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Abstract

In this paper, we present three remarkable properties of the normal
distribution: first that if two independent variables ’s sum is normally
distributed, then each random variable follows a normal distribution
(which is referred to as the Levy Cramer theorem), second a variation
of the Levy Cramer theorem (new to our knowledge) that states that
two independent symmetric random variables with finite variance, in-
dependent sum and difference are necessarily normal, and third that
normal distribution can be characterized by the fact that it is the only
distribution for which sample mean and variance are independent, which
is a central property for deriving the Student distribution and referred
as the Geary theorem. The novelty of this paper is twofold. First we
provide an extension of the Levy Cramer theorem. Second, for the two
seminal theorem (the Levy Cramer and Geary theorem), we provide
new, quicker or self contained proofs.
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2 Three remarkable properties of the Normal distribution

1 Introduction

The normal distribution is central to probability and statistics. It is ob-

viously the asymptotic law for the sum of i.i.d. variables as stated by the

Central Limit theorem and its different variants and extensions. It is also well

know that the normal distribution is the only Levy α-stable distribution with

the largest value of the α coefficient, namely 2. This fundamental properties

explains why the Wiener process plays such a central role in stochastic cal-

culus. There are many more properties of the normal distribution. It is for

instance the continuous distribution with given mean and variance that has

the maximum entropy.

In this paper, we present three remarkable properties of the normal distri-

bution: first that if X1 and X2 are two independent variables with X1 + X2

normally distributed, then both X1 and X2 follow a normal distribution (which

is referred to the Levy Cramer theorem), second a variation of the Levy Cramer

theorem that states that if X1 and X2 are independent symmetric random vari-

ables with finite variance with X1 + X2 and X1 −X2 independent, then both

X1 and X2 are normal, and third that the normal distribution is characterized

by the fact that it is the only distribution for which the sample mean and

variance are independent, which is a central property for deriving the Student

distribution and referred as the Geary theorem (see [2]).

The novelty of this paper is to provide new, quicker or self contained proofs

of theses theorems as well as an extension of the Levy Cramer theorem. In

particular, we revisit the proof first provided by [3] to give full details of it

as the sketch of the proof provided was rather elusive on technical details in

complex analysis. We also provide a quicker proof of the Geary theorem using

the log caracteristic function instead of the caracteristic function originally

used.

The paper is organized as follows. We first present the Levy Cramer the-

orem. We provide a thorough proof of the elusive sketch provided by [3]. We

then present another remarkable result that combines independence and nor-

mal law. We finally present a quick proof of the fact that the independence of

the sample mean and variance is a characterization of the normal law.
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2 Levy Cramer theorem

The Levy Cramer theorem states that if the sum of two independent non-

constant random variables X1 and X2 is normally distributed, then each of

the summands (X1 or X2) is normally distributed. This result stated [4] and

proved by [1] admits various equivalent formulations since there is a one to one

mapping between variables and their characteristic function:

• if the convolution of two proper distributions is a normal distribution,

then each of them is a normal distribution.

• if φ1(t) and φ2(t) are characteristic functions and if φ1(t)φ2(t) = exp(−γt2+

iβt), with γ ≥ 0 and −∞ < β < ∞, then φj(t) = exp(−γjt
2 + iβjt) with

γj ≥ 0 and −∞ < βj < ∞.

The two reformulations are obvious as the first one just uses the fact that

the distribution of the sum is the convolution of the two distributions. The

second uses the one to one mapping between distribution and characteristic

functions. It is worth mentioning that the LvyCramr theorem can be gen-

eralized to the convolution of two signed measures with restrictions on their

negative variation. It has also as a consequence the following implication on

the stability of distributions. Closeness of the distribution of a sum of inde-

pendent random variables to the normal distribution implies closeness of the

distribution of each of the summands to the normal distribution, qualitative

estimates of the stability are known. The LvyCramr theorem can also be

reformulated in terms of the Poisson distribution and is named the Raikov’s

theorem. It can also be extended to the convolution of a Poisson and a normal

distribution and to other classes of infinitely-divisible distributions [5]. Math-

ematically, the Levy Cramer theorem writes as follows:

Theorem 2.1. If X1 and X2 are two independent variables with X1 + X2

normally distributed, then both X1 and X2 follow a normal distribution

We will provide in the following page a self contained proof that follows

the version of [3] but provide full details about the assumptions on complex

analysis. For this, we will need 4 different lemmas that are presented now.
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2.1 Lemma 1

Lemma 2.2. Let f be an entire function without any zero (that does not

vanish anywhere), then there exists an entire function g such that

f = exp(g)

Proof. This results makes sense as intuitively, we would like to use as a can-

didate log(f) . However, let us provide a rigorous proof of it and explicitly

construct the function g. The exponential function is surjective from C to C∗.
This implies that there exists a complex z0 such that f(0) = exp(z0). The ratio

of two holomorphic functions with the denominator function without any zero

being holomorphic and any non vanishing holomorphic function f admitting

an entire function as a primitive, the function f ′
f

defined as the ratio of two

non vanishing holomorphic functions admits an entire function as primitive

denoted by

g(z) = z0 +

∫

[0,z]

f ′(u)

f(u)
du

Let us define by v = exp(g). Trivially, we have v′ = g′ exp(g) = f ′
f
v so that

(v/f)′ = v′f−vf ′
f2 = 0, which implies that the ratio v

f
is constant and equal to

one as by construction, v(0) = f(0). This concludes the proof.

Let us also prove another elementary result of complex analysis with the

following lemma (which is an extension of the Liouville’s theorem). Let us

denote by R the radius of convergence of a function f .

2.2 Lemma 2

Lemma 2.3. Let f be an entire function and P a polynomial such that:

∀z ∈ C,R(f(z)) ≤ |P (z)|,

then f is polynomial of degree at most equal to that of P .

Proof. By definition, the entire function writes as a power series

f(z) =
∞∑

n=0

anz
n
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that converges everywhere in the complex plane (hence uniformly on compact

sets). Cauchy formula states that ∀n ≥ 1, ∀r > 0, we can recover the series

coefficients

anr
n =

1

2π

∫ 2π

0

f(reiθ)e−inθdθ, (1)

as well as

0 =
1

2π

∫ 2π

0

f(reiθ)einθdθ (2)

and

a0 =
1

2π

∫ 2π

0

f(reiθ)dθ. (3)

Summing up equation (1) and the complex conjugate of (2) gives that

anr
n =

1

π

∫ 2π

0

R(f(reiθ))e−inθdθ, (4)

In particular, combining equations (4) and (3), we have

|an|rn + 2|a0| ≤ 1

π

∫ 2π

0

|R(f(reiθ))|+ |f(reiθ)|dθ ≤ 4 max
|z|=r

(R(f(z)), 0). (5)

Let us denote the polynomial function P =
∑d

k=0 bkX
k. The hypothesis

writes R(f(z)) ≤ |∑d
k=0 bkX

k| ∀z ∈ C, which combined with inequality (5)

leads to:

|an|rn + 2|a0| ≤ 4 max
|z|=r

(|
d∑

k=0

bkX
k|, 0) (6)

The dominating term in the RHS of the inequality (6), for r large, is |bd|rd.

For inequality (6) to hold, all LHS terms of order n > d should therefore be

equal to zero: ∀n > d, an = 0.

Let us now prove a central lemma.

2.3 Lemma 3

Lemma 2.4. If X is a real random variable such that there exists η > 0

such that f(η) =
∫
R eη2x2

dPX(x) is finite and if the characteristic function has

no zero in the complex domain, then X follows a normal distribution
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Remark 2.1. This is a remarkable property of the normal distribution. It

states that the normal is the only distribution whose characteristic function

has no zero such that its transform with the exploding kernel eη2x2
is finite.

The condition of no zero is necessary as for instance the uniform distribution

whose characteristic function is cosinus validates the fact that the function

f(η) is finite but not the no zero condition on the characteristic function. The

characterization of the normal distribution is related to the fact that the normal

distribution is the only distribution that is Lvy α-stable stable with α = 2.

Another interesting remark is that this property of the normal distribution is

closely related to the amazing features of the holomorphic functions as well as

the connection between characteristic function and moments.

Proof. For η ∈ R not null, for ζ ∈ C and for x ∈ R, we have |ζx| = |ηx η−1ζ| ≤
1
2
(η2x2 + η−2|ζ|2) ≤ η2x2 + η−2|ζ|2 (which is a reformulation of the remarkable

identity 2ab ≤ a2 + b2). We can upper bound the integral of
∫
R |eiζx|dPX(x) as

follows: ∫

R
|eiζx|dPX(x) ≤

∫

R
e|ζx|dPX(x) ≤

∫

R
eη2x2+η−2|ζ|2dPX(x) (7)

The assumption says that for a given η > 0,
∫
R eη2x2

dPX(x) < ∞. Hence, for

ζ ∈ C, the characteristic function of X whose definition in the complex domain

is φX(ζ) =
∫
R eiζxdPX(x) is bounded, hence defined since we have

|φX(ζ)| ≤
∫

R
|eiζx|dPX(x) ≤ eη−2|ζ|2

∫

R
eη2x2

dPX(x) < ∞ (8)

In particular, inequality (8) provides the dominated convergence necessary

to apply the holomorphic theorem under the integral sign to prove that the

characteristic function, φX(ζ) is an entire function. By assumption, it does

not have any zero in the complex domain. We can safely apply lemma 2.2. So

there exists an entire function g such that φX(ζ) = exp(g(ζ)). Inequality (8)

states that

exp(g(ζ)) ≤ eη−2|ζ|2f(η) (9)

or equivalently

R(g(ζ)) ≤ η−2|ζ|2 + ln(f(η)) (10)

Lemma 2.3 then says that g is polynomial and at most quadratic. Hence

it writes as

g(ζ) = a0 + ia1ζ +
a2

2
ζ2 (11)
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In addition, since φX(0) = 1, we have a0 = 0. Using the fact that from the

characteristic function, we can recover moments with E[Xk] = (−i)kφ
(k)
X (0),

we get immediately that a1 = E[X] = µ and a2 = −V ar(X) = −σ2, which

leads to the fact that the characteristic function of X is of the form

φX(ζ) = exp(iµζ − 1

2
σ2ζ2)

which is the characteristic function of the normal. This concludes the proof.

Let us prove a final lemma that reformulates the function f(η).

2.4 Lemma 4

Lemma 2.5. The function f(η) can be computed in terms of the probability

of the absolute value of X, P(|X| ≥ x), as follows:

f(η) = 1 +

∫ +∞

0

2xη2eη2x2P(|X| ≥ x)dx (12)

Proof. Let us split the integral between negative and positive reals as follows

f(η) =

∫ 0

−∞
eη2x2

dPX(x) +

∫ +∞

0

eη2x2

dPX(x) (13)

An integration by parts for the first integral, with the two primitives func-

tions chosen judiciously as eη2x2
and P(X ≤ x), leads to

∫ 0

−∞
eη2x2

dPX(x) = P(X ≤ 0)−
∫ 0

−∞
2xη2eη2x2P(X ≤ x)dx (14)

= P(X ≤ 0) +

∫ ∞

0

2xη2eη2x2P(X ≤ −x)dx (15)

Similarly, for the second integral in equation (13), an integration by parts,

with the two primitives functions chosen as still eη2x2
but −P(X ≥ x), leads

to

∫ +∞

0

eη2x2

dPX(x) = P(X ≥ 0) +

∫ +∞

0

2xη2eη2x2P(X ≥ x)dx (16)

Combining equations (15) and (16) gives the result.
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We are now able to prove the Levy Cramer theorem that states that if X1

and X2 are two independent variables with X1 +X2 normally distributed, then

both X1 and X2 follow a normal distribution.

Proof. A first trivial case is when the variance of X1+X2 is equal to zero. This

means that each of two variables X1 and X2 has a null variance (since they are

independent) and the result is trivial as they are all constant variables. We

therefore assume that the variance of X1 + X2 is not zero. It is worth noticing

that since X1 + X2 is a continuous distribution without any atom, we cannot

have that both X1 and X2 have an atoms since if it was the case with these

two atoms given by a1 and a2, we would have

0 < P(X1 = a1)P(X2 = a2) = P(X1 = a1, X2 = a2) ≤ P(X1+X2 = a1+a2) = 0

which would result in a contradiction! Hence, we can safely assume that X2

has no atom4 and find µ that splits the distribution of X2 equally: P(X2 ≤
µ) = P(X2 ≥ µ) = 1

2
. Hence, for x > 0, we have

P(|X1| ≥ x) = 2P(X1 ≥ x,X2 ≥ µ) + 2P(X1 ≤ −x,X2 ≤ µ) (17)

≤ 2P(X1 + X2 ≥ x + µ) + 2P(X1 + X2 ≤ −x + µ) (18)

≤ 2P(|X1 + X2 − µ| ≥ x) (19)

Lemma 2.5 states that

fX1(η) = 1 +

∫ +∞

0

2xη2eη2x2P(|X1| ≥ x)dx (20)

Combining these two results gives us a way to upper bound fX1(η):

|fX1(η)| ≤ 2 + 2

∫ +∞

0

2xη2eη2x2P(|X1 + X2 − µ| ≥ x)dx (21)

≤ 2fX1+X2−µ(η) (22)

The latter inequality is finite as X1+X2−µ is normal so that |fX1(η)| ≤ ∞. In

addition, since we have φX1φX2 = φX1+X2 by independence, the characteristic

function of X1 is never equal to zero in the complex domain since φX1+X2 is

never null in C. Using lemma 2.4, we conclude that X1 is normal. If X1 is of

null variance, then X2 = X2 +X1−X1 is a normal as the sum of a normal and

a constant. Otherwise, X1’s variance is strictly positive and X1 has no atom.

Interchanging X1 and X2 and using previous reasoning, we get immediately

that X2 follows also a normal distribution, which concludes the proof.

4if it was not the case, we can interchange X1 and X2 to make this happen
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3 An extension of the Levy Cramer theorem

It is a well known and easy to prove result (using for instance characteristic

function) that if X1 and X2 are independent normal standard variables, then

X1 +X2 and X1−X2 are independent. But in fact, we can prove somehow the

opposite that requires less assumption than the Levy Cramer theorem. This

is the following result

Theorem 3.1. If X1 and X2 are two independent symmetric variables with

mean 0 and variance 1, such that X1 + X2 and X1−X2 are independent, then

X1 and X2 follow a normal distribution

Remark 3.1. Compared to the Levy Cramer theorem, we do not assume in

the hypothesis that any of the variable is normal which makes the result quite

remarkable.

Proof. Noticing that 2X1 = (X1+X2)+(X1−X2), we have using characteristic

function and independence that

φ2X1(t) = φX1+X2(t)φX1−X2(t)

Since X1 and X2 are two symmetric independent variables, we have that

φX1+X2(t) = φX1(t)
2 and likewise φX1−X2(t) = φX1(t)φX̄1

(t)

We also have that φ2X1(t) = φX1(2t) and φX̄1
(t) = φX1(t).

Combining all results, we get

φX1(2t) = φX1(t)
3φX1(t) (23)

The convex conjugate of previous equation writes φX1(2t) = φX1(t)
3φX1(t),

which leads to

φX1(2t)φX1(2t) = φX1(t)
4φX1(t)

4 (24)

Denoting by ψ(t) = φX1(t)φX1(t), equation (24) states that ψ(2t) = ψ(t)4

or iteratively

ψ(t) = ψ(
t

2n
)2n

(25)
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Clearly, φX1(t) 6= 0 for all t ∈ R, since if it was the case for a given t0 ∈ R,

then ψ(t0) = 0 (as ψ(t0) = φX1(t0)φX1(t0)), which would imply that for all

n ∈ N, we would have ψ( t
2n ) = 0, which would imply in particular the following

limit lim
n→∞

ψ( t
2n ) = 0 which will be in contradiction with the continuity of the

characteristic function and the fact that φX1(0) = 1. Hence, for all t ∈ R, we

have φX1(t) 6= 0 and φX1(t) 6= 0. We can define safely

γ(t) =
φX1(t)

φX1(t)
.

Doing basic computations, we have

γ(2t) =
φX1(2t)

φX1(2t)
=

φX1(t)
3φX1(t)

φX1(t)
3φX1(t)

=
φX1(t)

2

φX1(t)
2

= γ(t)2 (26)

Applying previous equation iteratively, we get

γ(t) = γ(
t

2n
)2n

(27)

γ(t) ’s value in 0 is 1 as φX1(0) = 1. As X1 is a variable with zero mean and

unit variance, we have that φX1(t) = 1 − t2

2
+ o(t2). Hence, γ(t) = 1 + o(t2),

which implies in particular that ∀t ∈ R:

γ(t) = γ(
t

2n
)2n

= lim
n→∞

γ(
t

2n
)2n

= lim
n→∞

(
1 + o(

t

2n
)

)2n

= 1 (28)

By definition of γ(t), φX1 is a real function. Equation (23) becomes φX1(2t) =

φX1(t)
4 or iteratively φX1(t) = φX1(

t
2n )2n

. Remember that φX1(t) = 1 − t2

2
+

o(t2) as X1 is a variable with zero mean and unit variance. Hence, we get

φX1(t) = lim
n→∞

φX1(
t

2n
)2n

= lim
n→∞

(
1− 1

2

t2

2n
+ o(t2)

)2n

= exp(−t2

2
) (29)

This shows that X1 ’s characteristic function is the one of a normal distribution

with zero mean and unit variance, which concludes the proof.

4 Independence between sample mean and vari-

ance and normal distribution

We finally tackle the question of the condition for the sample mean and

variance to be independent. This is a strong result that for instance enables
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us to derive the Student distribution as in the normal case of i.i.d. variables,

the sample mean and variance are clearly independent. We are interested in

the opposite. What is the condition to impose on our distribution for iid

variable to make our sample mean and variance independent? We shall prove

that it is only in the case of normal distribution that these two estimators are

independent as the following proposal states

Proposition 1. The sample mean and variance are independent if and only

if the underlying (parent) distribution is normal.

Remark 4.1. This result was first proved by [2] and later by [7]. We provide a

new proof which is simpler as we work with the log characteristic function and

the unbiased sample variance. This makes the resulting differential equation

trivial to solve as this is just a constant second order derivative constraint.

This result implies consequently that it will not be easy to derive the under-

lying distribution of the t-statistic for a non normal distribution. Indeed the

t-statistic is defined as the ratio of the sample mean over the sample variance.

If the sample mean and sample variance are not independent, the computation

of the underlying distribution does not decouple. This makes the problem of

the computation of the underlying distribution an integration problem that has

no closed form. This kills in particular any hope to derive trivially other dis-

tribution that generalizes the case of the Student distribution to non normal

underlying assumptions.

Proof. The assumption of i.i.d. sample for (x1, . . . , cn) implies that the joint

distribution of (x1, . . . , xn) denoted by fX1,...,Xn(x1, . . . , xn) is equal to
∏n

i=1 fX(xi),

which we will write
∏n

i=1 f(xi) dropping the .X to make notation lighter.

The log of the characteristic function of the joint variable (X̄n, s
2
n) writes

ln(φ(X̄n,s2
n)(t1, t2)) = ln

(∫∫∫
eit1x̄n+it2s2

n

n∏
i=1

f(xi)dxi

)
. (30)

Similarly, the log of the characteristic function for the sample mean X̄n

writes

ln(φX̄n
(t1)) = ln

(∫∫∫
eit1x̄n

n∏
i=1

f(xi)dxi

)
, (31)

and similarly for the sample variance

ln(φs2
n
(t2)) = ln

(∫∫∫
eit2s2

n

n∏
i=1

f(xi)dxi

)
. (32)
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The assumption of independence between sample mean X̄n and variance s2
n

is equivalent to the fact that the characteristic function of the couple decouples,

or that the log characteristic functions sum up.

ln(φ(X̄n,s2
n)(t1, t2)) = ln(φX̄n

(t1)) + ln(φs2
n
(t2)). (33)

Differentiating condition 33 with respect to t2 in t2 = 0 leads to

1

φ(X̄n,s2
n)(t1, t2)

∂φ(X̄n,s2
n)(t1, t2)

∂t2

∣∣∣∣
t2=0

=
1

φs2
n
(t2)

∂φs2
n
(t2)

∂t2

∣∣∣∣
t2=0

. (34)

Noticing that φs2
n
(0) = 1 and φ(X̄n,s2

n)(t1, 0) = φX̄n
(t1), the condition 33

writes
1

φX̄n
(t1)

φ(X̄n,s2
n)(t1, t2)

∂t2

∣∣∣∣
t2=0

=
∂φs2

n
(t2)

∂t2

∣∣∣∣
t2=0

. (35)

Using the fact that X̄n =
Pn

i=1 Xi

n
, it is easy to see that

φX̄n
(t1) =

n∏
i=1

∫
eit1xi/nf(xi)dxi = [φX(t1/n)]n (36)

For the sample variance, we can use the ”U-statistic” (or symmetric) form

to see that

s2
n =

∑n
i=1 X2

i

n
−

∑
i6=j XiXj

n(n− 1)
(37)

Hence, the derivative of the characteristic function of the couple (X̄n, s2
n)

writes

∂φ(X̄n,s2
n)(t1, t2)

∂t2

∣∣∣∣
t2=0

=

∫∫∫
is2

n

n∏
i=1

eit1xi/nf(xi)dxi (38)

= i

∫∫∫ (∑n
i=1 x2

i

n
−

∑
i6=j xixj

n(n− 1)

) n∏
i=1

eit1xi/nf(xi)dxi

(39)

= i[φX(
t1
n

)]n−2

(
φX(

t1
n

)

∫
x2e

it1x
n f(x)dx− (

∫
x2e

it1x
n f(x)dx)2

)

(40)

In the latter equation, if we set t1 = 0, we get in particular that

∂φs2
n
(t1, t2)

∂t2

∣∣∣∣
t2=0

=
∂φ(X̄n,s2

n)(0, t2)

∂t2

∣∣∣∣
t2=0

= iσ2 (41)
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Hence, condition (35) writes

φX( t1
n
)
∫

x2e
it1x

n f(x)dx− (
∫

x2e
it1x

n f(x)dx)2

[φX( t1
n
)]2

= σ2 (42)

We also have that the derivative of the characteristic function φX( t1
n
) with

respect to u = t1/n gives

∂φX(u)

∂u
=

∫
ixeixuf(x)dx (43)

To simplify notation, we drop the index in φX and writes this function φ.

Using equation (43), condition (42) writes

−φ(u)∂2φ(u)
∂u2 +

(
∂φ(u)

∂u

)2

φ(u)2
= σ2 (44)

The log of the characteristic function of φ(u) = E[eiuX ], denoted by Ψ(u) =

ln φ(u), first and second derivatives with respect to u are given by:

∂Ψ(u)

∂u
=

∂ ln φ(u)

∂u
=

1

φ(u)

∂φ(u)

∂u
(45)

∂2Ψ(u)

∂2u
=

∂

∂u

∂Ψ(u)

∂u
=

1

φ(u)

∂2φ(u)

∂u2
− 1

φ(u)2

(
∂φ(u)

∂u

)2

(46)

Hence, condition (44) writes

∂2Ψ(u)

∂2u
= −σ2 (47)

Using the boundary conditions Ψ(0) = 0 and Ψ
′
(0) = iE[X] = iµ, it is easy

to integrate condition (47) which is a constant second order derivative to get

Ψ(u) = iµu− σ2u2

2
(48)

Condition (48) states that a necessary and sufficient condition for the sam-

ple mean and variance to be independent is that the log characteristic function

of X is a quadratic form. But a quadratic form for the log characteristic func-

tion of X is a characterization of a normal distribution, which concludes the

proof.
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5 Conclusion

In this paper, we have presented three remarkable properties of the normal

distribution: first that if X1 and X2 are two independent variables with X1+X2

normally distributed, then both X1 and X2 follow a normal distribution, which

is referred to as the Cramer theorem, second a variation of the Levy Cramer

theorem that states that if X1 and X2 are independent symmetric random

variables with finite variance with X1+X2 and X1−X2 independent, then both

X1 and X2 are normal, and third that the normal distribution is characterized

by the fact that it is the only distribution for which the sample mean and

variance are independent (which is a central property for deriving the Student

distribution and referred as the Geary theorem (see [2])).

The novelty of this paper has been to provide new, quicker or self con-

tained proofs of theses theorems. In particular, we revisited the proof first

provided by [3] to give full details of it as the sketch of the proof provided

was rather elusive on technical details in complex analysis. Also using the log

characteristic function turns out to provide a quicker proof of the result on the

characterization of the normal distribution as the only distribution for which

sample mean and variance are independent.
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