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Gram Charlier and Edgeworth expansion
for sample variance

Eric Benhamou'!

Abstract

In this paper, we derive a valid Edgeworth expansions for the Bessel
corrected empirical variance when data are generated by a strongly mix-
ing process whose distribution can be arbitrarily. The constraint of
strongly mixing process makes the problem not easy. Indeed, even for
a strongly mixing normal process, the distribution is unknown. Here,
we do not assume any other assumption than a sufficiently fast decrease
of the underlying distribution to make the Edgeworth expansion con-
vergent. This results can obviously apply to strongly mixing normal

process and provide an alternative to the work of [6] and [4].
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1 Introduction

Let X4,..., X, be arandom sample and define the sample variance statistic
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as:

n
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’ n—1
=1

where X, is the empirical mean, s2 the Bessel corrected empirical variance also
called sample variance, and X,, the vector of the full history of this random
sample. We are interested in the distribution of the sample variance under
very weak conditions, namely that it admits a valid Edgeworth expansion.

It is insightful to notice that even with the additional constraint of a multi
dimensional Gaussian distribution A/(0,X)? for the underlying random vector
X, the distribution of the sample variance is not known. In this particular set-
ting, the sample variance is the squared norm of a multi dimensional Gaussian
and can be seen as the linear combination of independent but not Homoscedas-
tic variables. Standard theory states that the sample variance of a collection of
independent and identically distributed normal variables follows a chi-squared
distribution. But in this particular case, the different variables X; — X,, are
not independent and the result can not apply. Though they marginally have
the same variance (if we conditioned by X,,), they are correlated with each
other.

Hence, in general, the distribution of the sample variance in the normal
case is not a known distribution. There is however one special case, where
it is a x? distribution. Remember that when X ~ N(0,%), XTBX has a x?
distribution of degree d the rank of B if and only if BYB = B (see for instance
page 413 remark following theorem 1 of [3]). Notice that in our case, the B
matrix is B = I,, — %151,“ where [, is the identity matrix of size n and 1,, is

the vector of size n filled with 1 as we can write

1

2 _ Xi— X,)’ 2

ho= ) (2)
1 1

= X', — =171,)X 3

X~ -1, (3)

we obtain that it is a x? distribution if and only if

1 1 1
(I, — —1'1)=, — =181,) =1, — =111,
n n n

2with Sigma arbitrarily
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In other cases, the sample variance is a linear combination of Gamma distri-

bution, and one has to rely on approximations as explained in [6] and [4].
This simple example explains the interest in deriving an approximation

of the distribution of the sample variance by means of Gram Charlier and

Edgeworth expansion.

2 Gram Charlier and Edgeworth expansion

2.1 Key concepts

GramCharlier expansion®, and Edgeworth expansion*

, are series that ap-
proximate a probability distribution in terms of its cumulants. The series are
the same but, they differ in the ordering of their terms. Hence the truncated
series are different, as well as the accuracy of truncating the series. The key
idea in these two series is to expand the characteristic function in terms of the
characteristic function of a known distribution with suitable properties, and
to recover the concerned distribution through the inverse Fourier transform.

In our case, a natural candidate to expand around is the normal distribution
as the central limit theorem and its different extensions to non independent
and non identically distributed variable state that the resulting distribution is
a normal distribution (or in the most general case to truncated symmetrical
and « stable distributions °.

Let denote by f (respectively qg the characteristic function of our distribu-
tion whose density function is f (respectively ¢), and &; its cuamulants (respec-
tively ;). Cumulants definition state

o0 o0

f(t) = exp [Z /@'j(%)]] and  §(t) = exp [Z %‘(%)]] @)

which gives the following formal identity:

f(t) = exp [Z(Kj ) (th,)]] o(t) . (5)

J=1

3named in honor of the Danish mathematician, Jrgen Pedersen Gram and the Swedish

astronomer, Carl Charlier
4named in honor of the Anglo-Irish philosopher, Francis Ysidro Edgeworth
Splease see the extension of CLT in [2]
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Using Fourier transform property that say (it)7¢(t) is the Fourier transform
of (—1)/[D?¢](—x), where D is the differential operator with respect to z, we

get the formal expansion:

f(z) = exp [Z(’W - %‘)L?)j] o(z) (6)

J=1

If ¢ is chosen as the normal density ¢(z) =

271'(7

ex p[ (@ ’é) 1 with mean
and variance as given by f, that is, mean u = k1 and variance o = kg, then

the expansion becomes

T) = exp [Z /@%] o(x), (7)

since v; = 0 for all j > 2, as higher cumulants of the normal distribution are
0. By expanding the exponential and collecting terms according to the order
of the derivatives, we arrive at the GramCharlier A series. Such an expansion

can be written compactly in terms of Bell polynomials as

eXp[ZﬁJ i ] ZB 0,0,K3,...,K )(jl')>J (8)

Since the j-th derivative of the Gaussmm function ¢ is given in terms of

Hermite polynomial as

09w = e (121 ), )

o)

this gives us the final expression of the Gram-Charlier A series as

f(z) = gzﬁ(a:)Zj&ﬂB (0,0, ks, ..., 1;) He; (x;“) . (10)

If we include only the first two correction terms to the normal distribution,

we obtain
_ T—p K4 T— L
f(.fl?) = ¢( ) |:1—|—3'—H€3 < o ) + 4!04H64( o ) —|—R5:| s (11)
with Hez(z) = 2% — 3z and Hey(z) = 2* — 622 + 3 and
=1 T — U
Rs(x) :;]'U B;(0,0,k3, ..., K; )Hej( - )

If in the above expression, the cumulant are function of a parameter %, we

can rearrange terms by power of % and find the Edgeworth expansion.
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2.2 Cumulant for weak conditions

In order to derive our Gram Charlier or Edgeworth expansion, we need to
compute in full generality our different cumulants. Using similar techniques
as in [1], we can get the various cumulants as follows:

The first two cumulants are easy and given by:

k1 =(fi2)1 — ()1 (12)
Alg A5, AL

=— ’ ’ 13

"2 n—1+ n +(n—1)n+R2 (13)

with the different numerator terms given by:

AT = —4(41)2 + 8(A3fi2)2 — (£13)2 (

Ab 1 =(fia)2 — 4 fis)2 (

ATy =6(4)2 — 12(43 fiz)2 + 3(43)2 (16
Ry =(fi5)2 — 2(fitfi2)2 + (fi1)2 — (k1)? (

with the natural symmetric moment estimators whose expressions are provided
in appendix section A.1. The term Ry is the second order rest and is equal to
zero if the sample is i.i.d. For general case, this term does not cancel out and

should be taken into account. It can be rewritten as

Ry = (f15)2 — (fi2)T + 2((fi2)1(fi7)1 — (43 fa2)2) + (fi1)2 — (413)7 (18)

The third cumulant is more involved and given by:

I T Y O
ST =12 (n=Dn  n2  (n—12n " (n—1)2n
+ A + Ry (19)
(n—1)2n2

where the different numerator terms are given by:

A3 o = —40(415)3 + 120(fi1fi2)s — 56(/3fi3)s — T8(AT13)3 + 48( /i fiafiz)3

+2(4i3)3 — 6(413)3 (20)
ATy =18(fF )3 — 3(fi2fia)3 (21)
Ab 2 =(fis)s — 6(finfis )3 (22)

A3 | =136(11)s — 408(fitfin)s + 160(fi3fis)s + 288(4i1/i3)s — 144(fin fizfiz)s3
— 24(43)3 + 12(43)3 (23)
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A}y =15(finfia)3 — 30(£3ia)3 (24)
A3 5 = —120(/9)3 + 360(f2f12)3 — 1207 13)3 — 270(f13 /13 )3 + 120(fin fifia )3

+30(43)3 — 10(43)3 (25)

Ry = — 3y + 2(k1)° (26)

with the natural symmetric moment estimators given in appendix section A.2.
The fourth cumulant is even more involved and given by:

o Ao A3, Al Abs n A3 A3
T2 T =120 (n—Dn2 " nd  (n—1P3n  (n—1)2n2
Af A} A3 Al
+ 1,3 3,2 2,3 3,33n3 + R4 (27)

(n—1)n3 - (n—1)3n%2  (n—1)%n3  (n—1)
with the different numerator terms are given by:
A3 o = — 672(i) s + 2688(fi5 fi2)a — 1216(4i3 fis)a — 3120(421/43) 4 + 400( /4 fs)
+ 2240(/43 fiafis )a + 960(/i7f13)s — 384(fi3/i7)a — 480(/i7 fiafia)a
— 624(fin fi3f13)a + 144(firfisfia)a — 6(/i3)a + 96(fi2/i3)4

— 3(f43)a + 12(f13/14)4 (28)
Ady = — 128(fi}fi5)a + 96(fin fiafis )4 — 24(fisfis)a (29)
ALy =32(ff16)s — 4(fi2fls)s (30)
Ags =(fis)s — 8(firfir)a (31)

AL =3792(/%), — 151688 f12)4 + 6144 (/% is) s + 18144(fi1i2)5 — 1920(fi4fia)
— 11520( /i3 fiafis) s — 6336(fi3f; )4 + 1680(fi7 /i3 )4 + 2520(43 fizfia )
+ 3600 (f11 fiafiz)a — 624(fi1 fiafia)s + 234(fi5)s — 432(finfi3)s + 33(f43)4

— 952(3h)s (32)
A3 5 =400(£43fi5)1 — 336(fi1fizfis)s + 48(fisfis)a (33)
ALy =28 (jinfie)s — 56(/ie)s (34)

A3y = — TA40(/i)a + 29T60(fi5f12)4 — 10880(fi7 fis)a — 36480(fi1 /5 )a
+ B104(fi1 1) 4 + 20992(/53 fiafis) s + 13824(f1323) 4 — 2752(fi3/15)4
— 4368 (/17 f1afta)a — T248(fin fifis) s + 9T6(fin fisfia)s — T38(fis)a
+800(fiafi3)a — ST(AiF)a + 612(fizfia)a (35)
A3 g = — 336(/i}f15)a + 336(fi1fiafis)a — 56(fisfis)a (36)
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A5 5 =5040(/i5) 4 — 20160(/i5fi2)4 + 6720433 fi)a + 25200(/i1/13)4
— 1680(fi1fia)a — 13440(fi3 fiafis)a — 1008043 13)4 + 1680(/i7/3)
+ 2520(/43 fiafia)a + 5040(fi1 fifi)a — 560(fin fisfia)a + 630(fi3)a
— 560(fiafi3)a + 35(fi7)a — 420(fizfia)a (37)

with the natural symmetric moment estimators given in appendix section A.3.

Proof. See appendix section B. n

3 Conclusion

In this paper, we have derived the most general formula for the Gram
Charlier and the resulting Edgeworth expansion for the sample variance under
very weak conditions. Our formula does not assume that the underlying sample
is independent neither identically distributed. This formula can therefore be
applied to strong mixing processes like sample of an auto regressive process of
order 1 (AR(1)). It extends in particular the work of [5].

A Notations

A.1 Empirical Moments of order 1 and 2 Notation

We adopt the following notations

e moment of order 1:

(io): :Z?+E[Xﬂ (38)
(i2), =2 P (39)

n(n —1)
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e moments of order 2:

Y ELX]

(f14)2 !
(Jiris)2 :Ziﬁf[_XgX”
(£i3)2 :Zii(li [_Xf)ij]
(fi3f2)2 :Zzﬁjk_ IEi)[iig i(] ;)(k]
(i), = it B XXX

n(n—1)(n —2)(n —3)

A.2 Empirical Moments of order 3 Notation

(firfie)s =
(A3fis)s =
(A3i)s =
(A3 /1a)3 =
(/11/22/23)3 =
(/21/25)3 =
(fi5)s =
(/12/24)3 =
(A3)s =
(F6)s =

_ Digjphlmen

E [X:X; X X X X,

“n(n—1)(n—2)(n—3)(n—4)(n—5)

zz‘;éj;ék;él;ém E [XfXijXle]

n(n—1)(n —2)(n —3)(n —4)
Zi;éj;ék;;éz E [X?XijXl]

n(n—1)(n —2)(n — 3)
Zi;éjyﬁk;él E {XEXJZX’CXZ}

n(n—1)(n —2)(n — 3)
D iin B XX X0 ]

n(n—1)(n —2)
Ziyéj;ék E [X?X?Xk}

n(n—1)(n — 2)
Zi;ﬁj E [X?Xj]

n(n—1)
2ipin B [(XEXTXE]

n(n—1)(n —2)
2z B [XIXT]

n(n —1)
2izi B [XPXT]

n(n —1)

2 EX]

n

(40)
(41)
(42)
(43)

(44)
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A.3 Empirical Moments of order 4 Notation

(), = D it ttigmingory B [XiXj XpXi X X Xo Xo)

nn—1)(n-2)(n—3)(n—4)(n—->5)(n—6)(n—7)
Zz‘;ﬁj;ﬁk;ﬁl;ﬁm;ﬁn;éo E [XfXijXleXnXO]

n(n—1)(n —2)(n —3)(n —4)(n — 5)(n — 6)
Zi¢j¢k¢l¢m¢n E [X?XijXleXn]

n(n —1)(n - 2)(7E —3)(n—4)(n - 5})

oy Dsigirkpipmpn B[ XT XXX X Xy

(Fiafiz)s “n(n—1)(n—2)(n—3)(n—4)(n—5)

(fi3iz)a =

(fi7fis)s =

(fi1/ia)a
(f17fis)4
(£ izt )

(/1%/12/14)4

(fifi3)a =

(fifi3)a =

(Ailfi6)4
(Firfi3f13)4
(fi1fizfis )4
(f1f13f14)4

(fi1fi7)4

(fiia)a

 Dijhpim B XX Xp X0 X

“n(n—1)(n—2)(n—3)(n—4)
_Zi;ﬁj;ék;él E [Xz‘SXijXl]

n(n —1)(n —2)(n —3)

_ Digighpigm

E [ X X2 X X0 X,

n(n—1)(n —2)(n — 3)(n —4)

- Zi;ﬁj;ﬁk;ﬁl E [X;leszXl}

n(n —1)(n —2)(n —3)

Zi;ﬁj;«ék;ﬁl;ﬁm E [XEXJZXngle]

 Dipaen B [XPXIXX)]
n(n —1)(n —2)(n —3)
_Zi;ﬁj;ﬁk E [XiGXij]
 n(n—1)(n-2)
Zi;ﬁj;ﬁk;ﬁl E [XEX]zXl%Xl}
n(n—1)(n —2)(n —3)

:Zi#j?fk
n(n—1)(n — 2)

Zi;ﬁj E [XZX]']

n(n —1)(n —2)(n —3)(n —4)
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>z B [XPXT]

coaN 73
(fi2f16)4 n(n—1) (73)
Sz B[ XPXEXT]
.42 i#£j#k ik
= 74
>y B [X7X]]
13f15)s = 75
(fi3f15)4 n(n—1) (75)
iz E (XX
) 1#] (]
— 76
, E (X8
(fig)a :M (77)
n
B Cumulant computation
First of all, the first four cumulants, denoted by x; for 7 = 1,...,4 are

obtained through standard relationships with respect to moments denoted by

i as follows:

K1 = [y (78)
Koy = iy — 41y’ (79)
K = iy — Bty + 241} (80)
K = ply — Apthpy — Bph” + 1240y — 611 (81)

Hence we are left with computing the first four moments of the sample variance.
The first two moments of the sample variance are easy to compute and given
for instance in [1]. For the cumulant of order 3 and 4, we first compute the

different moments and then regroup the terms.
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B.1 Third Moment for s>Sn2

Let us do some routine algebraic computation. We have

s& = m%(n—l ZX2 ZXX) (82)

[}

i#j
1
3(n — 1)( ZX2 ZXle O X X)) ) (83)
i=1 k£l k#l

Let us expand. The first expansion (> | X?)? is easy and immediate:

(i X2)? = ZX6 +3) XX+ Y XIXX] (84)

i#] i#jF#k

In the expansion of (3 7 | X2)?(>". ik X ; X)), the possibilities are:
¢ Zi;ﬁj X7PX;

i Zi;éj;ék X?Xij

o > iy XiXG

 Disian XPXT X

o Disimnn XPXTX X,

In the expansion of (3 i, )(Eﬁék X;X})?, the possibilities are:
o Dy XiX]

i Zi;ﬁj;ﬁk X?Xij

 Divjn X0 X Xk

© D itighA X)X X X

i Zi;&j;ﬁk X?X?XI?

] Zz;é];ék;él XEXJQXle
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© D itihtrm Xi X XeXi Xom

In the expansion of (37, ,; X;X;)?, the possibilities are:
o Xip XPX7

o Dlisian XXX

i Zi;ﬁj;ﬁk X?XJZXlg

© D isizhAl X7 XXX

o Disiann XPXTX X,

¢ Zi;ﬁj;ﬁk;ﬁl;ﬁm XXX X0 X

 Digiphpigmen XX XeXiXom

which leads to

(n—5)(n—4)(n—3)(n — 2)f

3(n — 5)(n — 4)(n — 3)(n — 2)/iafi}

81 —
Elsn] = (n —1)2n? + (n—1)2n?
N An=3)(n—2)(3n—5)fisfi}  3(n —3)(n—2) (n® — 6n + 15) 4347
(n—1)2n2 (n —1)2n2
3(n=5)(n—2)fui  12(n-2) (n? — 4n +5) fiofisfia ~ bfsin
(n —1)n? (n —1)2n? n?
2 (3n2 —6n + 5) /1% 3 (n2 —2n + 5) fafig e
a (n—1)2n2 (n—1)n? n2
N (n—2) (n® — 3n?+9n — 15) 43
(n—1)2n2
Regrouping all the terms leads to
M} M} M3 M} M
E[s6] =M2, + o, Mot 2,0 1,1 0,2
Toon—1 n (n—12 (n—1n n?
M3, M7, M;,

(n—1)2n  (n—1)n?  (n—1)2n?

(85)
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with
M3 = — 60/ + 1804 i — 68/ fis — 1294315 + 60finfiafin + 133 — 6/23 (87)
Mg o = — S + i fio — 34345 + i3 (88)
M3, = — 12045 + 360/} /iy — 120433 fis — 2704335 + 120/ finfis + 3045 — 1045 (89)
M3 o =124 — 36/i1fia + 1243 fis + 274343 — 12fin fiafis — 3/i3 (90)
M3 | =154/ — 46210} + 17273 iz + 3331242 — 156/in fiafiz — 333 + 12743 (91)
M7y = = 3{i3jia + 3fiajia (92)
M}, =15/izfis — 304} fia (93)
M7y =213 fis — Gfizfia (94)
MG, =fie — 6finfis (95)

Using previous results in the relationship between cumulant and moment
leads to the result. O]

B.2 Fourth Moment for s2Sn2

Let us do some routine algebraic computation. We have

4
17
1
ZX2 > Xk X))+ 4(n — 1)( ZXQ ZXle O xex)t | (97)
i=1 k+#l i=1 k+#£l k£l

Again, one needs to expand all the terms and look at all the various pos-
sibilities to demonstrate the following relationship where we have regrouped
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against each of the symmetric empirical moment estimator

E[s°] (n—=7)(n—6)(n—5)(n—4)(n—3)(n—2)4F 4(n—T7)(n—6)(n—5)(n—4)(n—3)(n — 2)/ifi§

" (n—1)3n3 (n—1)3n3
~8(n—=5)(n—4)(n —3)(n —2)(3n — 7)iz/7 N 6(n —5)(n —4)(n — 3)(n — 2) (n? — 10n + 35) /i3]
(n—1)3n3 (n—1)3n3
N 2(n —4)(n — 3)(n — 2) (3n? — 30n + 35) fuit N 16(n —4)(n — 3)(n — 2) (3n? — 20n + 35) fiofizfii
(n—1)3n3 (n—1)3n3
N 8(n—3)(n—2)Bn =75} 4(n —4)(n—3)(n-2) (n® — 9n? + 45n — 105) (313
(n—1)2n3 (n—1)3n3
N 8(n — 3)(n — 2) (9n? — 30n + 35) 4343 B 12(n — 3)(n — 2) (n® — 9n? + 351 — 35) fiofiafid
(n—1)3n3 (n—1)3n3
CAn=T)(n—2)fieh  24(n = 3)(n = 2) (n® — Tn® + 25n — 35) fi3fizfu
(n—1)n3 (n—1)3n3
B 8(n — 2) (3n® — 21n? + 45n — 35) figfiafin B 24(n — 2) (n? — 4n +7) fiafisfin
(n—1)3n3 (n—1)2n3
8frfn . (n—3)(n—2) (n* —4n3 + 18n? — 60n + 105) i3
o nd * (n—1)3n3
_ 8(n—2) (3n° — 15n® + 35n — 35) fia/i} N (3n* — 12n3 + 42n? — 60n + 35) /i3
(n—1)3n3 (n—1)3n3
N 6(n —2) (n* —4n® + 16n® — 40n +35) 3fis 8 (3n® — 61 +7) fizfis
(n—1)3n3 (n—1)2n3
4 (n? =2n+7) fisfic  fig 08
(n—1)nd n3 (98)

Once this is done, one needs to collect all the terms and can get the final
result. O
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