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Abstract 

This paper will discuss portfolio optimization, Quadratic Programming (QP) and 

Second Order Cone Programming (SOCP). We will use simulated and empirical 

data to compare the two optimization routines. Daily data for SP500 stocks from 

2005 to 2010 was used to show that a 20-days rebalanced portfolio strategy with 

an expected portfolio return of 60 percent of the maximum expected return for all 

stocks produced an 8.4 percent return premium on an annual basis if we used QP 

and 11.2 percent return premium on an annual basis if we used SOCP.  
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1  Introduction and Literature Review 

Markowitz [7], Sharpe [9], Ross [8], Black and Litterman [1], Fama and 

French [5] and Carhart [3] have all made significant contributions to portfolio 
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theory. The main objective for portfolio diversification is to minimize portfolio 

variance. In the basic model portfolio variance is a function of the return volatility 

for each security in the portfolio and the cross correlation of returns. Since cross 

correlation can be negative return variance can be cancelled out. However, the 

same idea can also be applied to highly positive correlated stock return portfolio 

by artificially creating negative cross correlation in return by short selling. 

Portfolio variance can also be thought as the amount of return noise around the 

portfolios expected return. Diversification can to a large extend eliminate such 

return noise.  

Markowitz [7] mainly looks at diversification from an asset class 

perspective where an investor that spreads his risk between different asset classes 

will achieve a greater “diversification” and hence a smoother equity curve. 

Brinson, Hood and Beebower [2] found that asset class allocation (compared to 

market timing and stock picking) can explain on average 93.6 per cent of the 

variation in total return. It is also interesting to note that the bond returns in 

general tend to be the only return that will not become negative during a market 

crash [6]. This means that bonds provides a good source of diversification due to 

return stability especially when markets has become more positive cross correlated 

during the last thirty years and even though the return on “risk free” government 

bonds has steadily been declining for the last 40 years. The Capital Asset Pricing 

Model (CAPM) which was introduced by Sharpe [9] points out that market risk 

also plays an important role for the smoothness of the equity curve. A portfolio 

with a large beta (i.e., highly sensitive to changes in market returns) will have 

more risk than a portfolio with a zero beta. An investor can reduce such market 

risk by balancing long and short positions. Market risk plays an important role 

when it comes to investing in financial markets because market returns accounts 

for a large fraction of stock returns [4]. The impact of a market risk should not be 

underestimated. Taleb [10] explains that in general people tend to overprice equity 

and under price options due to the abundance of volatility in financial markets. 
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Ross [8] introduced the so called Arbitrage Pricing Theory which illustrates that 

asset returns can be modelled as linear functions of various factor indices. Black 

and Litterman [1] introduced the so called Black-Litterman model which starts by 

assuming that the benchmark index is mean-variance efficient and from such 

assumption derive the expected return of the benchmark portfolio. Fama and 

French [5] introduced the three factor models which includes beta, book-to-

market-ratio and stocks size which they claim will reduced return noise even 

further. Finally Carhart [3] extend such a three-factor model to a four-factor model 

which also includes a momentum component which explains even more of the 

return variance.  

 

 

2  Theoretical Modelling and Simulation 

The traditional portfolio optimization model introduced by Markowitz is 

solved by using Quadratic Programming (QP). The objective is to minimize 

portfolio risk for a given portfolio expected return pr . The objective function 

with its corresponding constraint for QP can be expressed as follows  

min[ ]Tw Qw     subject to   Tw ER pr⋅ ≥ ,     1TS w ≤ ,       1 [ ] 1w i≥ ≥ −  

where w  is a column vector containing the portfolio weights, T  is the transpose 

notation, i.e., convert a column vector to a row vector, Q  is the covariance matrix, 

ER  is a column vector with expected returns and S  is a column vector of 1's. 

Note that Tw Qw  represent the portfolio variance and  Tw ER⋅  represent the 

expected portfolio return. The portfolio variance is simply given by the sum of all 

elements in the weighted covariance matrix. Such sum includes quadratic terms 

i.e. 2[2] cov[2,2]w ⋅  hence QP is appropriate to use. The problem with the above 

model is that the performance of QP decreases when we have a large portfolio. It 

requires a long time to calculate the portfolio weights for such portfolio.   
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One way to get around that is to use Second Order Cone Programming (SOCP). In 

order to use a quadratic objective function Tw Qw  in SOCP we have to introduce a 

new variable let say r . The objective then becomes to minimize r  given the 

constraint that the quadratic objective function must be smaller than the square of  

r  which means that. The constraint also needs to be converted to SOCP form. 

This is done by noting that the covariance matrix Q  can be written as TQ RR=  

where R  is the Cholesky Decomposition matrix and that  

2 2( ) [2, 3] [2,3] 2 3 13T Tnorm x x x= = = + = . 

The constraint can be rewrite as: 

2 2 2 2( ) ( ) ( )T T T T Tw Qw r w RR w r Rw Rw r Rw Rw r norm Rw r< ⇒ < ⇒ < ⇒ < ⇒ <
 

Again the objective is to minimize portfolio risk for a given portfolio expected 

return pr . The objective function and its constraint for SOCP can therefore be 

expressed as follows:  

min[ ]r     subject to   ( , )norm R w r< ,     Tw ER pr⋅ ≥ ,  1TS w ≤ ,       1 [ ] 0w i≥ ≥  

 

 

Figure 1:  Cone Constraint and Weight Vector  
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Note that we are not allowing for any short positions since [ ] 0w i ≥  and the values 

for norm()  need to be non-negative. The benefit of using a cone constraint like 

( )22 2[1] [2]w w r+ <  compared to a non-cone constraint like 

( )22 2[1] [2]w w r− <   is that the cone constraint is convex. For a convex problem 

any locally optimal point is a globally optimal hence the optimization becomes 

fast. SOCP also works for Linear Programming (LP) i.e. a linear objective 

functions and constraints. Then the weight vector can for example be constrained 

to be inside a cone as seen in Figure 1, i.e.,   

2 2 2 2[2] [ ] [1] ( [2] [ ] ) [1]w C w w n w norm w w n w∈ ⇒ + + < ⇒ + + <   

          and [1] 0w ≥  

or you can assume for example that the norm of two weights is never larger than 

0.5, i.e.,  

2 2[1] [2] 0.5w w+ + <  ,   2 2[2] [3] 0.5w w+ + < ,   2 2[3] [1] 0.5w w+ + <  

We can now start by simulating some cross correlated random walks by again 

using Cholesky Decomposition as seen in Figure 2.  

 

 

Figure 2:  Simulated Random Walks 
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In order to get some return with negative cross correlation and some with positive 

cross correlation we multiply half of the returns with -1 and half of the returns 

with +1. We simulate in total 50 stocks where each stock has 1000 observations. 

The standard deviation of return and expected return are randomly assigned. We 

further assume that the standard deviation and the expected return remain constant 

over time. We then run the QP and SOQP algorithms to get the return distributions 

and the historical or optimized equity curves as seen in Figure 3. The weights can 

be found in Appendix 1. 

 

 
Figure 3:  Simulated Data with QP and SOCP-1 

 

Optimized Equity Curve QP 

Optimized Equity Curve SOCP 
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Figure 4:  Simulated Data with QP and SOCP-2 

 
We can see that both QP and SOCP produce optimized equity curves that are 

smooth and upward sloping hence the risk adjusted returns is large. Further, the 

threshold for the expected return both for the simulated and the empirical portfolio 

was calculated as the 0.6 maximum⋅ expected return for all stocks. Hence, our 

portfolio will have an expected return that is sixty percent of the expected return 

for the stock with the largest expected return. It is also important to note that the 

optimized equity curves can look very different from a forward testing equity 

return i.e. forward testing cumulative return. We can now forward test our two 

portfolio algorithms. We assumed that the portfolio is rebalanced every 20 days 

Forward Tested Equity 
Curve QP 

Forward Tested Equity 
Curve SOCP 
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and only the data for the last 20 days is used in the portfolio optimization 

algorithm. We can see in Figure 4 that the forward testing equity curves does 

contain more volatility. 

 

 

3  Empirical Analysis 

We can now test our QP portfolio algorithms on some empirical data 

extracted from datastream which consists of daily data for 100 SP500 stocks from 

2005 to 2010.  
 

 
Figure 5:  Empirical Data and QP 

Optimized 
QP 

Forward Testing 
QP 
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We can in Figure 5 see the optimized and forward testing return 

distribution with its corresponding equity curves for the empirical dataset. We can 

see that the forward testing equity curve is upward sloping and rather smooth. 

From the period 2005 to 2010 the QP algorithm produced a return of 

approximately 50 percent or 8.4 percent on an annual basis. We can also see that 

the forward testing return distribution is asymmetrical i.e. positive returns are both 

larger and more frequent than negative returns. See Appendix 2 for QP allocation 

matrix. 

 

 

Figure 6:  Empirical Data and SOCP 

Optimized 
SOCP 

Forward Testing 
SOCP 
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We can now test our SOCP portfolio algorithms on the same empirical 

data. We can in Figure 6 see the optimized and forward testing return distribution 

with its corresponding equity curves for the empirical dataset. We see that the 

optimized equity curve looks similar to the QP example. We can also see that the 

forward testing equity curve is upward sloping and rather smooth. From the period 

2005 to 2010 the SOCP algorithm produced a return of approximately seventy 

percent or 11.2 percent on an annual basis. We can again see that the forward 

testing return distribution is asymmetrical i.e. positive returns are both larger and 

more frequent than negative returns. See Appendix 3 for SOCP allocation matrix. 

 

 

4  Conclusion and Final Discussion 

Portfolio optimization problems have traditionally been solved by using 

Quadratic Programming (QP). However, such optimization method has always 

had performance constraints attached to it. In the 1980’s second order cone 

programming (SOCP) was introduced to the world. SOCP is a generalisation of 

Linear Programming (LP). LP has always played an important role in economics 

for its efficiency and practical relevance. Today SOCP has become an important 

tool for financial optimization due to its powerful nature. Investment firms need to 

optimize large portfolios and take into consideration a large universe of assets in 

order to find the most optimal portfolios. However, the basic theory behind cone 

optimization is highly mathematical dense so it can be hard to understand some of 

the basic ideas. This paper aims at being a simple introduction to cone 

optimization. We have also in this paper shown that a 20-day rebalanced portfolio 

strategy with an expected portfolio return of 60 percent of the maximum expected 

return for all stocks produced an 8.4 percent return premium on an annual basis if 

we used QP and 11.2 percent return premium on an annual basis if we used SOCP. 

The annual return was calculated as PV[ ](1 ) PV[ 1]nt r t+ = + , where r  is the 
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annual percentage return. For simplicity we assumed a transaction cost equal to 

zero.  

It is also worth noting that theoretically the QP and SOCP algorithm 

should produce the same asset allocations. However, in this case it clearly did not. 

Another drawdown with the simple examples introduced in this paper must be the 

sample size. We have only considered an asset universe of 100 stocks hence many 

of the benefits SOCP ie large scale optimization was lost. The same examples 

could be tested with a much more powerful solver to investigate assets universes 

of a couple of thousands of stocks. If a more powerful solver were introduced then 

transaction costs would be interesting to include in the modelling framework. It 

would also be interesting to look at portfolio rebalancing frequency and how the 

frequency relates to the expected return of the portfolio. 
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Appendix 1  Allocation Simulated Data 
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Appendix 2  QP Allocation Empirical Data 

0 5.66 [w[22] = .171, w[26] = .199, w[29] = .630]      
20 0.113 [w[9] = .109, w[11] = .317, w[43] = .424, w[68] = .116, w[92] = .347e-1]   
40 9.41 [w[63] = .443, w[92] = .557]       
60 26.3 [w[26] = .378, w[46] = .281, w[92] = .341]      

80 6.39E-02 
[w[17] = .319, w[18] = .422e-1, w[22] = .187, w[37] = .598e-1,  
w[64] = .175,  w[68] = .216] 

100 1.61 [w[8] = .387e-1, w[18] = .153, w[88] = .785, w[100] = .233e-1]    
120 4.63 [w[17] = .262, w[50] = .470, w[92] = .268]      
140 13.5 [w[26] = .462e-1, w[64] = .467, w[92] = .486]     
160 8.17 [w[68] = .578, w[92] = .422]       
180 10.1 [w[17] = .558, w[92] = .442]       
200 3.32E-02 [w[2] = .185, w[7] = .370e-1, w[9] = .693e-1, w[40] = .691e-1    

  w[58] = .364, w[80] = .632e-1, w[93] = .694e-1, w[94] = .140]    

220 
4.89E-

02 [w[5] = .215, w[18] = .124, w[36] = .673e-1, w[62] = .302, w[80] = .291]   
240 0.176 [w[2] = .246, w[64] = .129, w[73] = .139, w[88] = .558e-1, w[91] = .424]   
260 42.3 [w[26] = .536, w[89] = .464]       
280 11.4 [w[26] = .531, w[45] = .469]       
300 15.1 [w[26] = .322, w[42] = .379, w[92] = .299]      
320 2.76 [w[17] = .958, w[85] = .150e-1, w[92] = .266e-1]     
340 27.6 [w[17] = .558, w[26] = .442]       
360 14.7 [w[14] = .294, w[26] = .528, w[97] = .178]      
380 18.6 [w[45] = .524, w[92] = .476]       
400 7.39E-02 [w[10] = .719e-1, w[12] = .756e-1, w[36] = .176, w[42] = .140   

  
w[47] = .114, w[78] = .206, w[80] = .317e-1, w[84] = .768e-1,  
w[89] = .990e-1]  

420 0.331 [w[6] = .151, w[24] = .289, w[37] = .355e-1, w[54] = .309, w[60] = .216]  
440 8.77 [w[17] = .642, w[26] = .358]      
460 4.64 [w[22] = .107, w[26] = .293, w[37] = .600]     
480 2.56 [w[22] = .634e-1, w[34] = .203, w[37] = .536, w[92] = .197]   
500 6.84 [w[36] = .231, w[37] = .549, w[92] = .221]     
520 0.118 [w[33] = .108, w[38] = .347, w[61] = .209, w[67] = .188]   
540 0.509 [w[22] = .155, w[58] = .211, w[61] = .142, w[85] = .164, w[88] = .319]  
560 21.4 [w[26] = .412, w[37] = .574, w[92] = .142e-1]    
580 2.15 [w[34] = .102, w[36] = .173, w[37] = .296, w[40] = .336   

  w[58] = .212e-1, w[61] = .120e-1, w[75] = .602e-1]    
600 0.459 [w[7] = .173, w[58] = .742, w[73] = .658e-1, w[88] = .199e-1]   
620 11.1 [w[37] = .548, w[75] = .306, w[92] = .146]     
640 0.377 [w[29] = .329e-1, w[35] = .338, w[75] = .940e-1, w[85] = .340]   
660 0.675 [w[17] = .251, w[47] = .172, w[78] = .510, w[93] = .658e-1]   
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Appendix 3  SOCP Allocation Empirical Data 

0 193 [w[26] = .159, w[29] = .841]      
20 0.241 [w[3] = .398e-1, w[11] = .877e-1, w[43] = .589, w[85] = .245   
  w[90] = .236e-1, w[92] = .143e-1]     

40 292 [w[63] = .443, w[92] = .557]      
60 1.80E+03 [w[26] = .212, w[37] = .155, w[92] = .633]     
80 0.205 [w[22] = .542, w[64] = .520e-1, w[68] = .406]    
100 6.41 [w[18] = .160, w[42] = .451e-1, w[85] = .161e-1, w[88] = .777]   
120 208 [w[50] = .734, w[92] = .266]      
140 772 [w[26] = .203e-1, w[64] = .491, w[92] = .488]    
160 320 [w[68] = .578, w[92] = .422]      
180 480 [w[17] = .558, w[92] = .442]      
200 4.48E-02 [w[7] = .129e-1, w[9] = .259e-1, w[44] = .402e-1, w[58] = .243, w[61] = .297e-1 

  w[80] = .782e-1, w[85] = .177e-1, w[93] = .138, w[94] = .405]   
220 0.131 [w[36] = .669e-1, w[62] = .896e-1, w[80] = .784, w[94] = .592e-1]  
240 1.71 [w[21] = .283, w[88] = .259, w[91] = .372, w[99] = .855e-1]   
260 6.55E+03 [w[26] = .519, w[37] = .481]      
280 546 [w[26] = .531, w[45] = .469]      
300 906 [w[26] = .507, w[42] = .297, w[92] = .196]     
320 51.7 [w[17] = .983, w[92] = .168e-1]      
340 3.90E+03 [w[17] = .381, w[26] = .371, w[92] = .248]     
360 673 [w[26] = .520, w[97] = .480]      
380 1.28E+03 [w[45] = .524, w[92] = .476]      
400 0.314 [w[32] = .928e-1, w[36] = .286, w[42] = .197, w[84] = .222e-1   

  w[89] = .469e-1, w[99] = .355]      
420 3.58 [w[60] = .439, w[99] = .561]      
440 319 [w[17] = .642, w[26] = .358]      
460 168 [w[22] = .379, w[26] = .270, w[37] = .350]     
480 25.5 [w[22] = .945e-1, w[37] = .796, w[92] = .109]    
500 304 [w[37] = .840, w[92] = .160]      
520 0.495 [w[61] = .342, w[67] = .192, w[96] = .261]     
540 5.29 [w[61] = .729, w[88] = .235, w[98] = .354e-1]    
560 2.84E+03 [w[26] = .381, w[37] = .548, w[92] = .713e-1]    
580 47.9 [w[37] = .372, w[40] = .628]      
600 5.29 [w[58] = .909, w[93] = .909e-1]      
620 850 [w[37] = .950, w[92] = .503e-1]      
640 2.46 [w[29] = .546e-1, w[35] = .592e-1, w[48] = .169e-1    

  w[75] = .321e-1, w[76] = .986e-1, w[85] = .488]    
660 3.56 [w[17] = .344e-1, w[47] = .383e-1, w[93] = .236, w[99] = .691]   

        

 

 


