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Real options model in green energy investment

Jean Marie Vianney Hakizimana1, Philip Ngare2 and Jane Akinyi3

Abstract

We proposed the study on the timing of investment and option value
for green energy company. Considering various paremeters that can
affect this investment, such as the discount rate, the is investment cost,
the mean reversion speed, the mean reversion level, the uncertainty
parameter, etc; the simulation study was conducted and the optimal
investment time for the company was found and it is better to invest just
at the time where the price of fuel becomes low even when considering
the subsidies and lower taxes that can be made dependind on regime
switching.

Keywords: Investment; Real options; Optimal stopping; Option value; Am-

biguity

1 Introduction

The financial assessment of any investment is done by asking yourself

whether and when the later should be implemented. The real options model
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can be used to estimate the investment value for green energy investment that

can be solved by three methods such as partial differential equation approach,

dynamic programming approach and simulation method [5]. In terms of the

uncertain factors, we consider standard fuel price which evolves stochastically

over time and the biological fuel price that can be used by an asset which

produces the green energy. The biological fuel is driven by subsidies and lower

taxes and is cheaper than the price of standard fuel.

Since the value of energy project depends on many uncertain factors in its

lifetime, it is good to express the project value by its expectation E[.]. If the

investment on an energy project starts in year t, the total net present value of

the project will be represented as follows

Vt = E

[
t+L∑
i=t

e−r(i−t)Πi − It

]

where r is the discount rate, It is investment cost and Πi denotes the cash

flow in year i which comprises the returns from selling energy, operation and

maintenance cost, and tax expenditure [6],[7].

The cash flow Πt in year t can be written as follows

Πt = pe
tq

e
t −OMCqe

t − tct

where pe is the price of green energy, qe is the quantity of energy sold, OMC

stands for the operation and maintenance cost per unit of energy output, and

tc denotes the tax expenditure [9].

It is known that the generating capacity of a green energy power generation

system gradually decreases with the natural aging of equipment and other

factors. The reason why we can get

qe
t = qe

t−1(1− dr)

where dr is the annual declining rate. The investment environment of green

energy is closer to a stochastic scenario that is characterized by uncertainty

and managerial flexibility where the Net Present Value (NPV) method may

lead to the suboptimal investment decisions. The real options method here

can create the optimal investment strategies [4],[8].

Stochastic process is an appropriate technique for describing the uncertain
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factors. To characterize the uncertainties in market and technological devel-

opment we can use the Geometric Brownian Motion (GBM) as follows

dSt = αStdt + σStdZ

where St is an uncertain variable, α and σ are drift and volatility parameters

and dZ is an independent increment of Wiener process [3].

The expected value of S is E[St] = S0e
αt

and the sum of the discounted expected future cash-flows if the investment is

made at time t is given by

Et

[∫ ∞

t

e−r(u−t)Sudu

]
=

St

r − α

where r is the constant risk-free rate and α < r.

The remainder of the paper is structured as follows: in Sections 2, we present

the price model; in Sections 3, we present the optimal stopping under ambigu-

ity in either discrete time and continuous time, then in section 4, we present

the option value. Section 5 deals with the simulation approach used to esti-

mate the investment timing and option value. We offer concluding remarks in

Section 6.

2 Model

We consider a risk-neutral company that discount with a risk-free interest

rate r > 0. The company own an asset that at time t0 = 0 have the finite

life-time of τ > 0 and that consume x units of fuel per time unit. The price

p(t) of fuel evolves stochastically over time and follows the Ornstein-Uhlenbeck

process

dp(t) = k (m− p(t)) dt + σdWt, p(0) = p0 ≥ 0 (1)

where k > 0 is the mean reversion speed which is the assumption that a price of

stock will tend to move to the average price over time, m is the mean reversion

level, σ > 0 is the uncertainty parameter and dWt is the increment of Weiner

process with a normal distribution [3].

During the life-time of the asset the company has at any time the opportunity
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(option) to adjust its asset in a way that it can also tolerate biologic fuel.

Mainly driven by subsidies and lower taxes the price pB(t) of biologic fuel is

cheaper than the price of standard fuel and depends on the time for which the

option is bought. In particular, we assume that

pB(t) = (1− ξ) p(t)

where 0 ≤ ξ < 1.

From (1) we can derive

p(t) = e−ktp0 +
(
1− e−kt

)
m + σ

∫ t

0

eksdW (s)

and

E (p(t2)|p(t1) = pt1) = e−k(t2−t1)pt1 +
(
1− e−k(t2−t1)

)
m +

σ2
(
1− e−k(t2−t1)

)

k

for every t2 ≥ t1 ≥ 0.

If the company invests at a time t > 0, therefore, it expects discounted savings

of

V (p(t), t) = E
∫ τ

t

x (p(s)− pB(s)) e−r(s−t)ds = xξ

∫ τ

t

E (p(s)|p(t)) e−r(s−t)ds

Thus, investing at time t generates an expected profit of

π (p(t), t) = V (p(t), t)− I(t)

where I(t) is the investment costs.

The cashflow process Y evolves as follows:

dY (t) = Y (t)
(
αdt + ζ

(
ρdW (t) +

√
1− ρ2dW 0(t)

))
(2)

where W 0(t) is a Wiener process, ρ2 < 1 is the correlation coefficient between

market uncertainty and the cashflow process uncertainty, and α, ζ are all

constants.

Following [7], the possibility to invest can be regarded as a real option. Hence,

the company should not invest immediately but wait with the investment until

the price of standard fuel reaches the time-depending optimal threshold p∗(t).
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3 Optimal Stopping under Ambiguity

We can consider the optimal stopping time problem in both discrete and

continuous time models with ambiguity.

Discrete Time

The state space and filtration are given by (Ω, {Ft} t ∈ N) and we assume

that F0 is trivial in that it contains only events for probability 0 or 1. Consider

F to be the σ-field generated by the union of all Ft , t ∈ N and P is a subjec-

tive probability measure for an agent which is used as a reference probability

measure. Denote P as a set of probability measures on (Ω, {Ft} t ∈ N). The

decision maker has option to make decision at any stopping time τ with values

in N∪{∞} in the market. The realized payoff {Xt} t ∈ N on (Ω, {Ft} t ∈ N, P )

is an adapted process [1],[2].

X is P-uniformly integrable if it satisfies lim
K→∞

sup
Q∈P

EQ[|X|1{|X| > K}] = 0 and

we set Xτ (ω) = 0 if τ(ω) = ∞.

We can have here 2 possibilities, finite and infinite time horizon respectively.

Finite Time Horizon

For an ambiguity-averse decision maker, the problem of optimal stopping

is

max inf
Q∈P

EQ[Xτ ]

for any stopping time τ ≤ T < ∞.

For each Q ∈ P , set

V Q
T = XT in the terminal time and V Q

t = max{Xt,EQ[Vt+1|Ft]},t < T .

The process {V Q
t }t ∈ N is the smallest Q-supermartingle that dominates X,

i.e., V Q is the Snell envelope of X under Q and τ∗ = inf{t ≥ 0 : V Q
t = Xt}

is an optimal stopping time in the classical setting when Q is the only one

probability measure under consideration [1].

Define the multiple prior Snell envelope of X with respect to P recursively by

Vt = max{Xt, ess inf
Q∈P

EQ[Vt+1|Ft]}, t = 0, 1, · · · , T − 1

VT = XT
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Then we have the following results:

• V is the smallest multiple prior supermartingle with respect to P that

dominates X

• V is the value process of the optimal stopping problem under ambiguity,

that is,

Vt = ess sup
τ≥t

inf
Q∈P

EQ[Xτ |Ft]

• τ∗ = inf{t ≥ 0 : Vt = Xt} is an optimal stopping time.

Infinite Time Horizon

For the infinite time horizon, let us define the value function

V ∞
t = ess sup

τ≥t
inf
Q∈P

EQ[Xτ |Ft]

Then we have the following results:

• V ∞ is the smallest multiple prior supermartingle with respect to P that

dominates X, and V ∞ is bounded by a P-uniformly integrable random

variable

• The value process V ∞ satisfies the Bellman principle (each subpolicy

of an optimum policy must itself be an optimum policy with regard to

the initial and the terminal states of the subpolicy. Here, the terms

policy,subpolicy, optimum policy and state are primitive and are not

given specific meanings. In each application, these terms are understood

in certain ways comparable to the situation of interest), for all t ≥ 0,

V ∞
t = max{Xt, ess inf

Q∈P
EQ[V ∞

t+1|Ft]}

• τ∗ = inf{t ≥ 0 : V ∞
t = Xt} is an optimal stopping time if it is finite.
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Continuous Time

Let us consider the continuous time framework for a finite time horizon

with terminal time T . Here the agent has option to make decision at any time

t ∈ [0, T ] in the market. The realized payoff at time t is Xt and the payoff

process is {Xt}0≤t≤T on (Ω, {FT} , P ).

The classical stopping time problem is to characterize the following value pro-

cess

V a
t := ess sup

τ∈ϕt

EP [Xτ |Ft], for 0 ≤ t ≤ T ,

where ϕ the class of {Ft}-stopping times with values in [0, T ] [10],[11].

For a stopping time ν ∈ ϕ, we set ϕν := {τ ∈ ϕ; τ ≥ νa.s}.
The optimal stopping problem under consideration is to characterize the follow-

ing value process and the corresponding optimal stopping time simultaneously

Vν := ess sup
τ∈ϕν

εg[Xτ |Fν ], (3)

for all ν ∈ ϕ

where εg[Xτ |Fν ] := yν is the conditional g-evaluation of Xτ related to (g, ν, τ);

where yν is the solution of

yt = Xτ −
∫ τ

t∧τ
g (cs, ys, zs, ω, s) ds− ∫ τ

t∧τ
zsdWs

and g is an aggregator or an ambiguity level. The value function (3) is equiva-

lent to a solution of the reflected Backward Stochastic Differential Equations(BSDEs)[1]

Vt = Xt −
∫ T

t

g (Vs, zs, s) ds + AT − At −
∫ T

t

zsdWs

and together with

1. V,A ∈ ϕ2 and z ∈ L2
(
0, T ;Rd

)
. A is non-decreasing and A0 = 0

2. Vt ≥ Xt, for 0 ≤ t ≤ T and if A = Ac + Ad where Ac (respecivement Ad)

is the continuous (respectivement purely discontinuous) part of A with∫ T

0
(Vt −Xt) dAc

t = 0

3. Vt − Vt− = − (Xt− − Vt)
+

Hence, the optimal investment time for the company is determined by

t = inf{t : Yy(t) ≥ y1}
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where Yy(t) is given by (2), y1 is the smooth matching point representing the

optimal threshold.

4 Option value

The value F (p(t), t) of the option to invest is the solution of the differential

equation

1

2
σ2p2∂2F (p, t)

∂2p
+ k(m− p)

∂F (p, t)

∂p
+

∂F (p, t)

∂t
= rF (p, t)

and also meets the following conditions:

1. Zero is an absorbing barrier of the price process, i.e

limp(t)→0 F (p(t), t) = 0, ∀t ≥ 0

2. The investment opportunity has no value if the asset is no longer in use,

F (p(t), t) = 0, ∀t ≥ τ

3. Continuity-condition, i.e

F (p∗(t), t) = Π∗(p(t), t)

4. Smooth-pasting condition, i.e
∂F (p∗(t), t)

∂p
=

∂Π∗(p(t), t)

∂p

The following results give us the option value, once exercised and still not

exercised.

Proposition 1. Suppose a decision maker is considering a real option to in-

vest in a project at sunk cost I with a payofffunction g = Vt − Ft at maurity

T . Suppose the project demand is shocked multiplicatively by an ambiguous

volatility model driven by a Choquet-Brownian motion with parameter c ∈]0, 1[

given by:

dZt = (2c− 1)dt + 4c(1− c)dBt

The constant conditional capacity c plays a key role and represents the decision

maker’s attitude towards policy ambiguity due to legislative regime switching.
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Then, the project value Vt at time t , once exercised , is given by the sum of

the current profit and the discounted continuation value, that is;

Vt(St, Zt) = StD(T − t) + e−r(T−t)Eµ

[
g(T, ST , ZT )|F S

t

]
(4)

where the values of St and Zt are assumed to be independent of D and Eµ

denotes the Choquet expectation.

Proof. The project value Vt at time t , with expiration time T , is equal, once

exercised, to the expected value EP of the discounted cash flows with respect

to the probability measure P conditional on the filtration Ft, such that:

Vt(St) = EP

[∫ T

t

e−r(u−t)Sudu|Ft

]
(5)

Suppose initially that the value of the project if it were to be sold, Vt, is

stochastic but that the value of the project in place, F , is constant. The firm

receives Vt − F when it invests. The investment timing problem consists of

finding a number a∗t , for every time t, such that if
Vt

F
≥ a∗t , the investment is

undertaken, and otherwise not undertaken. This investment decision schedule

{a∗t} is chosen so as to maximize the time zero expected present value of the

payoff Vt − F . For an arbitrary boundary
{
a
′
t

}T

0
, the value of the investment

opportunity is the expected present value of the payo given by

X(T ) = E0

{
e−µt′ [Vt′ − F ]

}
(6)

where t′ is the date at which
V

F
first reaches the boundary a

′
t and X(T ) is

the time zero value of an investment opportunity that expires at T . The

expectation is taken over the first passage times t′ and µ, is the appropriate

given discount rate.

In the special case where the investment opportunity is infinitely lived, it is

possible to solve explicitly for the maximized value of (6). When T = ∞, we

have a
′
for all t. Maximizing (6) reduces to the following problem,

max
a′

F (a′ − 1)E0

{
e−µt′

}

Now consider the same problem, except that Ft is also random. The problem

involves choosing a boundary B to maximize

E0

{
(Vt − Ft)e

−µt
}
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subject to

{
dV (t) = V (t)(αvdt + σvdZv)

dF (t) = F (t)(αfdt + σfdZf )

where Z is a standard Wiener process.

By letting V ′ = kV and F ′ = kF , where k is an arbitrary positive number, we

can consider the problem involves choosing a boundary B′ to maximize

E0

{
(V ′

t − F ′
t)e

−µt
}

subject to

{
dV ′(t) = V ′(t) {αvdt + σvdZv}
dF ′(t) = F ′(t) {αfdt + σfdZf}

Those two problems are identical, so the boundaries B and B′ must be the

same and hence independent of k. Thus, the correct rule is to invest when

the ratio
V

F
reaches or exceeds a fixed boundary and wait otherwise and the

expected present value of the payoff is

E0

{
Ft′(a

′ − 1)e−µt′
}

= (a′ − 1)E0

{
Ft′e

−µt′
}

where the expectation is taken over the joint density of Ft and the first passage

times for
Vt

Ft′
.

Let L = E0

{
Ft′e

−µt′
}
, using that L is dierentiate with respect to v and f

satisfies the partial differential equation

µL =
1

2

{
LvvV

2σ2
v + LffF

2σ2
f

}
+ 2LvfV Fσvf + LvσvV + LfσfF (7)

Its solution must satisfy certain boundary conditions:

(i) L = F when a =
V

F
= a′ and (ii) L −→ 0 as

V

F
−→ 0.

Guess that the form of L is

L = kF sat

and using the boundary condition (i), we must have k = a−t and s = 1.

With these constraints (7) can be written as

µ =
1

2
t(t− 1)σ2 + tσvV + (1− t)σf
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where σ2 = σ2
v + σ2

f − 2σvf This equation will have both a positive and a

negative root. Boundary condition (ii) requires that t > 0, so the positive

solution is the correct one.

Then the value of the opportunity is

X = (a′ − 1)E0

{
Ft′e

−µt′
}

= (a′ − 1)F0

(
V0

a′

)ε

where





ε =

√(
σv−σf

σ2 − 1

2

)2

+ 2
µ− αf

σ2
+

(
1

2
− σv−σf

σ2

)

a′(t) =
ε

ε− 1
σ2 = σ2

v + σ2
f − 2ρvfσvσf

and ρvf is the instantaneous correlation between the rates of increase of V and

F .

Let us consider that a project’s profit flow given by

dSt = (µ + mσ)St + sσStdBt (8)

whith dBt a Wiener process with mean m = 2c−1 and variance S2 = 4c(1−c).

Solving (8) and rewrite (5), we will have

Sh = Stexp

(∫ h

t

(
µ + mσ − 1

2
s2σ2

)
du +

∫ h

t

sσdBu

)

EP

[∫ t+τ

t

e−r(h−t)Shdh|Ft

]
=

∫ t+τ

t

EP
[
e−r(h−t)Sh|Ft

]
dh

= St

∫ t+τ

t
e−r(h−t)exp

(∫ h

t

(
µ + mσ − 1

2
s2σ2

)
duEP

[
exp

(∫ h

t
sσdBu

)
|Ft

]
dh

= St

∫ t+τ

t
e−r(h−t)e(µ+mσ− 1

2
s2σ2)(h−t)EP exp (sσ (Bh −Bt) |Ft) dh

= St

∫ t+τ

t
e(−r+µ+mσ− 1

2
s2σ2)(h−t)exp

(
1

2
s2σ2 (h− t)

)
dh

= St

∫ t+τ

t
e(−r+µ+mσ)(h−t)dh

= St
1− e−(r−(µ+mσ))τ

r − (µ + mσ)

The decision maker has to determine the optimal moment t′, t′ ∈ [t, T ] to

exercise the option to invest. This Ft optimal stopping time is the one which
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maximizes the value of the project, over the whole period considered (principle

of optimality), taking into account the discounted cost of investing, at discount

rate r. The stopping time is a random variable that described the exercise date

of the option.

Proposition 2. The Option value,Vt at time t, while still not exercised, is

given by,

Vt = max
{
St − I, e−rdtEP [dVt|Ft]

}

This means that the decison maker wishes to maximize expected project value

at time t by choosing an optimal stopping time τ .

Proof. The option value function is derived by splitting the decision between

the immediate investment and waiting for a short time interval t + dt,

Vt = max
t′≥t

EP

[∫ t′+τ

t′
e−r(s−t)Shdh− e−r(t′−t)I|Ft

]

= max

{
EP

[∫ t+τ

t

e−r(s−t)Shdh|Ft

]
− I, max

t′≥t+dt
EP

[∫ t′+τ

t′
e−r(s−t)Shdh− e−r(t′−t)I|Ft

]}

Using the value of Sh found in Proposition 1 and applying the tower property

of conditional expectation, we have

Vt = max

{
St − I, e−rdt max

t′≥t+dt
EP

[
EP

[∫ t′+τ

t′
e−r(s−t−dt)Shdh− e−r(t′−t−dt)I|Ft+dt

]
|Ft

]}

Therefore

Vt = max
{
St − I, e−rdtEP [dVt|Ft]

}

If we account for the option to invest we find that increased risk aversion

erodes option value and increases the required investment threshold, increased

risk aversion facilitates investment by reducing the amount of installed capac-

ity. The higher risk aversion, the incentive to avoid exposure to unfavourable

market conditions by decreasing the amount of installed capacity is more pro-

found than the incentive to delay investment due to the decrease of the project′s

expected utility.

To determine the optimal investment threshold and capacity of the project,
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Figure 1: Plot of the similated prices

we assume that investment occurs immediately, which implies knowledge of

the output price at investment and enables the calculation of the correspond-

ing optimal capacity by maximising the value of the now-or-never investment

opportunity.

5 Simulation Study

Using the Smooth-pasting condition, F (p∗(t), t) = Π∗(p(t), t), we can find

the optimal investment time t∗ for the company and the option value to invest

F (t∗).
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The simulation was done using π (p(t), t) = V (p(t), t)− I(t) where

I(t) = If + Ive
−ηt is the investment costs; and also

V (p(t), t) = xξ

∫ τ

t

{
e−k(s−t)pt + (1− e−k(s−t))m +

σ2(1− e−k(s−t))

k

}
ds

= xξ

{
p(t)e−kt

(
− e−kτ

k
+ e−kt

)
+ m(τ − t) + m

e−kt

k

(
e−kτ − e−kt

)

+
σ2

k
(τ − t) +

σ2

k

e−kt

k

(
e−kτ − e−kt

)}

The following parameters were used: k = 0.5; p0 = 1.5; m = ln(1.5); σ = 0.2;

k = 0.5; τ = 10; η = 0.5; ξ = 0.3; If = 175; Iv = 100 and x = 100.

Using those parameters, we have got that the optimal investment time for

the company which is determined by

t = inf{t : Yy(t) ≥ y1}
is obtained after 0.7 year as it can be seen on Figure 1 and at that time the

coresponding option value is 66.73.

6 Conclusion

The investment in green energy requires complex decisions before making

it. We proposed that the price p(t) of fuel evolves stochastically over time and

follows the Ornstein-Uhlenbeck process and from this we get the optimal time

for investment together with the option value for the company.
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