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Notes on the estimation of the asymptotics

of the moments for the m collector’s problem

Aristides V. Doumas1

Abstract

The general collector’s problem describes a process in which N dis-
tinct coupons are placed in an urn and randomly selected one at a time
(with replacement) until at least m of all N existing different types of
coupons have been selected. Let Tm(N) the random variable denot-
ing the number of trials needed for this goal. We briefly present the
leading asymptotics of the (rising) moments of Tm(N) as N → ∞ for
large classes of coupon probabilities. It is proved that the expectation of
Tm(N) becomes minimum when the coupons are uniformly distributed.
Moreover, a theorem on the asymptotic estimates of the rising moments
of Tm(N) by comparison with known sequences of coupon probabilities
is proved.
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1 Introduction

We consider the following classical urn problem. Suppose that N distinct

types of balls are placed in an urn from which balls are being collected in-

dependently with replacement, each one with probability pj, j = 1, 2, · · · , N .

Let Tm(N) be the number of trials needed until each ball has been collected m

times, where m is a fixed positive integer. This process is, sometimes, called

double dixie cup problem, while for the particular case where m = 1 is the so-

called coupon collector’s problem. The problem for the case m = 1 has a long

history (its origin can be traced back to De Moivre’s treatise De Mensura Sor-

tis of 1712 and Laplace’s pioneering work Theorie Analytique de Probabilites

of 1812), and its applications lie on several areas of science hence (e.g., biology,

linguistics, search algorithms). For general values of m and for pj = 1/N D. J.

Newman and L. Shepp [7] and soonafter, P. Erdős and A. Rényi [5] determined

the expectation, as well as the limit distribution of Tm(N). They proved that

lim
N→∞

P

{
Tm(N)−N ln N − (m− 1)N ln ln N + N ln(m− 1)!

N
≤ y

}
= e−e−y

.

(1)

For general values of m and for the case of unequal coupon probabilities one nay

find useful results in [4], where the authors developed techniques of computing

the asymptotics of the first and the second moment of Tm(N), the variance,

as well as, the limit distribution for large classes of coupon probabilities. Let

Tm(N)(r) := Tm(N)(Tm(N) + 1) · · · (Tm(N) + r − 1), r = 1, 2, . . . (2)

i.e., r-th rising moment of Tm(N). In this paper we present leading asymp-

totics for the rising moments of the random variable Tm(N), for rich classes of

probabilities. We prove that E[ Tm(N)(r) ] becomes minimum when the pj’s are

uniformly distributed by using the Schur - Ostrowski criterion. Finally, a the-

orem that helps us obtain asymptotic estimates by comparison with sequences

of coupon probabilities, for which the asymptotics are known, is presented.

2 The rising moments of Tm(N)

Let α = {aj}∞j=1 be a sequence of strictly positive numbers. Then, for each

integer N > 0, one can create a probability measure πN = {p1, ..., pN} on the
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set of types {1, ..., N} by taking

pj =
aj

AN

, where AN =
N∑

j=1

aj. (3)

By a Poissonization technique it is not hard to get explicit formulae for the

moments and the moment generating function of Tm(N) (see, [4]):

E
[
Tm(N)(r)

]
= r

∫ ∞

0

{
1−

N∏
j=1

[
1− Sm(pjt)e

−pjt
]}

tr−1dt (4)

G(z) := E
[
z−Tm(N)

]
= 1−(z−1)

∫ ∞

0

{
1−

N∏
j=1

[
1− Sm(pjt)e

−pjt
]}

e−(z−1)tdt,

(5)

for <(z) > 1, r = 1, 2, . . . , and Sm(y) denotes the m-th partial sum of ey,

namely

Sm(y) := 1 + t +
y2

2!
+ · · ·+ ym−1

(m− 1)!
=

m−1∑
l=0

yl

l!
. (6)

We introduce the notation

Em(N ; α; r) : = r

∫ ∞

0

[
1−

N∏
j=1

(
1− e−ajt Sm (ajt)

)]
tr−1dt. (7)

For a sequence α = {aj}∞j=1 and a number s > 0 we set sα = {saj}∞j=1. Hence,

E
[
Tm(N)(r)

]
= Ar

N Em(N ; α; r). (8)

Under (8) the problem of estimating E
[
Tm(N)(r)

]
can be treated as two sep-

arate problems, namely estimating Ar
N and estimating Em(N ; α; r, (see (7)).

The estimation of Ar
N can be considered an external matter which can be han-

dled by existing powerful methods, such as the Euler-Maclaurin sum formula,

the Laplace method for sums (see, e.g., [1]), or even summation by parts. Let

Lm(N ; α; r) := lim
N

Em(N ; α; r) = r

∫ ∞

0

[
1−

∞∏
j=1

(
1− e−ajt Sm (ajt)

)]
tr−1dt.

(9)

Theorem 2.1 For any fixed positive integers m and r, E
[
Tm(N)(r)

]
becomes

minimum when all pj’s are equal.
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Proof. To prove the theorem it suffices to show that, for a fixed t > 0, the

maximum of the quantity

N∏
j=1

[
1− e−pjt Sm (pjt)

]
,

subject to the constraints p1 + · · ·+ pN = 1, pj > 0, j = 1, 2, · · · , N , occurs

when all pj’s are equal. Set φ : (0, 1)N −→ (0,∞),

φ(p1 · · · , pN) :=
N∑

j=1

ln
[
1− e−pjt Sm (pjt)

]
. (10)

Clearly, φ is symmetric w.r.t. its variables. Now, if for all 1 ≤ i 6= j ≤ N,

(pi − pj)

(
∂φ (p1, p2, · · · , pN)

∂pi

− ∂φ (p1, p2, · · · , pN)

∂pj

)
≤ 0, (11)

then, φ will be a Schur–concave function (see, [6], page 84, theorem A.4) and

will attain its maximum when all pj’s are equal (see, [6], page 413). We have

∂φ (p1, p2, · · · , pN)

∂pi

=
t

(m− 1)!
· e−pit (tpi)

m−1

1− e−pitSm (pit)
.

It suffices to obtain that the function f(·) is decreasing, where

f(x) :=
e−xxm−1

1− e−xSm(x)
, x > 0.

Observing that (
e−xSm(x)

)′
= −e−xxm−1

(m− 1)!
,

we have

f ′(x) =
e−xxm−2

[1− e−xSm(x)]2
g(x), (12)

where

g(x) := (m− 1− x)
[
1− e−xSm(x)

]
− e−xxm

(m− 1)!
. (13)

Notice that g(x) extends to a smooth function on R. In particular g(0) = 0.

If m = 1, then g(x) = −x and (13) implies that f ′(x) < 0 for all x > 0. For

m ≥ 2 we have

g′(x) = −1 + e−xSm(x)− e−xxm−1

(m− 1)!
, g′(0) = 0,
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and

g′′(x) = − (m− 1)
e−xxm−2

(m− 1)!
< 0, x > 0.

Thus g(x) < 0 for all x > 0. Therefore, f ′(x) < 0 for all x > 0 and the proof

is completed.

The following theorem is related to our recent work [4] and the proof is

omitted.

Theorem 2.2 Lm(N ; α; r) < ∞ simultaneously for all positive (fixed) integers

m and r, if and only if there exist a ξ ∈ (0, 1) such that

∞∑
j=1

ξaj < ∞.

If Lm(N ; α; r) < ∞, then for all positive integers m and r we have

E
[
Tm(N)(r)

]
= Ar

N Lm(N ; α; r) [1 + o(1)] as N →∞.

Examples of this case are the positive power law, namely α = {jp}∞j=1, where

p > 0. In particular, when p = 1 we have the so-called linear case. Also, the

families of sequences κ = {eqj}∞j=1 and where q > 0 fall in this case. Notice

that the sequences β = {e−qj}∞j=1 produce the same coupon probabilities with

κ, hence they are covered too.

For the challenging case where Lm(N ; α; r) = ∞ for some fixed positive integer

r (and for any fixed m) we write aj in the form

aj = f(j)−1 (14)

where

f(x) > 0 and f ′(x) > 0, (15)

and we will discuss our problem for large classes of distributions. In partic-

ular, we will cover the cases where f(·) belongs to the class of positive and

strictly increasing C3(0,∞) functions, which grow to ∞ (as x → ∞) slower

than exponentials, but faster than powers of logarithms. We assume that f(x)
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possesses three derivatives satisfying the following conditions as x →∞:

(i) f(x) →∞, (ii)
f ′(x)

f(x)
→ 0,

(iii)
f ′′(x)/f ′(x)

f ′(x)/f(x)
= O (1) , (iv)

f ′′′(x) f(x)2

f ′(x)3
= O (1) . (16)

These conditions are satisfied by a variety of commonly used functions. For

example,

f(x) = xp(ln x)q, p > 0, q ∈ R, f(x) = exp(xr), 0 < r < 1,

or various convex combinations of products of such functions. An important

example falling in this case is the well known generalized Zipf law, namely

f(x) = xp, where p > 0. Zipf’s law has attracted the interest of scientists of

several areas of science, such as linguistics, biology, etc.

With similar arguments as in [4] one has the following theorem for the rising

moments of the random variable Tm(N).

Theorem 2.3 If α = {1/f(j)}∞j=1, where f(·) satisfies (15) and (16), then as

N →∞
E
[
T

(r)
N

]
∼ 1

min1≤j≤N{pj}r
ln

(
f(N)

f ′(N)

)r

. (17)

3 Asymptotic estimates for the rising moments

of TN by comparison with known sequences

Here we will present a theorem that helps us obtain asymptotic estimates by

comparison with sequences α for which the asymptotic estimates of Em(N ; α; r)

are known (for instance, via Theorem 2.3). First, we recall the following no-

tation. Suppose that {sj}∞j=1 and {tj}∞j=1 are two sequences of nonnegative

terms. The symbol sj � tj means that there are two constants C1 > C2 > 0

and an integer j0 > 0 such that

C2tj ≤ sj ≤ C1tj, for all j ≥ j0, (18)

i.e. sj = O(tj) and tj = O(sj).
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Theorem 3.1 Let α = {aj}∞j=1 and β = {bj}∞j=1 be sequences of strictly posi-

tive terms such that limN Em(N ; α; r) = limN Em(N ; β; r) = ∞.

(i) If there exists an j0 such that aj = bj, for all j ≥ j0, then

Em(N ; α; r)− Em(N ; β; r) is bounded,

(ii) if aj = O(bj), then Em (N ; β; r) = O (Em(N ; α; r) as N →∞,

(iii) if aj = o(bj), then Em(N ; β; r) = o (Em(N ; α; r)) as N →∞,

(iv) if aj � bj, then Em(N ; β; r) � Em(N ; α; r) as N →∞,

(v) if aj ∼ bj, then Em(N ; β; r) ∼ Em(N ; α; r) as N →∞.

Proof. Case (i) follows easily from (7):

|Em(N ; α; r)− Em(N ; β; r)|

= r

∣∣∣∣∣
∫ ∞

0

N∏
j=j0

(
1− Sm(ajt)e

−ajt
) [j0−1∏

j=1

(
1− Sm(ajt)e

−ajt
)
−

j0−1∏
j=1

(
1− Sm(bjt)e

−bjt
)]

tr−1 dt

∣∣∣∣∣
≤r

∫ ∞

0

∣∣∣∣∣
[

j0−1∏
j=1

(
1− Sm(ajt)e

−ajt
)
−

j0−1∏
j=1

(
1− Sm(bjt)e

−bjt
)]∣∣∣∣∣ tr−1 dt

=r

∫ ∞

0

∣∣∣∣∣∣
∑

J⊂{1,...,j0−1}

(−1)|J |
{

exp

(
−t
∑
j∈J

aj

)∏
j∈J

Sm(ajt)

− exp

(
−t
∑
j∈J

bj

)∏
j∈J

Sm(bjt)

}
tr−1

∣∣∣∣∣ dt < ∞,

where we have used the formula

N∏
j=1

(
1− Sm(pjt)e

−pjt
)

=
∑

J⊂{1,...,N}

(−1)|J | exp

(
−t
∑
j∈J

pj

)∏
j∈J

Sm(pjt). (19)

Notice that the sum extends over all 2j−1 subsets J of {1, ..., j − 1}, while |J |
denotes the cardinality of J .

(ii) Since aj = O(bj), there is a positive constant M and an integer j0, such

that aj ≤ Mbj, for all j ≥ j0. By part (i) of the theorem we have

|Em(N ; Mβ; r)− Em(N ; α; r)| ≤ C, for some positive constant C as N →∞.

Next observe that (7) implies

Em(N ; sα; r) = s−rEm(N ; α; r). (20)
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Using (20) we get∣∣∣∣ 1

M r
Em(N ; β; r)− Em(N ; α; r)

∣∣∣∣ ≤ C, i.e. Em(N ; β; r) ≤ M rEm(N ; α; r)+CM r,

and the result follows immediately from the definition of the O notation.

(iii) Fix an ε > 0. Then aj ≤ εbj, for all j ≥ j0(ε). Thus, by part (i) there is

an M = M(ε) such that

Em(N ; εβ; r)− Em(N ; α; r) ≤ M.

By invoking (20) we get

1

εr
Em(N ; β; r) ≤ Em(N ; α; r) + M, for all N ≥ N0(ε).

If we divide by Em(N ; α; r) and then let N → ∞, we obtain (iii), since ε is

arbitrary and limN Em(N ; α; r) = ∞.

(iv) Since aj � bj, then from (18) we have aj = O(bj) and bj = O(aj).

Using part (ii) we get as N → ∞, Em(N ; β; r) = O (Em(N ; α; r)) and

Em(N ; α; r) = O (Em(N ; β; r)), the result follows again from (18).

To prove (v) we first fix an ε > 0. Then (1 − ε)bj ≤ aj ≤ (1 + ε)bj, for all

j ≥ j0(ε). Thus, by case (i) and (20) there is an M = M(ε) such that(
1

1 + ε

)r

Em(N ; β; r)−M ≤ Em(N ; α; r) ≤
(

1

1− ε

)r

Em(N ; β; r) + M,

for all N ≥ N0(ε). If we divide by Em(N ; β; r) and then let N →∞, we obtain

(v) since ε is arbitrary and limN Em(N ; β; r) = ∞ .
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