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Abstract 

The Sharpe Ratio is defined as the mean excess return over the standard deviation 
of the excess returns for a given security market portfolio.  Due in part to the 
dynamic nature of this measure and because of statistical issues, the sample 
estimation of this ratio is challenging and subject to substantial sampling error.  
As such, the purpose of this research was to develop and test an efficient point 
estimator of the Sharpe Ratio utilizing an approach that sought to explicitly 
reduce its associated sampling error through the minimization of the coefficient of 
variation (CV) and Mean Squared Error (MSE).  An empirical simulation study 
was conducted to assess the potential gains of the novel method given stochastic 
variations present within time series of security price data, with results offering 
improvements across all specifications of sample sizes and population standard 
deviations.  Overall, this work addressed a major limitation in the existing point 
estimate calculation of the Sharpe Ratio, particularly involving estimation error 
which is present even within large data sets. 
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1  Introduction  
The Sharpe Ratio is a frequently-used financial portfolio performance 

measure that provides an assessment of risk-adjusted performance (i.e., the mean 
excess return or risk premium divided by the standard deviation of the excess 
return), defined mathematically in its ex ante form as an expected value: 

( ) ( )
( )var

a b a b

a b

E R R E R R
Sr

R Rσ
− −

= =
−

                               (1.1) 

for portfolio 1, 2,...,i n=  with Ra = asset return and Rb = risk-free rate of return or 
an index return.[1,2]  While utilizing the same mathematical equation, the ex-post 
form of the Sharpe ratio incorporates realized returns rather than those that are 
expected.[1,2]  Within the mean-variance Markowitz efficient frontier, by 
definition, the Sharpe Ratio is the slope of the capital market line.[3,4] 

Even though an analyst may commonly rely upon the Sharpe Ratio to 
optimize portfolio choice, these values may be statistically biased due to inherent 
estimation errors, even within large data sets.[5,6]  Christie (2007) directly 
commented that “A major limitation of Sharpe Ratios is that the ‘inputs’, namely 
expected returns and standard deviations, are measured with error,” being “an issue 
which the investment community practically ignores.”[5]  As such, numerous 
authors have sought to develop  generalizations of the Sharpe Ratio that correct for 
various statistical concerns, including autocorrelation, skew and kurtosis, and 
non-normality.[7-13]  Skrepnek and Sahai (2011), to illustrate, developed a 
bootstrap resampling and Computational Intelligence approach to the point 
estimate and confidence interval for the Sharpe Ratio that offered improved 
estimation error correction relative to other measures.[7]  Lo (2002) derived the 
statistical distribution of the Sharpe Ratio under numerous return distributions, 
though without explicitly considering the impact of sampling error upon statistical 
interpretation.[11]  Furthermore, assuming multivariate normality, an approach 
was also developed by Jobson and Korkie (1981) though failing to achieve 
sufficient statistical power.[6]  

Given the above, the purpose of this research was to develop and assess an 
efficient point estimate of the Sharpe Ratio utilizing an approach that sought to 
explicitly reduce its associated sampling error.  Based upon information present 
within the given random sample, a novel method was developed that focuses upon 
minimizing the coefficient of variation (CV) and Mean Squared Error (MSE) to 
offer improved estimation for both the numerator and denominator of the Sharpe 
Ratio. 
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2  A Proposed Efficient Point Estimator of the Sharpe Ratio 
The Sharpe Ratio for a given portfolio, Sr µ

σ
= , is typically estimated as 

 ( )xSr Er sr
s

= = .  In more detail, given that the population value of the Sharpe 

Ratio for portfolio i may be expressed as i fi
i

i i

RzSr
µµ

σ σ
−−

= =  for 1, 2,...,i n= , 

these population parameters are estimated by the sample counterparts including the 
sample mean and standard deviation based upon a random sample 1 2, ,..., nX X X  
as: 
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Therefore, the typically-used point estimator for the Sharpe Ratio is 

 ( )xSr Er sr
s

= = .  Notably, 1
s

 may not necessarily be an efficient estimate of the 

population value 1
σ

, irrespective of large sample sizes, nor may x  be an efficient 

estimate of µ in terms of an optimal coefficient of variation.[5,7]  In the 
forthcoming, a proposed efficient estimator specifically focusing upon the 
numerator of this ratio (i.e., the population mean, µ) is offered.  Following, the 
development of an efficient estimator of the denominator (i.e., the population 
standard deviation, σ) is undertaken.  Finally, the proceeds are collectively 
incorporated into a novel, proposed point estimate of the Sharpe Ratio. 
 
 

 
2.1 Efficient Estimation of Sharpe Ratio Numerator, µ 

The proposed efficient estimator of the numerator of the Sharpe Ratio, µ, 
seeks to utilize information within the data more fully via incorporation of the 
sample coefficient of variation (CV), which is a normalized dispersion of a 
probability or frequency distribution that represents the extent of variability from a 
population mean, defined as a random variable’s ratio of standard deviation to its 
expected value.[14]  A lower CV reflects a smaller residual versus predicted value 
in a given model, suggesting improved goodness of fit.  Quantitatively, the 
potential benefits of more efficient estimators also include, for example, a lower 
sample size requirement to achieve robust results. 
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In quantitative financial or econometric analyses, it may be common to 
encounter an analytic scenario wherein the sample estimate of the coefficient of 
variation of the sample mean (i.e., a more stable random variable than the original 
variable) will not be large.  In those situations, the analyst may prefer a coefficient 
of variation as ( ) 1.0CV x < , and more likely even markedly below 1.0.  Hence, in 
such cases, the proposed alternative estimator of µ, denoted t⊗ , versus the usual 
estimator which is denoted x , is presented as: 

( )2

2

 

1

xt x
n x

s

⊗ = +
⋅

−

                                      (2.2) 

In percentage terms, the relative efficiency of this proposed estimator t⊗ with 
respect to the usual estimator x would be: 

2

2

( )100 100
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= ⋅

−                                      (2.3)
 

An unbiased estimator of the efficiency ratio, η, as a function of ( x , s2) alone is 
also required, as ( x , s2) is jointly a complete sufficient statistic for (µ , σ2). Being a 
function of a complete sufficient statistic, the unbiased estimator would be a 
Uniform Minimum Variance Unbiased Estimator (UMVUE), taken that: 
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  1 2A B= + +                             (2.4) 
 
The following can be developed from (2.4), specifically concerning ‘A’:  
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Additionally, by applying integration by parts, the following proceedings are 
offered: 
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Pertaining specifically to ‘B’ within (2.4), it should be recognized that 

independently of x , ( ) 2

2

1n s
σ
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 is 2~ χ  distributed with ( )1n −  degrees of 

freedom, yielding: 
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Importantly, the following is also noted: 
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By applying (2.7) and (2.8): 
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Through the application of integration by parts:  
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Alternatively, (2.10) may be expressed as B =E(b), where: 
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 Overall, the UMVUE of the relative efficiency of t⊗  with respect to the 
usual estimator of x  may be more appropriately expressed as 1 2a b+ +  rather 
than 1 2A B+ + .  Per (2.6) and (2.8), this is: 
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Importantly, the aforementioned is consistent for all observed coefficients of 
variation for x  in practice and, as such, the proposed alternative estimator t⊗  
defined in (2.2) is a more efficient estimator of the normal mean µ rather than the 
usual estimator x .  Additionally, the proposed estimator t⊗ may also be expressed 
as a function of the square of the sample coefficient of variation, denoted v, as: 

( )*
1t x v⊗ ≅ +  

with 

( )
2

2*

sv
n x

=
⋅

                                      (2.14) 

              
 
 
2.2 Efficient Estimation of Sharpe Ratio Denominator, σ 

In establishing the proposed approach for an improved Sharpe Ratio point 
estimation and focusing on the denominator, σ, an efficient estimator of the inverse 

of the normal standard deviation, 1
σ

, builds toward a proof of the following 

lemma.  
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Lemma.  For a random sample ( )1 2 3, , ,..., nX X X X  from a normal 

population ( )2,N µ σ , * 1K
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 is the Minimum Mean Squared Error (MMSE) of 

the inverse of the normal population standard deviation, 1
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2.3 The Proposed Efficient Point Estimate of the Sharpe Ratio, 
Sr µ

σ
=    

As often appears within the literature, the usual applied point estimate for 

the Sharpe Ratio is ( ) xEr sr
s

=  , despite acknowledging that 1
s

 does not provide 

a good statistical estimate of 1
σ

 nor does x  estimated from σ yield an optimal 

coefficient of variation.[5,7] 
Building upon (2.14), the class of estimators K·sr is considered, wherein the 

MMSE estimator is developed as a more efficient point estimate of the Sharpe 
Ratio as:  

( )* * (1 v)Er sr K sr= ⋅ + ⋅   

     * tK
s

⊗

= ⋅                          (2.16) 
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Given the aforementioned, K* would be defined by minimizing the Mean 
Squared Error (MSE) of the estimator in the class of estimators K·sr.  Notably, the 
assessment of MSE within quantitative financial analyses is of importance 
primarily because the MSE is a predominant statistical approach used to assess the 
difference between values observed by an estimator versus the true value of the 
quantity being estimated.[14,15]  The MSE is expressed mathematically as: 

( ) ( )2
MSE Eθ θ θ = −  

                            (2.17) 

Marked differences reflected in the MSE may occur because an estimator poorly 
captures relevant information from the sample, therein producing an inaccurate 
estimate of the true value. 
 
 
 
3  Empirical Simulation Study  
3.1 Methodology 

To assess the efficiency of the proposed point estimator of the Sharpe Ratio 
from (2.16), an empirical simulation study was developed utilizing Matlab 2010b 
[The Mathworks Inc., Natick, Massachusetts].  Comparisons were drawn for the 
proposed point estimator, denoted Er*(sr), versus the currently-utilized estimator 
for the Sharpe Ratio, denoted Er(sr), across illustrative sample sizes of n = 6, 11, 
21, 31, 41, 57, 71, 101, 202, and 303.  The parent population was defined as 
normal with a population Sharpe Ratio, Sr = 0.5, and with varying population 
standard deviations of σ = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50.  The 
number of replications was 51,000. 

The actual Mean Squared Error (MSE) of the usual estimator, Er(sr), and 
the proposed estimator, Er*(sr), were calculated by averaging the squared 
deviation of the estimator’s value from the population Sharpe Ratio (i.e., 0.5).  
As such, the Relative Efficiency, RelEff, of the proposed estimator compared to 
the usual estimator was calculated accordingly: 

( ) ( ){ } ( ){ }
( ){ }

*
% *

RelEff  100
MSE Er sr

Er sr versus Er sr
MSE Er sr

= ⋅                 (3.1) 

 
 
 
3.2 Results 
 Presented in Table 1, the relative efficiency of the proposed point estimator, 
Er*(sr), ranged from a minimum of 137.022372 percent at the lower sample size 
and standard deviation (σ = 0.20, n = 11) to a maximum of 208.784860 percent with 
increasing standard deviations and sample sizes (σ = 0.35, n = 303).  Variation in 
the Relative Efficiency of the proposed estimator was, however, predominantly 
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observed to be a function of sample size rather than population standard deviation, 
with absolute percentage increases being approximately +35.17 percent from n = 
11 to 21, +12.64 percent from n = 21 to 31, +6.50 percent from n = 31 to 41, +3.95 
percent from n = 41 to 51, +4.57 percent from n = 51 to 71, +3.47 percent from n = 
71 to 101, +4.10 percent from n = 101 to 202, and +1.37 percent from n = 202 to 
303.  Across every specification of sample size and population standard deviation, 
Er*(sr) yielded improvements in efficiency regarding MSEs vis-à-vis the approach 
commonly utilized in practice. 
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Table 1: Relative Efficiency of the Proposed Efficient Point Estimator of the Sharpe Ratio,  
                      Er*(sr), relative to the Usual Estimator, Er(sr), in Percentage Terms 

 

 

 
Population Standard Deviation 

(σ) 
 

 
Sample 

Size 
(n) 

 

σ = 0.20 σ = 0.25 σ = 0.30 σ = 0.35 σ = 0.40 σ = 0.45 σ = 0.50 

n = 11 137.022372 137.027433 137.024652 137.021277 137.023239 137.029536 137.028980 
n = 21 172.190248 172.187976 172.178787 172.182462 172.184202 172.190828 172.191347 
n = 31 184.825329 184.830039 184.824943 184.825665 184.824585 184.823921 184.827177 
n = 41 191.324570 191.326181 191.321978 191.325200 191.312896 191.321372 191.314357 
n = 51 195.278201 195.274523 195.277076 195.280943 195.276298 195.270665 195.275535 
n = 71 199.849984 199.847035 199.848930 199.847878 199.840840 199.846984 199.841017 
n = 101 203.315631 203.307409 203.314405 203.314251 203.318790 203.304714 203.315814 
n = 202 207.415527 207.415083 207.417526 207.414873 207.419385 207.412990 207.410603 
n = 303 208.784029 208.781693 208.784297 208.784860 208.782720 208.782589 208.780899 
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4  Conclusion 
By focusing upon the sample coefficient of variation (CV) and Minimum 

Mean Squared Error (MMSE), the proposed point estimator of the Sharpe Ratio 
yielded improvements across all specifications of sample sizes and population 
standard deviations to the existing method, with minimum relative efficiency 
increases beginning with 137 percent at lower sample sizes and ultimately 
exceeding 200 percent at sample sizes above 71.  Overall, this work addressed a 
major limitation in the existing point estimate calculation of the Sharpe Ratio, 
particularly involving estimation error which is present even within large data sets. 
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