCR ratio. 

In what follows, we investigate the impact that dependence between structure 

variables has on claims reserve; in addition to the correlation value estimated via 

the Bayesian approach, we impose perfect negative and positive linear correlations 

between q  and p . When considering the claims reserve evaluated according to 

a total run-off time horizon, under the assumption of no correlation between the 

structural risk factors, it is possible to calculate the coefficient of variation of the 

reserve in respect of the average Pearson correlation coefficient (  ) affecting the 

cells of the lower triangle, 

( ) ( ) ( ) ( )
2

, ,

, ,

1i j i j

i j B i j B

Var R Var X SD X 
 

   
= − +   
   
  , 

where, to simplify the notation,  , ; 1i jB X i j N= +  +  identifies cells of the 

lower run-off triangle. It is worth noting that the average Pearson correlation 

coefficient affecting 3n   random variables has the lower bound [36]: 
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min

1

1n
  −

−
 

In the triangle of dimension 12 12  the number of lower cells is 66: this leads to 

a theoretical value of min  equal to -0.015. It is worth emphasising that insurer 

DELTA shows higher values of relative variability being equal values of  . 

Later, through simulation, the coefficient of variation of the reserve is calculated 

using the correlation between structure variables estimated via the Bayesian 

approach, and values 1 . This allows us to indirectly quantify the equivalent 

average Pearson correlation coefficient induced in the cells of the triangle under 

the assumption of no correlation between the r.v.s q  and p . 

 
Figure 1: Average Pearson correlation coefficient induced by the dependence between 

structure variables. 

 

The impact that the dependence between structure variables has on   is higher 

for the larger insurer: indeed the claims reserve distribution of OMEGA is affected 

mainly by the structure variables, due to its higher number of reserved claims 

which allows the pooling risk to be almost entirely diversified. According to the 

previously considered values of Pearson correlation between q  and p , Tables 

11 and 12 compare the characteristics of the total run-off and a one-year reserve. 
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Table 11: DELTA - Mean, standard deviation, coefficient of variation and skewness for 

both total run-off and one-year claims reserve for different levels of dependence between 

q  and p . Monetary amounts are expressed in thousands of Euro. 

 

DELTA 

Perason 

correlation coeff. 
Time horizon Mean Std. dev. 

Coeff. of 

Var. 
Skewness 

( ), 1q p = −  
Tot. run-off 228,192 10,014 4.39% 0.116 

One-year 228,409 10,078 4.41% 0.194 

( ), 0.139q p =  
Tot. run-off 228,437 13,359 5.85% 0.137 

One-year 228,588 11,922 5.22% 0.233 

( ), 1q p = +  
Tot. run-off 228,568 15,514 6.79% 0.162 

One-year 228,720 13,135 5.74% 0.238 

 

 
Table 12: OMEGA - Mean, standard deviation, coefficient of variation and skewness for 

both total run-off and one-year claims reserve for different levels of dependence between 

q  and p . Monetary amounts are expressed in thousands of Euro. 

 

OMEGA 

Perason 

correlation coeff. 
Time horizon Mean Std. dev. 

Coeff. of 

Var. 
Skewness 

( ), 1q p = −  
Tot. run-off 2,804,619 40,291 1.44% 0.005 

One-year 2,803,575 45,314 1.62% 0.073 

( ), 0.237q p =  
Tot. run-off 2,807,968 129,231 4.60% 0.109 

One-year 2,805,983 91,958 3.28% 0.133 

( ), 1q p = +  
Tot. run-off 2,809,701 161,137 5.74% 0.154 

One-year 2,807,209 111,329 3.97% 0.184 

 

 

Moreover, taking into consideration the distribution of insurer obligations at the 

end of the next accounting year, Tables 13 and 14 report the mean, standard 

deviation, some risk measures (i.e. quantile and Tail VaR at 99.5% and 99% 

confidence level respectively), the Solvency Capital Requirement and the SCR 

ratio. Figure 2 refers to the claims development result distribution; this distribution, 

by construction, has mean equal to zero since it is obtained as difference between 

the distribution of insurer obligations at the end of the next accounting year and 

the current expected value of the claims reserve. 
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Table 13: DELTA - One-year reserve: mean, standard deviation, quantile and TVaR at 

level 99.5% and 99% respectively, SCR and SCR ratio for different levels of dependence 

between structure variables. Monetary amounts are expressed in thousands of Euro. 

 

DELTA 

Perason 

correlation coeff. 

Mean Std. 

dev. 
  

SCR SCR 

ratio 

( ), 1q p = −  228,409 10,078 256,332 257,386 27,923 12.23% 

( ), 0.139q p =  228,588 11,922 262,193 263,562 33,605 14.70% 

( ), 1q p = +  228,720 13,135 265,905 267,515 37,186 16.26% 

 

 
Table 14: OMEGA - One-year reserve: mean, standard deviation, quantile and TVaR at 

level 99.5% and 99% respectively, SCR and SCR ratio for different levels of dependence 

between structure variables. Monetary amounts are expressed in thousands of Euro. 

 

OMEGA 

Perason 

correlation coeff. 

Mean Std. 

dev. 
  

SCR SCR 

ratio 

( ), 1q p = −  2,803,575 45,314 2,922,753 2,927,557 119,178 4.25% 

( ), 0.237q p =  2,805,983 91,958 3,059,477 3,069,512 253,494 9.03% 

( ), 1q p = +  2,807,209 111,329 3,125,179 3,140,281 317,970 11.33% 

 

 

 
Figure 2: One-year time horizon: distribution of the Claims Development Result for both 

insurers. 

 

Both insurers show an increasing value of the SCR ratio in respect of the linear 

correlation between structure variables. When dependence between structural risk 
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factors augments, the standard deviation and the quantile at level 99.5% of the 

claims reserve increase, leading to a greater solvency capital charge. It is to be 

pointed out that for both insurers a value of linear correlation between q  and p  

equal to -1 leads to a particular situation where the coefficient of variation of the 

one-year reserve is higher than the relative variability of the total run-off 

distribution. The ratio between the coefficients of variation of the one-year reserve 

and the total run-off reserve is 100.55% and 112.51% for DELTA and OMEGA 

respectively. 

To investigate this unique circumstance we focus on the variance of the reserve 

evaluated under the two time horizons (since the one-year and the total run-off 

distributions have the same mean) expressed in terms of the average Pearson 

correlation coefficient: 

            

( ) ( ) ( )
( )

( ) ( ) ( )
( )

, , ,

, , ,

, , ,

, , ,

OY OY OY OY

i j i j h k

i j B i j B h k B
h i k j

Tot Tot Tot Tot

i j i j h k

i j B i j B h k B
h i k j

Var X SD X SD X

Var X SD X SD X





  
  

  
  

+

 +

  

  
      (5.1) 

The left side of Equation (5.1) refers to the variance of the one-year reserve, 

whereas the right side refers to the total run-off reserve (here superscripts "OY" 

and "Tot" indicate the one-year and the total run-off time horizon). The terms 

( ),

,

OY

i j

i j B

Var X


  and ( ),

,

Tot

i j

i j B

Var X


  include the variance of each single cell of the 

lower triangle; the variances relative to the first diagonal (the forthcoming 

accounting year) match by construction in the total run-off and in the one-year 

evaluations, thus it can be neglected. We show by simulation that the variability of 

each single cell of the one-year reserve is lower than the one of the total run-off 

reserve. Therefore, the inequality of formula (5.1) is imputable to the covariance 

terms; hence, the average Pearson correlation coefficient of the one-year reserve 

exceeds the one related to a total run-off time horizon. The modeling explanation 

of this circumstance is ascribable to the use of two different approaches to assess 

the reserve under a total run-off and a one-year time horizon. When the whole 

lifetime of obligations is considered, we adopt the CRM, whereas when only the 

next 12 months are taken into account, the reserve is determined according to the 

re-reserving approach. The latter imposes the calculation, at each simulation step, 

of the first diagonal that it is adopted to estimate, in line with the underling 

deterministic model, the lower residual cells of the triangle. With regards to the 

Frequency-Severity method, at each iteration, according to the first simulated 

diagonal, the one-year approach calculates the Chain-Ladder development factors 

to estimate the remaining lower triangle. Therefore, by construction, the 

re-reserving approach induces a not negligible dependence between cells of the 

lower triangle; the average Pearson correlation coefficient affecting the triangle 

for the one-year reserve is higher than the one for the total run-off view, which, in 

our case study, is almost zero due to the perfect negative dependence between q  
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and p . The logical explanation related to a higher variability under a one-year 

time horizon evaluation, in respect of the total run-off, lies of course in the 

different time horizon taken into consideration. When we consider the whole 

lifetime of obligations, the random variables related to the cells of the lower 

triangle tend to compensate each other, especially thanks to the negative 

dependence of the structure variables, thus reducing the reserve variability. On the 

other hand, when the reserve is evaluated taking only the next 12 months into 

account, the random variables are not able to offset one another as much as they 

do over their whole lifetime, leading to a higher variability in respect of the one 

related to the total run-off time horizon. Indeed, the one-year evaluation of the 

reserve disregards the stochastic claims process over the next 12 months, not 

allowing the matching among the r.v.s 
,i jX , driven by the negative dependence 

between q  and p , to get completely displayed. Moreover, under the 

Frequency-Severity method based on Chain-Ladder mechanics, the re-reserving 

approach stresses this particular case when the triangle is small due to the higher 

impact that the first simulated diagonal has on the residual lower triangle. In Table 

15 we report the Pearson correlation coefficient estimated by simulation between 

the first diagonal of the lower triangle and the residual cells. 

 
Table 15: Pearson correlation coefficient for both insurers between first diagonal and the 

remaining lower cells of triangle. 

 

Dimension 
DELTA OMEGA 

Tot. run-off One-year Tot. run-off One-year 

4x4 0.013 0.854 0.003 0.890 

5x5 0.018 0.821 0.008 0.841 

6x6 0.016 0.761 0.004 0.804 

7x7 0.021 0.775 0.008 0.775 

8x8 0.013 0.647 0.010 0.714 

9x9 0.014 0.644 0.011 0.719 

10x10 0.016 0.689 0.012 0.743 

11x11 0.020 0.738 0.008 0.687 

12x12 0.024 0.586 0.014 0.630 

 

 

With regards to the different dimensions of the run-off triangle, Table 16 shows 

the SCR ratio and the ratio between the coefficient of variation of the reserve 

evaluated under a one-year time horizon and the one related to the total run-off 

reserve. 
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Table 16: Coefficient of variation of the one-year reserve in respect of the one related to 

the total run-off reserve and SCR ratio for both insurers. 

 

Dimension 
DELTA OMEGA 

OY TotCV CV  SCR ratio OY TotCV CV  SCR ratio 

4x4 112.01% 15.75% 113.89% 6.03% 

5x5 108.96% 14.73% 113.78% 5.76% 

6x6 108.79% 14.52% 111.85% 5.55% 

7x7 103.15% 13.23% 110.38% 5.22% 

8x8 107.10% 15.23% 117.32% 6.06% 

9x9 104.05% 14.68% 110.79% 5.33% 

10x10 97.30% 12.97% 103.66% 4.55% 

11x11 92.69% 12.20% 105.71% 4.51% 

12x12 100.55% 12.23% 112.54% 4.31% 

 

 

As expected, the ratio between the coefficients of variation is higher for triangles 

with low dimension due to the higher correlation induced by the re-reserving 

approach. When the triangle dimension increases, the weight of the one-year 

coefficient of variation over the total run-off relative variability tends to decrease, 

but not necessarily in a monotonic way. Also the SCR ratio exhibits, in general, a 

decreasing trend in respect of the triangle dimension caused by the increasing 

number of reserved claims that highlights the diversification effect. If we compare 

the two insurers, the ratio between the coefficient of variation is higher for 

OMEGA, due to the greater impact that structure variables have on the total 

run-off reserve. On the other hand, the SCR ratio is lower for OMEGA because of 

the greater number of reserved claims that allow the insurer to diversify mainly 

the component of pooling risk. 

In sum, the coefficient of variation of the one-year reserve in respect of the one 

assessed under a total run-off time horizon depends on three factors: the run-off 

triangle dimension, namely the impact that the future diagonal has on the 

remaining cells to be estimated, the level of dependence between structure 

variables and, in general, the characteristics of the data set. It is to be pointed out 

that from a mathematical point of view, it is not possible a priori to know the 

direction of the inequality between the coefficients of variation of the one-year 

and total run off reserve in respect of the value of correlation between q  and p . 

 

 

6  Conclusions 
 

As shown in [22] the estimation of structure variables embedded into the 

Collective Risk Model to stochastically evaluate the claims reserve is a key issue. 

In the present work, we developed a Bayesian approach to quantify the variability 
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of structure variables implementing the Bayes’ rule through uninformative prior 

distributions and data obtained by applying a bootstrapping-based procedure to 

run-off triangles integrated via Mack’s formula. In addition, the dependence 

between structural risk factors has been investigated in a Bayesian manner: we 

proposed a joined resampling scheme aimed at capturing the inherent dependency 

of data. Through a case study we showed the impact that the dependence between 

structure variables has on claims reserve distribution, evaluated with respect to 

both the entire liability settlement period, the so-called total run-off approach, and 

the one-year time horizon, in order to assess the reserve risk capital requirement. 

When perfect negative linear dependence is addressed on structural risk factors, 

we come across a unique situation where the coefficient of variation of the 

one-year reserve exceeds the relative variability of the total run-off reserve. 

Starting from this circumstance, we analysed both the modeling connection and 

the logical link between the coefficient of variation of reserve appraised under the 

two time horizons. 

In our opinion, the methodology developed in the present paper, making use of 

only historical data, allows us to estimate the magnitude and the dependence 

between structure variables both avoiding any sort of expert judgment and 

providing a coherent approach with the Collective Risk Model to assess structural 

risk factors. Moreover this approach fills a gap in existing research literature that 

is lacking methodologies designed to calibrate structure variables related to 

Collective Risk Theory models for reserve risk. Nevertheless, the use of Bayes’ 

rule based on a selected parametric model turns to be a hard assumption to prove; 

further developments may consider likelihood-free frameworks, where the 

statistical model is defined in terms of a stochastic generating mechanism of data. 
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Appendix A 

 
Table 17: DELTA - Cumulative paid amounts (thousands of Euro). 

 

 
 

 
Table 18: DELTA - Cumulative number of paid claims. 
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Table 19: OMEGA - Cumulative paid amounts (thousands of Euro). 

 

 
 

 
Table 20: OMEGA - Cumulative number of paid claims. 
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Appendix B 

 
Table 21: DELTA - Uninformative priors: expected values of posterior distributions. 

 

DELTA 

Type of prior Uniform Jeffreys 

( )|q qE A   64.726 48.576 

( )|q qE B   3,008.640 2,254.114 

( )|p pE A   32.160 24.164 

( )|p pE B   1,006.136 798.222 

 

 
Table 22: OMEGA - Uninformative priors: expected values of posterior distributions. 

 

OMEGA 

Type of prior Uniform Jeffreys 

( )|q qE A   17.305 13.039 

( )|q qE B   623.993 467.282 

( )|p pE A   123.468 92.717 

( )|p pE B   4,597.385 3,449.045 
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Appendix C 

 
Let X  be a generic random variable following a gamma distribution with 

parameters 0   and 0  . The density function is: 

( )
( )

1

,x

x

x
f X e x

 




−
− += 


, 

where ( ) 1

0

tt e dt


− − =   is the gamma function. The j-th moment about zero is 

( )
( ) ( )1 ... 1

j

j

j
E X

  



+ + −
= , 

Whereas the j-th cumulant is 

( )
( )1 !

j j

j
K X





−
= . 

We here compute the characteristics of the structure variable q  (similar 

consideration hold for p ). The structure variable related to the claim count 

follows a gamma distribution with same parameters: 

2 2

1 1
;

q q

q Gamma
 

 
 
 
 

, 

where 2

q  is itself a random variable. In general it is possible to compute the 

moments of the structure variable q  without knowing the distributional form of 

the r.v. 
q . The expected value is given by 

( ) ( )
2

2
| 1

q q

q

q q

q

E q E E q E 






 
 = = =  

  

, 

therefore, the mean of the structure variable remains equal to 1. With regard to the 

variance, it can be compute as: 

( ) ( ) ( )| |
q q q qq qVar q E Var q Var E q       = +
   

 

( ) ( ) ( )2 21
q q qq qE Var E   = + = , 

showing that the second raw moment of the r.v. 
q  represents the variance of q . 

The relative variability is equal to the square root of the variance: 

( ) ( )2

q qCV q E = . 

Finally, the skewness equals: 
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( )
( )

( )

( ) ( ) ( ) ( )

( )

33

3

3 3
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3E q E q Var q E qq
q

Var q Var q




− −
= =

      

 

( ) ( ) ( )
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( )

2 4 2 4

3 3

2 2

1 3 2 3 1 2
q q q qq q q qE E E E

Var q Var q

      + + − −
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      

, 

where it hold that ( ) ( ) ( )3 3 2 4| 1 3 2
q q qq q qE q E E q E     = = + +
 

. It is to be 

noted that the third cumulant of q , i.e. the numerator of skewness, depends only 

on the 4-th central moment of 
q . Under the assumption that the r.v. 

q  follows 

a gamma distribution of parameters   and  , ( );q Gamma   , the 

characteristics of the structure variable can be rewritten as follow. 

Variance: 

( )
( )

2

1
Var q

 



+
= . 

Coefficient of variation: 

( )
( )1

CV q
 



+
= . 

Skewness: 

( )
( )( )

( )

2 2 3

1
q

 


  

+ +
=

+
. 
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Appendix D 

 
Table 23: Uninformative priors: expected values of posterior distribution for both 

insurers. 

 

Posterior expected values 

Insurer Type of prior Uniform Jeffreys 

DELTA 
( );E C   2.272 1.752 

( );E D   14.049 10.411 

OMEGA 
( );E C   4.031 3.102 

( );E D   12.987 9.779 

 


