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Abstract

We introduce an adaptive space-time multigrid method for the pric-
ing of barrier options. In particular, we consider the numerical valuation
of up-and-out options by the method of lines. We treat both the im-
plicit Euler and Crank-Nicolson methods. We implement a space-time
multigrid method in which the domain in space and time are treated
simultaneously. We consider an adaptive coarsening technique in which
the choice of restriction operator is dependent on the grid’s degree of
anisotropy at each level. We perform local Fourier analysis to find a
suitable choice of our anisotropy constant. We detail the advantages
and disadvantages of our technique. In particular, we stress that our
algorithm is extremely well suited for parallel computing and, with a
suitable smoother, has parallel complexity O(log M + log N), allowing
for fast computation of extremely large scale problems.
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1 Introduction

The numerical computation of the fair value price of a given barrier option

is a particularly relevant problem in finance, due to the lack of closed-form

representations for their valuation under the majority of models. There exist

nuances for the case of the barrier option that separates it from the general

vanilla case. Options with a barrier are extremely sensitive to mispecifications

in parameter estimation, due to the discontinuitites in the payoffs, leading

to large Gamma (Γ = ∂2V
∂S2 ) and Vega (ν = ∂V

∂σ
), and resulting in large pricing

errors [1]. We have closed form solutions for the Black Scholes model, however,

in cases where more sophisticated volatility models are used, exact solutions

no longer exist. However, due to reasons stated above, such volatility models

are particularly useful for barrier options.

There exists a number of different techniques for pricing options. In par-

ticular, the two main techniques used in practice are to estimate the price by

Monte Carlo methods or by solving the corresponding partial differential equa-

tion (PDE). We consider the latter approach exclusively. The PDE approach

requires the computation of the solution of a second order linear parabolic

equation. We consider discretization by the method of lines with finite differ-

ences. We apply multigrid (MG) methods to the given discretization, treating

the entire grid simultaneously and introducing an adaptive restriction proce-

dure that depends on the PDE’s characteristics and the given discretization.

Treating the entire grid simultaneously allows for full parallelization of the

algorithm. For a grid with N points in space and M in time, multigrid in

space with time-stepping has parallel complexity O(M logN). In contrast,

treating the grid as a whole with a suitable smoother results in parallel com-

plexity O(logM + logN). For fine grids, this difference is significant; even for

extremely large probems the parallel complexity of our algorithm is nominal.

The flow of the paper is as follows. We begin by introducing the mathemat-

ical framework of our problem. We give the numerical details of our method for

the Black-Scholes operator by finite differences. We then detail the technique

used to determine the restriction operator and give numerical results. We show

our method to be robust to more general volatility models and consider the

CEV model as an example. In addition, we give a discussion of our method in

general, considering both its advantages and disadvantages.
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Figure 1: Plot of a stock that
crosses the barrier

Figure 2: Plot of a stock that
doesn’t cross the barrier

2 Mathematical Framework

A barrier option is a given derivative with an additional condition on its

movement. In particular, a stock level B is set and the stock’s movement is

observed over the life of the option [0, T ]. Depending on the type of barrier,

the option will become worthless if the extra condition involving the stock

price level B is not satisfied. Thus a barrier option will have the payoff of a

call or a put, unless it is rendered worthless by an additional condition. There

are predominantly eight different types of barrier options, depending on the

choice of call or put, up or down, and in or out. We assume our options to

be European in nature and contain a single continuous barrier. We have the

following formal definition.

Definition 2.1. A barrier option is a call or put derivative with an addi-

tional condition for the path of the underlying St with respect to a given level

of stock price B. An up-and-out barrier option is worthless if there exists a

t ∈ [0, T ) such that St ≥ B. An up-and-in barrier option is worthless if there

does not exist a t ∈ [0, T ) such that St ≥ B. A down-and-out barrier option is

worthless if there exists a t ∈ [0, T ) such that St ≤ B. A down-and-in barrier

option is worthless if there does not exist a t ∈ [0, T ) such that St ≤ B.

In this paper, we consider the up-and-out European call option. In Figures

1 and 2, we see two realizations of the underlying stock. In Figure 1, we see

that the stock crosses the boundary and the option expires worthless. However,

in Figure 2 the stock does not cross the boundary, and therefore the option

expires as a standard call, with value |ST −K|+. We give a list of the types of

barrier options in Table 1, along with their worth, based on interaction with
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Table 1: Types of Single Barrier Options

Option Type Barrier Crossed Not Crossed

Call Down-and-Out Below Spot Worthless Standard Call

Down-and-In Below Spot Standard Call Worthless

Up-and-Out Above Spot Worthless Standard Call

Up-and-In Above Spot Standard Call Worthless

Put Down-and-Out Below Spot Worthless Standard Call

Down-and-In Below Spot Standard Call Worthless

Up-and-Out Above Spot Worthless Standard Call

Up-and-In Above Spot Standard Call Worthless

the barrier. We note that, of these eight types, there are only four independent

cases. The sum of an up-and-in (or down-and-in) and an up-and-out (or down-

and-out) gives a vanilla option.

We take our underlying to be given by

dS(t) = β(S(t)) dt+ γ(S(t)) dW̃ (t) (1)

where W̃ (t), 0 ≤ t ≤ T , is a Brownian motion on the risk neutral measure P̃.

By the Feymann-Kac formula2, the fair price of an up-and-out call option at

time t, v(x, t) = Ex,t[e−r(T−t)v(x, T )], is the solution to the PDE

∂v

∂t
+ β(x, t)

∂v

∂x
+

1

2
γ(x, t)2 ∂

2v

∂x2
− rv = 0 (2)

with terminal condition v(x, T ) = |x−K|+ and boundary conditions v(0, t) =

v(B, t) = 0. Depending on the model, the choice of β and γ varies. However,

for now we assume β(x, t) = rx and γ(x, t) = σx, r, σ constant. This gives

us the Black-Scholes PDE. We save treatment of more general choices of γ to

Section 5.
2The author notes that a significant amount of subtlety regarding the applicability of the

Markov property and the Feymann-Kac Theorem has been neglected. For a more detailed
analysis of why the PDE for the barrier option is the same as for the vanilla option and the
process to come to this result, refer to [2].
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Through a coordinate transformation of the Black-Scholes PDE, one can

obtain the heat equation [3]. We consider the transformation x = ey, t =

T − 2τ
σ2 . This gives us the PDE vτ = vyy + ( 2r

σ2 − 1)vy − 2r
σ2v. Setting

v(y, τ) = eαy+βτu(y, τ), with α = σ2−2r
2σ2 and β = (σ

2+2r
2σ2 )2, we obtain the heat

equation on the transformed domain (y, τ) ∈ (−∞, lnB)×(0, σ
2

2
T ], with initial

condition u(y, 0) = e−αy|ey −K|+ and boundary condition limy→−∞ u(y, τ) =

u(lnB, τ) = 0. For any solution obtained by the heat equation in the trans-

formed domain, the corresponding fair option value can be obtained by multi-

plying by eαy+βτ and transforming (y, τ) → (x, t). This transformed domain is

preferred for local Fourier analysis and, therefore, significantly more suitable

for our method.

3 Numerical Formulation

We consider the discretizion of our transformed PDE. Because of the in-

finite lower boundary in space, we must set an artificial lower boundary. We

choose − lnB, which transforms to a value of 1
B

in the standard domain and,

for reasonably large B, is sufficiently close to zero3. We define a partition in

space Πx = {x1, x2, ..., xN−1, xN}, where − lnB = x1 < x2 < ... < xN−1 <

xN = lnB, hx = xj+1 − xj. We implement a centered difference quotient

in space to approximate our problem by a system of N − 2 ODE’s. Some

of the common first- and second-order numerical techniques for solving ODE

initial value problems include the implicit and explicit Euler methods, the

midpoint method, and the trapezoidal rule. Both the explicit Euler and mid-

point method are explicit in nature and exhibit limited stability domains. We

will restrict ourselves to the implicit Euler method and the Crank-Nicolson

method4.

Both the implict Euler and Crank-Nicolson methods have their advantages.

The Crank-Nicolson method is of higher order and more commonly used in

practice. However, it can result in oscillatory behavior in the solutions, due to

3The error of this approximation can be explicitly calculated by computing the difference
in solution between an up-and-out and double knock-out call with lower barrier at 1

B
4When applied to a PDE via the method of lines, the trapezoidal rule is commonly

referred to as the Crank-Nicolson method
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the non-smooth (and possiblity jump) initial conditions that occur in option

pricing [4]. There are a number of ways to avoid this issue, and reasonable

augmentations of the method can be found in [5]. To apply these methods,

we introduce a partition in time Πt = {t1, t2, ..., tM−1, tM}, with 0 = t1 < t2 <

... < tM−1 < tM = T , ht = ti − ti−1. We have the stencils 0 0 0

− ht

h2
x

1 + 2ht

h2
x

− ht

h2
x

0 −1 0

 ,
 0 0 0

− ht

2h2
x

1 + ht

h2
x

− ht

2h2
x

− ht

2h2
x

−1 + ht

h2
x

− ht

2h2
x

 (3)

for the implicit Euler and Crank-Nicolson methods, respectively. This gives a

system of (M − 1) × (N − 2) equations. We consider solving the discretized

system by multigrid methods.

Multigrid (MG) methods are a class of techniques used to solve discrete

formulations of differential equations by utilizing a multilevel grid structure.

Most pointwise relaxation schemes (such as Gauss-Seidel, Jacobi, etc.) have

different rates of convergence for the low and high frequency components of

the error. In particular, the high frequency components are tough to smooth.

Due to the aliasing effect of restriction operators on the frequency domain of

the error, coarse grids can be used to effectively smooth the high frequency

components. Interpolation between grids is used to create a multilevel struc-

ture to maintain the smoothing effects of the pointwise smoother on the low

frequency components, while also smoothing the high frequency components

through the coarse grids [6].

There are a number of ways to perform an effective multilevel scheme. We

consider the multigrid V-cycle. This choice is mainly for simplicity, and a

W-cycle or full multigrid (FMG) cycle could also suffice, although V-cycles

have been shown to be better suited to parallelization. We detail the generic

MG-cycle in Algorithm 3. Taking γ = 1 gives us the V-cycle.

We consider Gauss-Seidel red-black smoothing. Another technique (such as

Jacobi, Richardson, etc.) can be used, but, in general, Gauss-Seidel has been

shown to be the most effective pointwise smoother for multigrid techniques

[3]. We choose red-black ordering rather than lexicographic because of the

ease with which it can be parallelized.
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[H] Multigrid Cycle um+1
k = MGCY CLE(k, γ, Ak, u

m
k , fk, ν1, ν2)

Pre-Smoothing:

ũmk = Sν1umk
Coarse-Grid Correction:

rk = fk − Akũ
m
k

rk−1 = Ik−1
k rk

Approximate Coarse Solution:

If k = 1

Solve A0e0 = r0 Exactly

e0 = A−1
0 r0

Else

Solve Ak−1ek−1 = rk−1 Approximately with γ MG Cycle Calls

ek−1 = MGCY CLEγ(k − 1, γ, Ak−1, 0, rk−1, ν1, ν2)

Interpolate Correction:

ek = Ikk−1ek−1

uCGCk = ũmk + ek

Post-Smoothing:

um+1
k = Sν2uCGCk

For interpolation, we implement a restriction operator whose properties

depend on the given grid level. In particular, we consider the anisotropy ratio
ht

h2
x
. We determine the value of ht

h2
x

for which coarsening in time and in space

produce equivalent two-grid convergence rates (denoted λa), and use it as a

cutoff for our choice of coarsening in space or time. We stress that simulatneous

coarsening cannot be used effectively; the anisotropy ratio approaches zero

fairly quickly on coarser grids, resulting in a divergent smoother. The stencils

for the space, time, and simultaneous restriction operators, respectively, are

given below.

1

4

0 0 0

1 2 1

0 0 0

 1

2

0 0 0

0 1 0

0 1 0

 1

8

0 0 0

1 2 1

1 2 1

 (4)

The time restiction operator is asymmetric, so as to not transfer any infor-

mation backward in time. The prolongation operators are taken to be the

adjoints of the restriction operators. The process used to determine the value
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of λa explicitly is the subject of Section 4.

4 Local Mode Analysis

We consider the application of local mode analysis to our discretized problem.

We aim to produce an anisotropy ratio λa := ht

h2
x

to determine whether coars-

ening in space or time produces a preferable convergence rate on a given grid

level. The work in this section follows from [6, 7].

We are unable to perform rigorous Fourier analysis for the majority of cases

because it requires the existence of an orthogonal basis of periodic eigenfunc-

tions for the operator. Rigorous Fourier analysis can only be applied to a very

small class of problems in practice [8]. It is for this reason we turn to local

Fourier analysis. This technique was first introduced by Brandt [9]. The anal-

ysis is performed locally, and assumes our problem to be a linear differential

equation with constant coefficients. In general, the equations dealt with in

option pricing do not fit this criteria, but locally can be assumed to be of this

form. However, problems can occur when attempting to produce a result for

an entire grid. In this case, a suitable freezing of coefficients must be chosen.

In Section 4.2 we discuss the forms of non-constant coefficient parabolic PDEs

that are well suited to this analysis and, more importantly, our technique.

We begin by detailing the local Fourier analysis technique in two dimen-

sions. We aim to approximate the spectral matrix of the two-grid operator

MH
h = Sν2h (Ih − IhHL

−1
H IHh FhLh)S

ν1
h ,

where Sh is a given smoothing operator, ν1 and ν2 are the number of pre- and

post-smoothing iterations performed, Ih is the identity operator, and IHh and

IhH are the restriction and prolongation operators, respectively. We use Fh as

a normalizing constant; we have Fh = 1 for space coarsening and Fh = 2 for

time and simultaneous coarsening. We attempt to approximate MH
h using an

operator M̂H
h defined on the frequency domain of our problem. We define the

frequency domain operator M̂H
h in similar way:

M̂H
h = Ŝν2h (Îh − ÎhHL̂

−1
H ÎHh FhL̂h)Ŝ

ν1
h .

Each operator is represented by a 4×4 matrix acting on the frequency domain
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Figure 3: Aliasing Fourier modes for coarsening in space, in time, and in space and
time, respectively. White shapes represent coarse grid modes, black shapes represent
fine grid modes. The coarse grid modes that each fine grid aliases with is denoted
by the same shape.

[−π, π)2. For our purposes we have (IHh )T = IhH and (ÎHh )T = ÎhH , but this is

not always the case.

We define Θh = {(θ1, θ2) : θα = 2πkα/nα}, kα = −nα/2 + 1, ..., nα/2

(k1 = M , k2 = N) to be a discretization of the frequency domain. Given some

θ1 ∈ Θh ∩ [−π/2, π/2)2, we define the following vectors.

θ2 = θ1 −

(
sign(θ1

1)π

sign(θ1
2)π

)
θ3 = θ1 −

(
0

sign(θ1
2)π

)
θ4 = θ1 −

(
sign(θ1

1)π

0

)
We introduce exponential Fourier modes ψh(θ)j = eij·θ, j = (j1, j2), jα =

0, ..., nα−1. For θ ∈ Θh∩[−π/2, π/2)2, we define Ψh(θ) = (ψh(θ
1), ψh(θ

2), ψh(θ
3)

, ψh(θ
4))T . We note that the linear space spanned by Ψh(θ) is invariant under

the two-grid operator M̂H
h (θ). We see that when ψh(θ) is projected to the

coarse grid, it aliases with ψH(θ̄), where θ̄ equals (2θ1, θ2) for coarsening in

space, (θ1, 2θ2) for coarsening in time, and (2θ1, 2θ2) for simultaneous coars-

ening. We give Figure 3, from [10], to illustrate this for the three different

cases.

All that remains is to consider the representations for L̂h, L̂H , ÎHh , and Ŝh.

Let lk, sk, rk, and pk represent the stencils for Lh, LH , IhH and IHh , respectively,

where k ranges over an index set J ⊂ Z2. We begin with L̂h; its representation

is given by

L̂h(θ) =


L̃h(θ

1) 0 0 0

0 L̃h(θ
2) 0 0

0 0 L̃h(θ
3) 0

0 0 0 L̃h(θ
4)

 ,
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where L̃h(θ) =
∑

k∈J lke
ik·θ. For the coarse grid L̂H , we have

L̂H(θ) =

(
L̃H(θ̄1) 0

0 L̃H(θ̄3)

)
,

(
L̃H(θ̄1) 0

0 L̃H(θ̄4)

)
,

(
L̃H(θ̄1)

)
for coarsening in space, time, and space and time, respectively. Similarly

to L̃h(θ), we have L̃H(θ) =
∑

k∈J ske
ik·θ. The prologation operator ÎhH(θ) is

represented by

ÎhH(θ) =


ĨhH(θ1) 0

0 ĨhH(θ2)

0 ĨhH(θ3)

ĨhH(θ4) 0

 ,


ĨhH(θ1) 0

0 ĨhH(θ2)

ĨhH(θ3) 0

0 ĨhH(θ4)

 ,


ĨhH(θ1)

ĨhH(θ2)

ĨhH(θ3)

ĨhH(θ4)


for coarsening in space, time, and space and time, respectively. We have ĨhH
given by ĨhH(θ) = h1h2

H1H2

∑
k∈J p−ke

ik·θ. The operator Ŝh(θ) for Gauss-Seidel

red-black smoothing has the form

Ŝh(θ) =
1

2


α(θ1) + β(θ1) α(θ2)− β(θ2) 0 0

α(θ1)− β(θ1) α(θ2) + β(θ2) 0 0

0 0 α(θ3) + β(θ3) α(θ4)− β(θ4)

0 0 α(θ3)− β(θ3) α(θ4) + β(θ4)

 ,

where the functions α(θ) and β(θ) have the representations

α(θ) = − 1

l(0,0)

∑
k∈J0

lke
ik·θ, β(θ) = − 1

l(0,0)

( ∑
|k|=odd

lkα(θ)eik·θ+
∑

0 6=|k|=even

lke
ik·θ
)
,

with J0 = J\{(0, 0)} and |k| = |k1|+ |k2|. The interpolation elements are inde-

pendent of the specific parabolic PDE and choice of numerical ODE method.

We give the following representations for the prolongation elements.

sĨ
h
H(θ) =

1 + cos(θ1)

2
tĨ
h
H(θ) =

1 + e−iθ2

2
stĨ

h
H(θ) = sĨ

h
H(θ) tĨ

h
H(θ)

What remains to be considered are the representations for the elements of the

PDE itself and the smoother, which vary by equation and discretization. We
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include the elements for the transformed Black-Scholes PDE.

ieL̃h(θ) = 1− e−iθ2 + 2λ(1− cos(θ1))

ieα(θ) =
e−iθ2 + 2λ cos(θ1)

1 + 2λ

ieβ(θ) = α2(θ)

cnL̃h(θ) = 1− e−iθ2 + λ(1− cos(θ1))(1 + e−iθ2)

cnα(θ) =
(1− λ)e−iθ2 + λ cos(θ1)(1 + e−iθ2)

1 + λ

cnβ(θ) =
(1− λ)α(θ)e−iθ2 + λ cos(θ1)(α(θ) + e−iθ2)

1 + λ

4.1 Numerical Results

We consider the numerical application of our multigrid method, using local

Fourier analysis to determine our restriction operator. Using the explicit rep-

resentations of the stencils of the operators in the frequency domain, we can

compute the spectral radius of M̂H
h for a given θ ∈ Θh ∩ [−π/2, π/2)2. We

define ρ̃ = max{ρ(M̂H
h ) | θ ∈ Θh ∩ [−π/2, π/2)2}, where ρ(·) is the spectral

radius. This gives an indicative measure of the convergence rate for a given

choice of λa and restriction operator. We note that the computational cost of

determining λa is nominal in comparison to a multigrid iteration.

For numerical illustration, we consider the problem of pricing an up-and-

out call barrier option with the following conditions:

B = 20, K = 13, T = 1, r = 0.1, σ = 0.25. (5)

For the test problem (5), we computed ρ̃ for a range of values of λ. We

consider the value of λ for which ρ̃x ≈ ρ̃t. For the implicit Euler method

this value is clear and well-defined, but for the Crank-Nicolson method, which

exhibits more erratic behavior with respect to λ, there are a number of such

values. For this case, the choice of λa is somewhat qualitative. We take

λa = 2−3/4 for the implicit Euler method and λa = 2−1 for the Crank-Nicolson

method.
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Table 2: Convergence Factors for Adaptive Space-Time V-Cycle(2,2)

Standard Domain Transformed Domain

Method M \ N 33 65 129 33 65 129

33 .1391 .4103 .6738 .0010 .0057 .1016

Implicit Euler 65 .1597 .4078 .6715 .0218 .0589 .1395

129 .2833 .5532 .7142 .1868 .2288 .2604

33 .0097 .0967 .2673 .0004 .0025 .0143

Crank-Nicolson 65 .0583 .0922 .2407 .0201 .0414 .0643

129 .1890 .2264 .3200 .1914 .1473 .1763

We consider convergence results for the given test problem. We compute

numerical tests for both the standard and transformed Black-Scholes PDE. For

the standard domain, we freeze x at B/
√

2. To determine λa for the standard

domain, it suffices to divide the value of λa for the transformed domain by
σ2B2

4
= 25

4
≈ 211/4. This can be justified by considering ut = 1

2
σ2x2uxx and

noting the nominal effect lower order terms play in local Fourier analysis.

We compute approximate convergence rates for different grid sizes, using(
d(n)

d(j)

)(1/(n−j))
as a measure of convergence, where d(i) = f −Au(i) and n is the

number of iterations for d(i) to satisfy the given tolerance ||d(i)|| < c. For our

tests, we take c = MN × 10−15. Often in Multigrid tests, j is chosen to be a

small, nonzero number such that the true convergence can be seen. We take

j = 3. We have the results in Table 2.

We see immediately that the convergence rates in the transformed domain

are superior to that of the standard domain. We see that the extra assumption

of a constant coefficient operator, especially in the terms of higher differential

order, is one that greatly affects the results. We stress this trend for our

method, and will give more rigorous justification in Section 4.2.
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4.2 Local Fourier Analysis for Parabolic Equations in

Rd

It can be seen that the process of local Fourier analysis does not apply well

to PDEs with non-constant coefficients in the higher differential order terms.

Although a constant coefficient PDE is ideal, the form ut = ∆u + δ(x)u is

the next best choice. Under suitable conditions, we can put strict bounds on

the pertubations of the two-grid analysis. We stress the importance of two-

grid convergence results that are robust to the entire domain. Before giving

such results, we must give the formulation of local mode analysis for parabolic

equations in Rd.

We consider the frequency domain [−π, π)d+1, coupled with some dis-

cretization Θh = {θ : θα = 2πkα/nα, kα = −nα/2 + 1, ..., nα/2}. We assume

θd+1 to be the frequency component of the time variable. Given a choice

θ ∈ Θh ∩ [−π/2, π/2)d+1, we can define 2d+1 vectors θ1, θ2, ..., θ2d+1
by

θm = θ − Γ,

where Γi := 1i∈Cmsgn(θi)π, and {Ci}2d+1

1 are the 2d+1 different combinations

of the set Zd+1 = {1, ..., d + 1}. Therefore, each operator in the frequency

domain is represented by a 2d+1 × 2d+1 matrix. The exponential Fourier

mode φh(θ) aliases with φH(θ̄) upon restriction, with θ̄ equal to (2θ1, 2θ2, ...,

2θd, θd+1) for coarsening in space, (θ1, θ2, ..., θd, 2θd+1) for coarsening in time,

and (2θ1, 2θ2, ..., 2θd, 2θd+1) for simultaneous coarsening. The extensions of the

operators from the case of R2 to Rd+1 are natural and omitted. However, we

note that the interpolation operators are dependent on the ordering of the

combinations {Ci}2d+1

i=1 . We present the following result.

Theorem 4.1. Let M̂H
h and (M̂H

h )∆+δ be the two-grid frequency domain

operators of the method of lines discretization (using implicit Euler or Crank-

Nicolson) of ut = ∆u and ut = ∆u + δ(x)u, respectively. Let Ê2G = Îh −
ÎhHL̂

−1
H ÎHh FhL̂h, Λ =

∑d
i=1

ht

h2
xi

, ε = minθ∈Θh
L̃h(θ), and Ξ = maxθ∈Θh

‖Ê2G‖.
Suppose that Θh is bounded away from a neighborhood of zero. In addition, sup-

pose that ht is sufficiently small, and that a smoothing property holds, namely,

htδ(x) < min( ε
2
,Λ) and α(θ) < 1. Then we have

max
θ∈Θh

|ρ[M̂H
h (θ)]− ρ[(M̂H

h )∆+δ(θ;x)]| ≤ Chtδ(x), (6)
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with C = 4(ν1+ν2)
1+Λ/2

Ξ + 1+5(1+Ξ)
Fhε

+O(htδ(x)).

The above theorem is quite technical in nature, but the intuition gained is

that the variation in the results of local mode analysis is small for ht sufficiently

small. Therefore, for a reasonably fine grid, the results of local mode analysis

for a given freezing of coefficients is fairly robust. The proof is left to the

appendix.

We note that the terms ε and Ξ are O(1) and are of reasonable value

when the grid in the frequency domain is sufficiently far away from zero. Our

operator L̂h is degenerate at zero, but for a rough mesh that avoids zero in

the frequency domain, ε is large enough. Assuming n = nα for all α, n odd,

one can compute the bound ε ≥ π2

n2 (1− π2

n2 )Λ by Taylor expansion of the cosine

function.

For a PDE that cannot be converted to a constant coefficient differential

equation, we will settle for the form ut = ∆u + δ(x)u. A small amount of

variance in our two-grid convergence results is acceptable and affects the cutoff

nominally. Theorem 4.1 allows us to apply our method to a larger class of

models and be assured that our method will perform well.

5 Deterministic Volatility Models

In practice, the Black-Scholes model is far from practical, and does not

give a true representation of the behavior of the volatility. The model fails to

capture the volatility “smile”. A common technique to overcome the model’s

shortcomings is to use deterministic volatility models. The deterministic volatil-

ity approach models the volatility as a deterministic function of the underlying.

The volatility function is calibrated so that it accurately captures the volatility

smile. These models are sometimes referred to as one-factor models, stemming

from the single source of randomness. Advantages of such an approach is that

it produces functions that are monotonic with respect to the underlying (for

vanilla options), perfectly correlated with the underlying, and replicable [11].

The main example of such an approach is the constant elasticity of variance

(CEV) model.

For general deterministic volatility models we assume our underlying to be
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given by the stochastic differential equation

dS(t) = rS(t) dt+ γ(S(t)) dW̃ (t), (7)

resulting in the PDE

∂v

∂t
+ rx

∂v

∂x
+

1

2
γ(x)2 ∂

2v

∂x2
− rv = 0. (8)

Through the transformation5 y = φ(x) :=
∫ √

2[γ(x)]−1dx, τ = T−t, we obtain

vτ = vyy+(rxφ′+ φ′′

2
γ2)vy−rv. Letting v(y, τ) = eψ(y)u(y, τ), ψ(y) :=

∫
rxφ′+

φ′′

2
γ2dy, we have the form uτ = uyy + δ(y)u, with δ(y) = ψ′′(y)− (ψ′(y))2 − r.

Our algorithm is nearly identical for this case, with slightly different stencils 0 0 0

− ht

h2
x

1 + 2ht

h2
x
− htδ(y) − ht

h2
x

0 −1 0

 ,
 0 0 0

− ht

2h2
x

1 + ht

h2
x
− ht

2
δ(y) − ht

2h2
x

− ht

2h2
x

−1 + ht

h2
x
− ht

2
δ(y) − ht

2h2
x

 (9)

for the implicit Euler and Crank-Nicolson method, respectively, as well as

slightly perturbed LFA elements (refer to the Appendix).

For the special case of the CEV model, we have γ(x) = σxβ, for some

β > 0. This results in

δCEV (y) = −
(

β

2(1− β)y2
+
r(1− β)

2

)
−
(

β

2(1− β)y
− r(1− β)y

2

)2

−r. (10)

6 General Discussion of Technique

Our space-time multigrid technique has both its advantages and disadvan-

tages. We believe the main source of appeal for our algorithm, as well as its

drawbacks, to be as follows:

Advantages:

• multigrid techniques are iterative in nature

5Typically, we have γ(0) = 0. In this case, we will have −∞ as the lower boundary for
our transformed domain, and must create an artificial boundary as we did in Section 3.
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• space-time multigrid, with a suitable smoother, is fully parallelizable

• the method is robust to a large class of options and pricing models

Disadvantages:

• treating space and time simultaneously produces large matrices

The advantage of an iterative technique is two-fold. First, the ability to

choose a stopping criterion allows the individual to decide whether to favor

approximation quality or quicker computations, depending on individual needs.

Second, it allows the use of favorable initial approximations, which are readily

available for the majority of financial instruments.

In addition, our method is fully parallelizable. In particular, assuming a

sufficient amount of processors, our method has parallel complexity O(logM+

logN) (M and N being the number of grid points in the time and space direc-

tions, respectively), as compared to time-stepping methods (such as multigrid

in space), which has at best O(M logN) parallel complexity. Our algorithm

comes into its own when the speed of computation is at a premium, rather

than overall computational cost.

Through domain transformations, we have shown our method to be robust

to a large class of parabolic PDEs. In particular, we have shown our method

to be applicable to general deterministic volatility models. Finally, we note

that our technique need not be limited to the case of barrier options, and is

fully applicable to general derivatives. The choice of options with a barrier

was because of the lack of explicit solutions for the majority of models.

The major disadvantage of the method is the large matrix it produces.

To gain a great deal of accuracy in the solution, the matrix must become

large. However, this matrix is sparse. We stress that this algorithm is not

meant to be performed on a single processor. This technique is advantageous

when multiple processors are available, and a short computation time is of

great importance. The algorithm’s ability to be fully parallelized makes the

large matrix less relevant, although it does remain a valid point. For a single

processor, multigrid in space with time-stepping would be a more suitable

procedure.
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7 Appendix: Proof of Theorem 4.1

To begin, we consider the difference in stencil elements for ut = ∆u and

ut = ∆u + δ(x)u. We consider the perturbations of each element �δ :=

�∆+δ −�∆. We have the following.

ieL̃
δ
h(θ) = −htδ(x) (11)

ie(L̃
δ
H(θ))−1 =

htδ(x)

L̃∆+δ
H (θ)L̃H(θ)

(12)

ieαδ(θ) = − htδ(x)α(θ)

1 + 2
∑d

i=1 λi − htδ(x)
(13)

ieβδ(θ) =
(
αδ(θ)(1 + e−iθd+1)

d∑
i=1

λi cos(θi)− htδβ(θ) (14)

+ αδ(θ)e
−iθd+1(1−

d∑
i=1

λi)
)
/(1 + 2

d∑
i=1

λi − htδ(x))

cnL̃
δ
h(θ) = −1

2
(1 + e−iθd+1)htδ(x) (15)

cnL̃
−δ
H (θ) =

1
2
(1 + e−iθd+1)htδ(x)

L̃∆+δ
H (θ)L̃H(θ)

(16)

cnαδ(θ) = −
ht

2
δ(x)(e−iθd+1 + α(θ))

1 +
∑d

i=1 λi −
ht

2
δ(x)

(17)

cnβδ(θ) =
(
αδ(θ)(α(θ)(1 +

d∑
i=1

λi)− e−iθd+1

d∑
i=1

λi cos(θi)) (18)

− ht

2
δ(x)(α(θ)e−iθd+1 + β(θ))

)
/(1 +

d∑
i=1

λi − ht

2
δ(x))

The above stencil elements are all that we require to prove Theorem 4.1. Recall

that M̂H
h = Ŝν2h (Îh − ÎhHL̂

−1
H ÎHh FhL̂h)Ŝ

ν1
h . From the structure of the equation

ut = ∆u + δ(x)u, we can treat it as a perturbation of the d-dimensional heat

equation. We will follow this trend in the representation for (M̂H
h )∆+δ. It can

be represented as

(M̂H
h )∆+δ = (Ŝh + Ŝδh)

v2 [Îh − ÎhH(L̂−1
H + L̂−δH )ÎHh Fh(L̂h + L̂δh)](Ŝh + Ŝδh)

v1 .

Expanding (M̂H
h )∆+δ, and considering the difference between M̂H

h and (M̂H
h )∆+δ,
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we have

(M̂H
h )∆+δ − M̂H

h = [(Ŝh + Ŝh)
ν2 − Ŝν2h ][Ê2G − Fh(Î

h
HL̂

−1
H ÎHh L̂

δ
h + ÎhHL̂

−δ
H ÎHh L̂h

+ ÎhHL̂
−δ
H ÎHh L̂

δ
h)](Ŝh + Ŝδh)

ν1 + Ŝν2h Ê2G[(Ŝh + Ŝδh)
ν1 − Ŝν1h ]

− Ŝν2h Fh(Î
h
HL̂

−1
H ÎHh L̂

δ
h + ÎhHL̂

−δ
H ÎHh L̂h

+ ÎhHL̂
−δ
H ÎHh L̂

δ
h)(Ŝh + Ŝδh)

ν1 .

Taking the Euclidean norm of both sides and expanding gives us the bound

‖(M̂H
h )∆+δ − M̂H

h ‖ ≤ (ν2‖Ŝδh‖+O(‖Ŝδh‖2))(‖Ê2G‖+ Fh(‖L̂−1
H ‖‖L̂δh‖

+ ‖ÎhHL̂−δH ÎHh L̂h‖+ ‖ÎhHL̂−δH ÎHh L̂
δ
h‖))(1 + ν1‖Ŝδh‖

+O(‖Ŝδh‖2)) + Fh(‖L̂−1
H ‖‖L̂δh‖+ ‖ÎhHL̂−δH ÎHh L̂h‖

+ ‖ÎhHL̂−δH ÎHh L̂
δ
h‖)(1 + ν1‖Ŝδh‖+O(‖Ŝδh‖2))

+ ‖Ê2G‖(ν1‖Ŝδh‖+O(‖Ŝδh‖2))

We need bounds on a number of operators. Making use of the conditions of

the theorem, we have ‖Ê2G‖ < Ξ and ‖L̂−1
H ‖ < 1

ε
. By inspection of (11,15), we

immediately see that ‖L̂δh‖ < htδ. What remains is to obtain bounds on ‖Ŝδh‖,
‖ÎhHL̂−δH ÎHh L̂h‖, and ‖ÎhHL̂−δH ÎHh L̂

δ
h‖.

We begin with ‖Ŝδh‖. We note that the smoothing property α < 1 im-

plies β < 1. Using the assumption of htδ < Λ, we can deduce from results

(13,14,17,18) that ieαδ <
htδ
1+Λ

, ieβδ <
3htδ
1+Λ

, cnαδ <
htδ

1+Λ/2
, cnβδ <

3htδ
1+Λ/2

, and,

therefore, ‖Ŝδh‖ < 4htδ
1+Λ/2

.

Moving on to ‖ÎhHL̂−δH ÎHh L̂h‖, we start by observing that

ÎhHL̂
−δ
H ÎHh L̂h = F−1

h ÎhHL̂
−δ
H L̂H Î

H
h [ÎhHL

−1
H ÎHh FhL̂h] = F−1

h ÎhHL̂
−δ
H L̂H Î

H
h [Îh − Ê2G].

This gives us

‖ÎhHL̂−δH ÎHh L̂h‖ < F−1
h (1 + Ξ)‖ÎhHL̂−δH L̂H Î

H
h ‖ < F−1

h (1 + Ξ)‖L̂−δH L̂H‖

<
F−1
h (1 + Ξ)htδ

ε− htδ
< (1 + Ξ)

2F−1
h

ε
htδ.

Finding a bound for ‖ÎhHL̂−δH ÎHh L̂
δ
h‖ follows a similar process. We have

ÎhHL̂
−δ
H ÎHh L̂

δ
h = ÎhHL̂

−δ
H ÎHh L̂

∆+δ
h − ÎhHL̂

−δ
H ÎHh L̂h.

We have a bound for the second term and using the same technique for the

first term, we find its bound is half of that of the second. This gives us

‖ÎhHL̂−δH ÎHh L̂
δ
h‖ < (1 + Ξ)

3F−1
h

ε
htδ.
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Making use of these bounds, we obtain

|ρ[M̂H
h ]− ρ[(M̂H

h )∆+δ]| ≤ (
4ν2htδ

1 + Λ/2
+O(h2

t δ
2))(Ξ +

F−1
h

ε
(1 + 5(1 + Ξ))htδ

× (1 +
4ν1htδ

1 + Λ/2
+O(h2

t δ
2)) +

F−1
h

ε
(1 + 5(1 + Ξ))htδ

× (1 +
4ν1htδ

1 + Λ/2
+O(h2

t δ
2)) + Ξ(

4ν1htδ

1 + Λ/2
+O(h2

t δ
2))

Combining all terms of order O(h2
t δ

2) and higher, we have the desired result.

|ρ[M̂H
h ]− ρ[(M̂H

h )∆+δ]| ≤ [
4(ν1 + ν2)

1 + Λ/2
Ξ +

1 + 5(1 + Ξ)

Fhε
+O(htδ)]htδ
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